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Abstract

A neural network trained on a classification dataset of-
ten exhibits a higher vector norm of hidden layer fea-
tures for in-distribution (ID) samples, while producing rel-
atively lower norm values on unseen instances from out-
of-distribution (OOD). Despite this intriguing phenomenon
being utilized in many applications, the underlying cause
has not been thoroughly investigated. In this study, we de-
mystify this very phenomenon by scrutinizing the discrimi-
native structures concealed in the intermediate layers of a
neural network. Our analysis leads to the following dis-
coveries: (1) The feature norm is a confidence value of a
classifier hidden in the network layer, specifically its max-
imum logit. Hence, the feature norm distinguishes OOD
from ID in the same manner that a classifier confidence
does. (2) The feature norm is class-agnostic, thus it can
detect OOD samples across diverse discriminative models.
(3) The conventional feature norm fails to capture the deac-
tivation tendency of hidden layer neurons, which may lead
to misidentification of ID samples as OOD instances. To
resolve this drawback, we propose a novel negative-aware
norm (NAN) that can capture both the activation and de-
activation tendencies of hidden layer neurons. We conduct
extensive experiments on NAN, demonstrating its efficacy
and compatibility with existing OOD detectors, as well as
its capability in label-free environments.

1. Introduction

Deep learning-based models are increasingly used for
safety-critical applications such as autonomous driving and
medical diagnosis. Despite the effectiveness of deep models
in closed-set environments where all test queries are sam-
pled from the same distribution of train data, the deep mod-
els are reported fairly vulnerable [33, 16] to outliers from
out-of-distribution [19, 51] and make highly confident but
invalid predictions thereon [35]. As it is critical to prevent
such malfunction in deploying deep models for open envi-
ronment applications, the out-of-distribution (OOD) detec-
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Figure 1: (left) As a discriminative model is trained, its hidden
layer features exhibit higher vector norm on in-distribution sam-
ples (ID) and relatively lower norm on out-of-distribution (OOD)
instances. This phenomenon prevails even when the model re-
duces the overall feature norm (e.g. by weight decay). (right) As a
result, ID samples are separated from OOD instances with respect
to the feature norm. To see its underlying cause, we analyze the
discriminative structures concealed in the hidden layer.

tion problem has attracted massive attention in recent years
[52].

Despite the importance of this field, only a handful of
works have been devoted to understanding how the deep
network becomes aware of OOD [9, 10, 8, 30, 31]. One par-
ticular under-studied signal in OOD detection is the norm of
feature vectors residing in the hidden layers of neural net-
works. Its known behavior is that a model trained on the ID
data exhibits larger values of feature norm over ID samples
than the OOD instances [7, 53, 3, 28]. However, the studies
are mainly empirical and provide no underlying principle of
the feature norm at a fundamental level.

A preliminary attempt at understanding the feature norm
has been given in the appendix of [45]. The authors of [45]
argue that minimizing the cross entropy (CE) maximizes
the feature norm of ID samples. However, the argument
is not general. As we observe in Fig. 1, training the weight-
decayed model decreases the overall feature norm, but the
separation between ID and OOD remains obvious. Hence,
we require a new lens to understand the underlying cause of
feature norm separation.

In this work, we study why the feature norm separates
ID from OOD. To this end, we both theoretically and em-
pirically show that the feature norm is equal to a confi-
dence value of a classifier hidden in the corresponding layer.



Based on the existing theory on the classifier confidence
[10], the equality guarantees the detection capability of fea-
ture norm.

Furthermore, our analysis indicates that the feature norm
is agnostic to the class label space. This suggests that
the feature norm can detect OOD using any general dis-
criminative model, including self-supervised classifiers. We
validate this postulation empirically under several aspects:
Firstly, by considering inter- and intra-class learning inde-
pendently, we show that inter-class learning enables the fea-
ture norm to separate OOD from the training fold of ID.
The intra-class learning, on the other hand, generalizes the
detection capability to the test environment, enabling the
feature norm to differentiate OOD from the test fold of ID.
The finding shows that inter- and intra-class learning corre-
sponds to memorization and generalization, respectively, in
the context of OOD detection. Secondly, we show that the
detection capability of feature norm is strongly correlated
to the entropy of activation (i.e. diversity of on/off status of
neurons). As activation entropy is a class-agnostic charac-
teristic, the finding reinforces our postulation.

In addition to that, we observe that the conventional vec-
tor norm only captures the activation tendency of hidden
layer neurons, but misses the deactivation counterpart. Fail-
ing to account for the deactivation tendencies results in the
loss of important characteristics specific to ID samples, po-
tentially leading to misidentification of such instances as
OOD examples. Motivated by this drawback, we derive a
novel negative-aware norm that captures both the activation
and deactivation tendencies of hidden layer neurons.

We perform a thorough assessment of the NAN and
demonstrate its efficacy across OOD benchmarks. Addi-
tionally, we confirm that NAN is compatible with several
state-of-the-art OOD detectors. Furthermore, NAN is free
of hyperparameters, requires no classification layer, and
does not necessitate expensive feature extraction from a
bank set. Consequently, NAN can be readily deployed in
scenarios where class labels are unavailable. We evaluate
NAN in unsupervised environments using self-supervised
models and assess its performance on one-class classifica-
tion benchmarks.

The contributions of our work are summarized as fol-
lows:

* We demystify the OOD detection capability of the fea-
ture norm by showing that the feature norm is a confi-
dence value of a classifier hidden in the corresponding
layer (Sec. 3).

* We reveal that the feature norm is class-agnostic, hence
able to detect OOD using general discriminative mod-
els (Sec. 4). We validate this property under several
aspects including inter/intra-class learning and activa-
tion entropy.

* We put forward a novel negative-aware norm (NAN),
which captures both activation and deactivation ten-
dencies of hidden layer neurons (Sec. 5). NAN
is hyperparameter-free, label-free, and bank-set-free.
NAN can be easily integrated with state-of-the-art
OOD detectors. (Sec. 6)

2. Background

The goal of OOD detection is to devise a score func-
tion S(x) that determines an input sample x as OOD if
S(x)<t for some threshold 7 and as ID otherwise. There
are several ways to derive such a score function from a dis-
criminative model py(y|x). A standard detection score is
the maximum softmax probability (MSP) score [16], which
is defined as S(x)=max, ps(y|x) with pg modeled by the
softmax function.

Other OOD detection scores include the energy score [27]
that extracts the energy function [13] from the classification
layer. [15] proposes the KL divergence to the uniform pre-
diction, while [45] applies only the maximum value of logit.

Other works propose the utilization of distance metrics
for OOD detection. [25] applied the Mahalanobis distance
as an OOD detector based on a strong parametric assump-
tion that each ID class follows a Gaussian distribution with
a shared covariance. A unified approach SSD [40] general-
izes the principle of [25], exploiting class clusters attained
by unsupervised K -means. As SSD requires no class labels,
its usage is general and applicable to both supervised and
unsupervised models. ViM [46] adopts SSD but uses the
orthogonal distance from principal components instead, and
combines it with the energy score with manual calibration.
CSI [43], on the other hand, defines the detection score by
combining a rotation classifier with the k-nearest neighbor
distance. The effectiveness of CSI, however, comes from
a deliberate design of image-specific data augmentations.
As a simpler and model-agnostic approach, [42] proposed
the k-nearest neighbor (KNN) distance for OOD detection.
Despite its broad applicability [29], KNN requires a careful
hyperparameter search on the sampling ratio of the ID bank
set and the number of neighbors.

Apart from the distance-based OOD detectors, an alter-
native approach to detecting OOD is by perturbing the sig-
nal of the network. [26, 20] observed a particular input
perturbation perturbs OOD samples severely but makes ID
samples remain mostly invariant. [41] proposed a rectifi-
cation layer that clips out all values greater than a given
threshold. Despite their effectiveness, the perturbation
methods rely on specific assumptions of network signal dis-
tributions and are sensitive to hyperparameters.

On feature norm. The first application of feature norm
for OOD detection was reported by [7], whose authors ob-
served that the magnitude (l3-norm) of embedding vector
tends to be larger for ID than OOD. The same trend was ob-
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Figure 2: The results on hidden classifiers of MLP-5 trained on
CIFAR-10 (ID). (a) The prediction accuracy of the hidden clas-
sifier increases through learning. (b) Accordingly, the prediction
becomes more deterministic (i.e., confident). (c,d) As the sign dif-
ference between the feature vector and class weight cy) is reduced,
the approximation error between the feature norm and the maxi-
mum value of the hidden classifier is reduced in a similar trend,
verifying our Thm. 3. Results with other activation functions are
in Sec. A.3.1.

served in the appendixes of [43, 45, 21] for generic images.
In biometrics, [53] observed the same phenomenon for face
images, thereby devising a score that can more effectively
reject unseen identities based on the feature norm. [28] ex-
tended the application of feature norm, showing that it can
measure the quality score of the face image. On the other
hand, [3, 4] observed that the norm of feature embedding
effectively differentiates a person from his/her surrounding
background, and thus can be used to improve the perfor-
mance and efficiency of person search. Besides OOD de-
tection, [55] observed that the embedding vectors of highly
discriminative samples lie in the area of the large norm. [50]
extended this observation, demonstrating the samples with
large feature norms are not only more discriminative but
also more transferable for domain adaptation.

Although numerous works report empirical observations
of the phenomenon, to our best knowledge, no work pro-
vides a systematic theoretical explanation of the underlying
mechanism of feature norm.

3. Understanding Feature Norm as a Confi-
dence of Hidden Classifier

In this section, we show that the feature norm is a confi-
dence value of a discriminative classifier covertly concealed
in the corresponding layer. Specifically, under a regularity
condition, the /;-norm of the feature vector is equal to the
maximum logit of a hidden classifier attained by binarizing
the network weights. Hence, based on the theory from [9],

the feature norm is guaranteed its detection proficiency.

3.1. Theoretical analysis

Notation and setup. Let {(x;,9;)}Y, be the train ID
dataset where y;€Y={1, ..., K} are labels from K classes.
Suppose our model is a multi-layer perceptron (MLP)
whose [-th hidden layer consists of the d;-dimensional fea-
ture vector al) computed by a) =¢(W @ Tall=1)) consec-
utively from the initial layer /=0 to the last hidden layer
I=L, where a®?=x. The vector of pre-activated units is
denoted by z("), which satisfies al) =0 (z")). The activa-
tion function o is assumed to be a unit-wise rectifier such
as ReLU [32, 11], GeLU [17], and Leaky ReLU [48]. Each
weight matrix W () cR%-1%% constitutes trainable param-
eters 0. The classifier logit 1(x)€R¥X is computed by
w(X)ZW(L'H)Ta(L).
Assumption. We assume arbitrary class type for the label
space )V; classes can be supervised labels, instance classes,
or even noisy labels.

To extract a hidden classifier from each hidden layer of
the model, we first access the hidden layer through matrix
multiplication.

Proposition 1. The final logit is represented by
(x) = CWal) (1)

for each hidden layer [, where

L—-i-1
C(l): ( H W(L+1—k)TD(L—k)> W(l+1)T (2)
k=0
a(

with DU = diag(%l), cee %) and the convention 5 =
L

0. The matrix CH) = C)(x) € RE* depends on x.
Proof. All proofs are given in Sec. A. O

The multiplication by the coefficient matrix C) =

[cgl)7 . ,c(ll()]T resembles a classification layer with the

column weight c,(cl):cg) (x) as the k-th class proxy.

We note that ¢ is called a discriminative classifier since
the target class unit of logit is maximum ¢, > 1 for all
k=y. If the output classifier ¢ is sufficiently discriminative,
then binarizing the coefficient matrix C(*) does not alter the

prediction of the classifier. This leads us to a hidden classi-
fier @(l) € RX defined by binarizing the network weights:

ﬂ(l)(x) = BW®al) .= sjgn(CV)a® 3)
where sign(x) = 1 if > 0 and —1 otherwise.

Proposition 2. For all labeled sample (x,y), suppose the

O]

discriminative learning of Y (x) = ¢, - a¥) increases and



decreases the cosine similarities between cg) and a®V) suf-
ficiently for k=y and k+y, respectively. Then E(Z) is a dis-
criminative classifier with @S) > J,(f) forall k #y.

In the sufficient condition of Prop. 2, the network aligns
the activation pattern sign(a(")) [14] with the binary weight

b?(f) that corresponds to the target class y. Here, b(yl) is the
y-th row of B®. Due to the alignment, the feature norm

becomes the prediction confidence maxy, @,(f) (x) of the hid-
den classifier.

Theorem 3. Given the sufficient condition of Proposition
2, the feature norm

Ja® |y converges 0, (x) = max iy (x), (4

,(,l). In general, for any k

in which case sign(al)) = b
0 < [[a® 1 — ¥p(x) < [[a® | Isign(@®) = bP[l, (5)

Existing OOD theories on classifiers [9, 10] assure that
OOD samples have smaller prediction confidence than ID
under regularity conditions. In this case, the feature norm
of OOD also has a smaller value due to Thm. 3:

Corollary 4. If maxy @,(j) (Xo0d) is sufficiently small, then
2% (Xp0d) |1 < |21 (Xina)|1 for all ID samples X;pq.

3.2. Empirical verification

We empirically verify the above claims. We train a 5-
layer MLP on CIFAR10 (ID) [24]. The full empirical setup
is given in Sec. A.3. Fig. 2 shows that the hidden classifiers
learn to increase their prediction accuracy while reducing
the prediction uncertainty (entropy), verifying Prop. 2. As
described in Thm. 3, the discriminative training induces the
sign alignment between the hidden layer feature and cor-
responding class weight c(yl), thereby reducing the gap be-
tween the feature norm and the maximum confidence of the
hidden classifier.

Remark We remark that the trend of approximation error
may not be precisely aligned with that of the sign difference
(Fig. 2) as the sign difference is the sufficient condition but
not a necessary one. Hence, when the sign difference is
large, the approximation error can be either large or small;
i.e. they can be misaligned. However, due to its sufficiency,
if the sign difference converges to 0, then the approximation
error also decreases to 0.

4. Class Agnosticity of Feature Norm

The theoretical properties of feature norm proven in
Sec. 3 hold true with respect to any type of label space,
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Figure 3: The results on ResNet-18 trained on CIFAR-10 (ID).
(a) Training the model increases the OOD detection performance
of feature norm if and only if the model is discriminative. (b)
Accordingly, training the model increases the entropy of activation
if and only if the model is discriminative. Here, the models with
S, I, R, and Is labeling schemes are discriminative, while model O
is not discriminative.
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Figure 4: When the intra-class samples are related semantically
(i.e. {S,Is,0}), the OOD detection performance is generalized
to test environments (i.e. small generalization gap). However, if
intra-class samples are randomly related (R), or there is no more
than one sample in each class (I), no generalization is observed.

suggesting that the feature norm is class-agnostic and ca-
pable of detecting out-of-distribution (OOD) samples with
any discriminative model. In this section, we conduct em-
pirical analyses to validate this hypothesis across different
aspects. Specifically, we observe that inter/intra-class learn-
ing generally enhances the feature norm’s performance. We
then demonstrate that the feature norm’s performance is
correlated with the entropy of activation, which is another
class-agnostic characteristic of neural networks. The fea-
ture norm’s dependence on class-agnostic factors provides
further evidence supporting our hypothesis.

4.1. Impact of inter/intra-class learning

Setup. We train a ResNet-18 on CIFAR-10, and test against
different OODs, i.e., LSUN [54], iSUN [49], CIFAR-100
[24], SVHN [34], Texture [6], and Places [56].

We consider five different training schemes by varying
the label space. ‘S’: the supervised learning with generic
object categories. ‘I’: the instance-discrimination learning
with y;=i. ‘Is’: instance-discrimination with data aug-
mentation (i.e. conventional self-supervision). ‘R’: learning
with random binary labels. ‘O’: non-discriminative learn-
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Figure 5: For discriminative models {S,R,I,Is}, the OOD detec-
tion performance of feature norm is positively correlated to the
averaged entropy of activation (Eq. (7)). However, no consistent
correlation is found in the non-discriminative model O.

ing with every ID sample labeled by the same label ‘1°.
The detection score we use is the feature norm ||a(™)||;
of the last hidden layer feature a(*). The performance is
measured by the area under receiving operating character-
istic curve (AUROC). A more detailed description of the
setup and full experimental results are given in Sec. B.
Inter-class learning. To analyze the effect of inter-class
learning, we divide the training schemes into two: discrim-
inative learning {S,R,LIs}, and non-discriminative learning
{O}. Fig. 3 demonstrates that the feature norm separates
OOD from the train fold of ID if and only if the model is
trained with inter-class learning. In particular, the feature
can detect OOD even if the model is trained with random
noisy labels, indicating that its detection capability is inde-
pendent of the class type of label space.
Intra-class learning. To examine the impact of intra-class
learning, we divide the training schemes into two groups
{S.Is,0} and {R.I}. In the former group {S.Is,O}, the intra-
class samples are semantically related. On the latter group
{R.I}, there is no semantic relation within the intra-class
samples. Fig. 4 indicates the generalization gap between
train and test performances for OOD detection. The results
support that the detection capability of feature norm is gen-
eralized to the test environment if and only if the intra-class
samples are semantically related.
Summary on inter/intra-class learning. The detection ca-
pability of feature norms does not depend on a particular
type of class label. Instead, any type of inter-class learn-
ing allows the feature norm to differentiate OOD from the
training fold of ID. On the other hand, intra-class learning
with any appropriate semantics facilitates the separation of
OOD from the test fold of ID. In general, inter-class learn-
ing corresponds to memorization, while intra-class is asso-
ciated with generalization.

4.2. The relation to the entropy of activation

The feature norm’s detection capability depends on the
model’s discriminative nature, not the class type. Here, we
further show that the capability relies on the entropy of ac-
tivation, which is another class-agnostic characteristic.

If the model is discriminative, target logits E;L) (x) with
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Figure 6: (a) The sparsity of activations, measured by ||a‘™||;?,
is maximized and higher on ID samples than on OOD instances.
(b) The entropy growth is larger in deeper layers. (c¢) The OOD
detection performance is accordingly better in deeper layers.

different y is maximized for ID samples x. Then, due to

0y ) =3 b al®) ©)

y Y, i
i

with b(yL) = (by(fl)7 . ,b;%(i)L) € Rz, the unit aEL) is max-
imized for samples x in {x : b;ﬁ) =

for x’s in {x : bgfi) = —1}. Consequently, the entropy of
activation is maximized

1}, and minimized

1

L
H(a") = - > P10, =) log (L, w_,=c) (7
c=0
for each neuron aEL) of ID samples.
Conversely, if the model is not discriminative, i.e., J =

{1}, then all ID samples likely have the same constant bi-

nary indicator; b;L,-) = c for all samples x where ¢ €

{-1,1}. Hence, the activation entropy is minimized in this
case.

This trend is empirically validated in Fig. 3b; only dis-
criminative models maximize the activation entropy. More-
over, demonstrated by the strong correlation depicted in
Fig. 5, the detection performance of the feature norm de-
pends on the activation entropy, which is a characteristic
independent of the class type of the label space.

5. Method: Negative-Aware Norm (NAN)

A missing component in the conventional norm. The net-
work training tends to maximize the confidence of hidden
classifier

maximized minimized
- _ (L) (L)
max ¥, (x) = g a;’ — E a; (8)
(L) L (L)
z.by,i =1 j.by,j =—1

on ID samples x under a regularity condition (Prop. 2). This
maximization is stronger on ID samples than on OOD in-
stances [9], and hence serves as a key factor that separates
OOD from ID (Cor. 4).

The maximization of confidence can be disen-
tangled to maximization of the positive summand



A= Zi:bfﬁ;:l aEL) and minimization of the negative
summand D:= Zj:b;Lj):_l agL),
activation and deactivation of neurons, respectively. The
conventional [; feature norm |/al|; captures the maxi-
mization trend of activation neurons as the summand A
converges to ||a|l;. However the /; norm fails to reflect
the deactivation responses as the negative summand is
diminished with D~0 due to to the nature of the activation
function (e.g. ReLU). Hence, this can lead to potential
misidentification of ID samples when the naive [y norm is
used for OOD detection.

Derivation. To mitigate this drawback, we capture the de-
activation tendency by the sparsity of activations ||a(%)||;*.
The sparsity term reflects the number of deactivated neurons

by

which correspond to

(L

la®flo = dz — [{i - ai" < 0}]. ©)
Combining the sparsity term with the conventional vector
norm, we derive a novel negative-aware norm (NAN)

lallvan = [la ™[]y - [la®l . (10)

NAN captures both the activation and deactivation tenden-
cies of ID samples’ neurons. Fig. 6a shows the sparsity term
is higher on ID samples than OOD instances, demonstrat-
ing that the deactivation tendency is stronger in ID sam-
ples’ neurons. Hence, capturing the deactivation tendency
likely improves the conventional norm. We conduct exten-
sive experiments on NAN in the next section to validate its
effectiveness.

We remark that similar to the [; feature norm, the

negative-aware norm (NAN) exhibits class-agnostic char-
acteristics, as verified through analyses of inter/intra-class
learning and activation entropy in Sec. B.
Additional consideration. We utilize the last hidden layer
a=a() for OOD detection as the last hidden layer exhibits
a higher growth in activation entropy and accordingly better
performance (Fig. 6bc).

6. Experiments on NAN

The objective of this experiment is to assess the OOD
detection capabilities of NAN across diverse configurations
using general discriminative models. To achieve this goal,
we evaluate NAN’s performance using both supervised and
self-supervised models, and assess it in large-scale and
small-scale benchmarks, including the one-class classifica-
tion setting. Additionally, we consider the compatibility of
NAN, namely, whether NAN can be combined with other
detectors for performance gain. We conclude this section
with ablation studies of NAN. A detailed description of the
complete experiment setup can be found in Sec. C.
Evaluation metrics The performance is reported by the
widely-used metrics: (1) the area under the receiver oper-
ating characteristic curve (AUROC), (2) the false positive

rate (FPROS5) on the OOD samples when the true positive
rate of ID samples is at 95%, (3) closed-set classification
accuracy (ACC) of ID.

6.1. Evaluation on large-scale benchmark

Setup. We utilize a ResNet-50 trained on ImageNet-1k.
The model is trained either by (1) supervised labels using
the contrastive loss [23] or (2) self-supervised instance dis-
crimination loss using momentum embeddings [5]. In the
case of the supervised contrastive learning, the classifica-
tion layer is learned after training and freezing the backbone
representation. For fair comparison, all detection scores are
applied on the same backbone.

Following the widely-used ImageNet-1k benchmark
[22], we test against four test OOD datasets: fine-grained
plant images of iNaturalist [44], scene images from SUN
[47] and Places [56], and texture images from Texture [6].
All OOD datasets are processed so that no overlapping cat-
egory is present with ImageNet-1k.

Results. Table 1 shows that NAN is comparable to the state-
of-the-art detectors on the ImageNet-1k benchmark. Com-
pared to the OOD detection scores that require a supervised
classification layer (i.e. MSP, Energy, MaxLogit, and KL),
NAN shows significant improvement on both AUROC and
FPR95. Moreover, NAN can be instantly applied to the con-
trastive models without a classification layer and label su-
pervision.

Distance-based scores (Mahalanobis, SSD, and KNN)
outperform NAN on the far-OOD dataset Texture. This is
because NAN inherently is a classifier confidence, which
can exhibit overconfidence when dealing with far OOD in-
stances. On average, however, NAN is more robust and
produces a significant reduction on the FPR95 metric (11-
26%) without any hyperparameter. Rather than compet-
ing with the state-of-the-art distanced-based detectors, we
show NAN can be integrated with them easily for further
improvement.

6.2. Evaluation on NAN compatibility

We examine whether NAN can be integrated with ex-
isting OOD scores. To this end, we consider the state-of-
the-art perturbation method ReAct [41] and the label-free
distance-based scores SSD and KNN. NAN is combined
with SSD and KNN by simple score division as follows:
given a distance function to the ID bank set or prototypes
in the form of d(x, Xpani), we re-calibrate the distance by
d(x, Xpank)/||a® |[nan where a(®) is the last hidden layer
feature of the test input x. Table 2 shows that the combina-
tion improves both metrics in all cases, demonstrating the
compatibility of NAN.
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Without Supervised Labels of ID (detectors based on supervised labels are not available):

SSD v v 60.34 93.87 80.89 78.41 77.23 81.26 90.19 33.53 77.16 71.77 71.10
KNN v 84.53 78.71 82.26 76.06 77.50 80.65 91.99 24.61 84.07 65.01 71.10
NAN (ours) v v v 92.90 36.09 86.76 56.27 83.22 65.08 87.57 46.86 87.61 51.08 71.10

Table 1: Results on ImageNet-1k with ResNet-50. ‘hyper.-free’ indicates that the detection score does not require a hyperparameter.

AUROCT FPR95)

NAN 92.32 31.59
NAN + KNN [42] 92.99 29.26
NAN + SSD [40] 93.42 2751
NAN + ReAct [41] 93.91 29.23
NAN +ReAct [41]+KNN [42] 9437 24.94
NAN + ReAct [41] + SSD [40] 94.61 24.57

Table 2: Compatibility of NAN to existing detectors. The ID is
ImageNet-1k. The value is averaged over all test OOD datasets.

6.3. Evaluation on standard benchmark

We evaluate NAN on the standard CIFAR-10 benchmark
that consists of low-resolution images.
Setup. We utilize a ResNet-18 trained on CIFAR10. The
model is trained by either of the two standard training
schemes: cross-entropy minimization with supervised la-
bels and self-supervised learning (MoCo-v2) without the
supervised labels. Following the popular benchmark, we
choose the following datasets as OOD test datasets: LSUN-
fix [43], ImageNet-fix [43], CIFAR100 [24], SVHN [34],
and Places [56]. All images are of size 32 x 32.
Evaluation results. Table 3 shows that the proposed score
NAN is comparable to state-of-the-art scores specifically
designed for OOD detection. We highlight that only NAN is
a hyperparameter-free approach among the top-performing
methods. The label-free distance-based scores KNN and
SSD exhibit robustness, but their results are attained by
carefully fine-tuning their method-specific hyperparame-
ters. Despite not utilizing any hyperparameters, NAN ex-
hibits comparable performance to the label-free state-of-
the-art detectors (SSD and KNN) in terms of AUROC and
FPR95 metrics on average. CSI also shows marginal superi-
ority in two cases out of eight, but CSI requires complicated
training with image rotation prediction, and its inference
must be combined with KNN in an intricate manner. In con-
trast, NAN is simple and can be easily integrated to KNN.
Combined with the distance-based scores SSD and KNN,
NAN exhibits a consistent performance boost and outper-

forms all reported detectors.

6.4. Evaluation on one-class classification

As NAN requires neither classifier nor supervised labels,
it can be applied to one-class classification (OCC). To assess
the OCC performance, we evaluate the standard one-class
benchmark of CIFAR-10/100. A class randomly chosen in
CIFAR-10 is regarded as the ID data, and the rest of the
9 classes in CIFAR-10 constitute OOD instances. We con-
duct a similar experimental procedure on CIFAR-100 super-
classes. For a fair comparison, we compare with one-class
classification baselines that do not utilize extra training data
and pretrained weights attained from large-scale data. For
evaluation, we apply NAN on the MoCo-v2 model that is
trained on the one-class data from scratch.

Table 4 indicates that NAN is comparable to the state-
of-the-art one-class classifier CSI without any complicated
training and hyperparameter tuning. Combined with the
distance-based detectors, NAN performs equally well and
improves the distance-based detectors on both CIFAR-
10/100 data sets.

6.5. Ablation study

Ablation on the NAN Score The primary innovation of
NAN is the inclusion of a sparsity term (i.e., the denomina-
tor of NAN), which accounts for the hidden layer neurons’
tendency to deactivate. We analyze the impact of this com-
ponent by ablating it. Table 5 shows the effectiveness of the
sparsity term in both large-scale and small-scale settings.
In the large-scale setting (ImageNet-1k), OOD is mostly
differentiated from ID by the deactivation tendency of hid-
den layer neurons. In the case of the small-scale CIFAR-
10 dataset, capturing both deactivation and activation ten-
dencies is crucial for enhancing the OOD detection perfor-
mance. In general, the inclusion of the sparsity term to cap-
ture the deactivation tendency enhances the robustness of
the OOD detection score.

Ablation on the Architectural Component: the



OOD LSUN-fix ImageNet-fix CIFAR100

SVHN Places Average

AUROCtT FPR95| AUROCT FPR95, AUROCT FPR95, AUROCt FPR95| AUROCT FPR95, AUROCT FPR95| ID ACCT
With supervised labels of ID

ODIN* [26] - - - - - - 88.3 60.4 90.6 45.5 - - -

CSI* [43] 92.1 - 924 - 90.5 - 96.5 - - - - - -

MSP 90.3 59.1 89.7 61.3 88.0 64.1 96.9 19.8 88.5 61.7 90.7 532 94.5
Energy 86.8 50.9 84.7 55.1 81.6 59.6 93.9 22.1 86.7 48.4 86.7 47.2 94.5
MaxLogit 86.8 51.7 84.7 56.0 81.6 60.1 94.1 22.0 86.6 49.8 86.8 479 94.5
KL 88.8 50.3 89.4 50.0 87.2 55.1 98.8 6.6 88.0 49.2 90.4 422 94.5
Mahalanobis 925 383 90.6 473 88.0 54.8 99.0 5.9 90.9 41.0 922 375 94.5
ViM 92.8 41.0 91.3 43.7 87.3 525 95.0 22.5 94.1 28.2 92.1 37.6 94.5
KNN 96.0 257 95.1 314 922 44.2 99.8 1.1 94.3 324 95.5 27.0 94.5
SSD 96.5 20.2 94.2 35.0 88.8 514 99.9 0.4 922 423 94.3 29.9 94.5
NAN (ours) 94.7 36.6 94.5 34.4 91.7 44.8 99.7 1.3 94.2 333 95.0 30.1 94.5
NAN + KNN 96.0 26.7 95.5 29.0 92.7 40.9 99.9 0.6 94.9 28.2 95.8 25.1 94.5
NAN + SSD 96.7 19.9 95.6 27.6 91.8 43.6 99.9 0.3 94.6 30.3 95.7 24.3 94.5

Without supervised labels of ID

RotNet* [18] 81.6 - 86.7 - 823 - 97.8 - - - - - -

GOAD* [1] 78.8 - 83.3 - 77.2 - 96.3 - - - - - -

CSI* [43] 90.3 - 93.3 - 89.2 - 99.8 - - - - - -

KNN 95.0 30.5 93.7 36.7 89.7 50.3 99.4 3.0 88.6 58.2 93.3 35.7 90.7
SSD 94.1 30.2 90.8 47.4 85.9 57.6 98.5 8.3 88.8 51.9 91.6 39.1 90.7
NAN (ours) 94.9 28.8 93.7 36.1 88.6 524 96.1 22.0 89.3 51.5 92.5 38.1 90.7
NAN + KNN 95.8 24.6 94.8 32.6 90.1 494 98.4 8.8 90.5 50.5 93.9 332 90.7
NAN + SSD 96.0 21.3 94.5 33.6 89.4 49.7 98.5 83 91.2 45.6 93.9 31.7 90.7

Table 3: Results on CIFAR-10 with ResNet-18. * indicates the values are taken from the references.

CIFAR10 CIFAR100

Without bank set:

OC-SVM* [39] 58.8 63.1
Deep-SVDD* [37]  64.8 -
AnoGAN* [38] 61.8 -
OCGAN* [306] 65.7 -

Geom* [12] 86.0 78.7
GOAD* [2] 88.2 -

NAN (ours) 93.7 88.2
With bank set:

CSI* 94.3 -

SSD 91.1 85.7
SSD + NAN (ours)  94.3(+3.2)  88.7(+2.0)
KNN 92.1 87.1
KNN + NAN (ours) 94.3(+2.2) 88.3(+1.0)

Table 4: The average one-class classification (OCC) performance
in AUROC. * indicates the values are taken from the references.

ImageNet-1k CIFAR-10
AUROCT FPR95] AUROCT FPR95)

NAN w/o sparsity term 57.99 95.22 92.40 43.00
NAN 92.32 31.59 94.90 30.10

Table 5: The ablation study examines the effect of NAN’s sparsity
term, which accounts for the hidden layer neurons’ deactivation
tendency. The ID is either ImageNet-1k or CIFAR-10. The value
is averaged over all corresponding test OOD datasets.

Last Hidden Layer Dimension Although NAN is a
hyperparameter-free OOD score, its effectiveness is still in-
fluenced by the network architecture, much like other detec-
tion scores. Specifically, the performance of NAN may pri-
marily depend on the dimension dy, of the last hidden layer
a(l), To assess the impact of this dimension on the perfor-

—e— NAN
NAN w/o sparsity term

06 | —— NAN
NAN w/o sparsity term

8 16 32 64 128 256 512 102420484096

8 16 32 64 128 256 512 102420484096
Layer Dimension i

Layer Dimension

Figure 7: The ablation study of NAN with respect to the dimen-
sion dy, of the last hidden layer a'™. The ID data is CIFAR-10.
The reported metric numbers are values averaged over test OOD
datasets.

mance of NAN, we evaluate NAN on multiple ResNet-18
models with different dimensions d;,. We train the models
on CIFAR-10 using supervised cross-entropy loss and eval-
uate them on various OOD datasets, including LSUN-fix,
ImageNet-fix, CIFAR-100, and SVHN. We report the aver-
age performance over all test OOD datasets.

We hypothesize that a wider hidden layer would better
capture the deactivation tendency of neurons, and hence im-
prove the performance. Fig. 7 evidences the hypothesis; in-
creasing the dimension of the last hidden layer tends to im-
prove the performance of NAN. Particularly on the FPR95
metric, the improvement is not marginal. Moreover, the
performance is fairly robust unless the layer dimension is
unreasonably small. Interestingly, the comparison between
NAN and the standard /;-norm score without the sparsity
term unveils an intriguing finding; NAN’s ability to capture
the deactivation tendency makes the score more robust to
changes in the layer dimension dr,. This result suggests that



measuring the deactivation tendency is critical for effective
OOD detection.

Additional ablations and limitation. Further ablation on
architectural components and the limitation of NAN are
given in Sec. D and E, respectively.

7. Conclusion

We have conducted a thorough investigation of the fea-
ture norm to gain insights into its underlying mechanism for
OOD detection. Specifically, we have demonstrated that the
feature norm’s ability to detect OOD stems from its function
as classifier confidence. Additionally, we have established
that the feature norm can detect OOD using any discrim-
inative model, making it independent of class label type.
Through our formulation of the feature norm as a hidden
classifier, we have identified that the conventional feature
norm neglects neurons that tend to deactivate, leading to the
potential misidentification of ID samples. To address this
limitation, we have proposed a novel negative-aware norm
NAN that captures both the activation and deactivation ten-
dencies of hidden layer neurons. Our empirical results have
demonstrated the effectiveness of NAN across diverse OOD
detection benchmarks.
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Supplementary Materials

A. Supplementary to the Analysis of Hidden Classifier
A.1. Proofs for the properties of hidden classifier

Notation (detailed) Each hidden layer feature a(!) is defined by consecutive computation of the post-activated feature
vector
al) = g(WhTall-1) (11)

from the input layer [ = 0 to the last hidden layer [ = L. The pre-activated features satisfy al). = & (z(!)), where the
activation function o is a rectifier (e.g. ReLU, GeLU, Leaky ReLU). The penultimate embedding is g(x) = UTa®), which
computes the network classification logit 1)(x) € R¥ by

Y(x) = Whg(x). (12)

W is the weight matrix for the classification layer. For notation simplicity, let W41 := UW such that ¥(x) =
W (EHD) a(L) | The sign function sign(-), on the other hand, that binarizes a scalar to either 1 or —1 is applied point-wise.

Note For the embedding computation, U is a fixed identity matrix in supervised models, while U serves as a learnable
parameters for self-supervised models with projection head [5].

Proposition 1. The final logit is represented by

¥(x) = cVall (13)
for each hidden layer [, where
L—1-1
c® — ( H W(L+1—k)TD(L—k)> wHDT (14)
k=0
with DU = diag(@7 e %{jl)) with the convention 5 = 0. C) = C(x) € RE*% depends on x.
1 1
Proof. Observe inductively that
Y(x) = WEFDT /(D) (15)
= WEADT (L), (L) (16)
_ W(L+1)TD(L)W(L)Ta(L—1) (17)
_ W(L+1)TD(L)W(L)TD(L—1)Z(L—1) (18)
=, (19)
obtaining
L—i-1
P(x) = ( H W(L+1k)TD(Lk?)> WHDT 40 (20)
k=0
O

Remark. We note that both D) = D®)(x) and C) = C()(x) depend on x as they depend on a(!). Also, note that the
dimension of C® is K x dj.

Recall that CO = [, ... c{]7.

Proposition 2. Ler (x,y) be arbitrary labeled ID sample. Suppose that 1,/(X) is maximized in a manner to reduce the angle

?(,l) and a®V) sufficiently that sign(c?(j)) = sign(a®). Suppose that 1y, (x) is minimized in a manner to increase the

angle between c,(cl) and aV) sufficiently that L(sign(cg)), a)) > /2. Then, @(l) becomes a discriminative classifier with

50 (%) > 9 (x).

between ¢



Proof. For notational simplicity, ignore the superscript index [/, and let a = a®, b, = bg), cL = cg), and E = @(l). First,
observe b, = sign(c,) = sign(a) implies 0 < £(b,,a) < /2. Therefore,

¥, (x) = by -a=|by]2]|a]2cos(£(by,a)) > 0. 2n
On the other hand, £ (sign(cg),a) > 7/2 means m > £(by,a) > 7/2 by the definition of by, for k # y. Therefore,

¥i(x) = b - a = ||bi||z[all2 cos(£(by, a)) < 0. (22)
Since (x,y) was arbitrary, we have proved the desired. O

The main message of Prop. 2 is that the discriminative optimization of the original classifier should be powerful enough to
optimize the angle between the hidden layer feature and the binary weight. Then, in this case, the hidden classifier becomes
discriminative.

Theorem 3. Under the sufficient condition of Prop. 2, for any labeled ID sample (x,vy),
) —(0) _ —(1)
[a™[|1 converges to ¥, (x) = max Py (%) (23)

in which case Sign(a(l)) = b@(,l). In general, for any k and for any sample x (either ID or OOD),

—(1) . 1
0 < a® -9y (x) < a® | [sign(@®) — b 1. (24)

Proof. For notational simplicity, ignore the superscript index [, and let a = a®, b, = bg), CL = c,(f), and E = E(l). First,
observe that

lally = lail =) brias = by - a =1 (x) (25

where by, = (bg1, . .., bra,) € {—1,1}%. This proves that ||al|; > 1, (x) for all k.
Now, observe that |a;| = sign(a;)a;. Therefore,

lafls =4y (x) = > (sign(ai) — bi)a; <Y _|sign(a;) — brllai| < [lallo[Isign(a) — by, (26)

proving a general upper bound of the difference between the hidden classifier output and the feature norm.
Now, under the sufficient condition of Prop. 2, the binary weight becomes the activation pattern by the assumption;
sign(a) = b,. Therefore, in this case,
0 < lafly =%, (x) < [lallec - 0 =0, @27

proving the desired. O

Corollary 4. If maxy ES) (Xo0d) IS sufficiently small such that

m}glx@,(cl)(xood) +6< m}gxﬂg)(xmd) (28)
for all ID samples X;nq where
5 > [|a® (xo0) oo - Isign(a® (xo0a)) = bi. |1 (29)
and ko = arg maxy, Eg)(xood), then
12 (xo0a) i < [la" (xina)lh (30)
for all ID samples X;nq.
Proof. By Thm. 3,
—(1) . —(1)
8 (ko)1 < 5 (Kaoa) + 2% (o)l Isign(a®) (o) — B2 1 < max T4 (xing) < |20 xina) 1. B1)



A.2. Additional Theoretical Consideration

We present additional results of the theoretical analysis on the hidden classifier.

A.2.1 Relation to General /,,-norms

We have proved that /;-norm can differentiate OOD from ID. This capability of /;-norm extends to the general [,,-norm by
Holder’s inequality.

Theorem 5 (Holder’s inequality). For 0 < p < ¢ < oo and x € RY,
Ixllg < llxl, < d/P=H9) x|, (32)
Thus, for an activation vector a) € R% and for p > 1, we have
1
la® ], < a® 1 < d; 72, (33)

Therefore, if |al’)|; is large or small, then [|a(!)||,, is also large or small, respectively. Thus, different /,,-norms have similar
mechanisms for OOD detection. Note, however, that different ,-norms have different priors on the computation of units in
the activation vector. Accordingly, the OOD detection performance will vary depending on which /,-norm is used.

A.2.2 Extension to Pre-Activation Layer

Extending the framework in Sec. 3 to the pre-activation layer feature vector z(") is trivial, where the pre-activation layer
feature is the vector satisfying alt) = o(z) with the activation function o. Here, we provide the properties of the pre-
activation layer that correspond to the ones given in Sec. 3.

Proposition 6. The final logit is represented by

¥(x) = €020 (34)
for each hidden layer [, where
o — (Ll_[_l W(LJrlk)TD(Lk)) (35)
k=0
with D) = diag(%zll)7 ey @) with the convention 5 = 0. CO = a(l)(x) € RE*d depends on x.

‘1

Define a hidden classifier corresponding to z() by

~

P(x) = sign(a(l))z(l) =B®z0 (36)
where C) = [Egl), . ,E%)}T and BO = [B§”, .. .,B(I?]T.

Proposition 7. Let (x,y) be an arbitrary labeled sample. Suppose that 1, (x) is maximized in a manner to reduce the angle

) (0
Y

between T, and 2V sufficiently that sign(cy’) = sign(z()). Suppose that 1y (x) is minimized in a manner to increase the

angle between ’c\g) and z sufficiently that A{(sign(ﬁg)), z\) > 7/2. Then, 12(1) becomes a discriminative classifier with

P (x) > 9 ().

Theorem 8. Under the sufficient condition of Prop. 7,
|20|; converges to zzg(/l) (x) = max zZ)\,(Cl)(x) 37

in which case sign(z(!)) = lA)?(,l). In general, for any k

0< 1201 — dr(x) < 20| |lsign(z®) — b ||y (38)



A.2.3 On Bias

In Sec. 3, we ignored the bias in the computation of features for simplicity. We can preserve the properties of features given
in Sec. 3 while including the bias terms. To observe this, consider

al) = (WOTa(-1 4 g0y — pOWOT{0-1) L pOgH. (39)

Thus, if ¥ denotes the logit computed with bias, then

L
U(z) = CVal) + 3" CUTHBUT) = y(z) + T (40)

J=l

with T' = T'(],x) = Zle CU+DBU*Y and the convention that C(“+1) = 1. Hence, if the discriminative learning of ¥
is not trivially achieved by the optimization of the bias term I', and if the discriminative learning of ¢ is thus sufficiently
powerful, then the properties in Sec. 3 hold.

A.2.4 On Cosine Similarity Logit

We assumed that the classification logit is the output of the inner product in Sec. 3. Here, we show that changing the inner
product logit by a (scaled) cosine similarity logit does not alter the major behavior of discriminative learning, and hence they
are equivalent in our theoretical consideration. Thus, the theory developed in the inner-product logit also holds in the (scaled)
cosine similarity logit.

To observe this, note that the scaled cosine similarity logit is defined as

_Lowe ok
)= T wels TeGol N

where w, are class weight vectors (prototypes) of trainable parameters and g(x) = U”a(l) with a matrix U of trainable
parameters. 7" is the temperature that modifies the scale of similarity. Without loss of generality, we assume 7" = 1. Let
Y (x) = wy, - g(x) denote the inner-product logit that we originally used. Thus, we have

(@) = vi(z)([wrll2llg(x)]2) 7" 42)
During discriminative learning, the model maximizes
(=1 on(x) = (=1 v (x) (| wil|2llg(x) | 2) 7 43)

Assuming ¥, (x) = w,, - g(x) > 0 and ¢ (x) = wy, - g(x) < 0, the above maximization is equivalent to minimizing its
negative log

—log((—1)"v#* i (x)) = —log ((—1)"v#* (%)) +log (| will2llg(x)|2) , (44)
which can be considered as the constrained minimization of
—log ((—=1)'v* ¢y (x)) = —(—1)"v=* ey (x) (45)
constraint to
[will2llg(x)]2 < e™ =n (46)

for some 7. Thus, optimization of the cosine similarity logit is equivalent to the constrained optimization of the inner product
logit.

Proposition 9. The maximization
mjx (—1) 7" gy (x) 47)

is equivalent to
max (~1)! 4 (x)
v (48)
subjectto [[wyll2[lg(x)ll2 <7

for some n > 0if 1, > 0and 1, < 0.
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Figure 8: Results of hidden classifiers of ResNet-18 with different class labeling schemes on CIFAR-10. The approximation error on the
target unit measures the normalized error (||all1 — %, (x))/l|a||1, while the approximation error on the non-target unit is the average of

(llalls — ¥, (x))/||al|1 with respect to k # y. In the case of post-activation, the vector a is a = a'™). In the case of pre-activation, the
vectoraisa =z

A.3. Supplementary to empirical validation of hidden classifier

Here, we provide a detailed description of the experiments conducted to validate the theoretical analysis presented in
Sec. 3.

A3.1 OnMLP

Setup We train an MLP with 5 hidden layers. The hidden layer dimension is fixed to 512, and likewise for the embedding
layer dimension. The embedding is normalized, and the cosine similarity logit is divided by a temperature of 0.1. The model
is trained by AdamW for 200 epochs with batch size 256. The learning rate decays from 0.001 to O by the cosine scheduler.
Other setups follow the default setting in PyTorch.

Results The results are given in Fig. 12, 13, and 14. They have similar trends that we expected and thus verify our
theoretical claims.

A.3.2 On Convolutional Network

Setup The experiment setup is given as in Sec. B.

Results In the cases of both instance discrimination (I), supervised learning (S), and random binary label discrimination
(R), the hidden classifier of the last hidden layer in ResNet-18 is trained to be discriminative (Fig. 8).

B. Supplementary to the Analysis of Feature Norm’s Class Agnosticity

Setup. We train a ResNet-18 on CIFAR-10. We add an MLP projection head as in MoCo-v2 [5]. The embedding is
normalized, and the cosine similarity logit is divided by a temperature of 0.1. The model is trained for 200 epochs and batch
size 256 with the SGD optimizer, cosine learning rate (0.06 to 0), and momentum 0.9. Each model is trained in a different
manner based on a different class labeling scheme:

 S: The class labels y; are supervised labels (e.g. plane, dog, cat, ...). No data augmentation is applied.
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Figure 10: The graph of the detection performance versus the activation entropy. The performance is measured at every training epoch.
* I: The class labels y; are instance labels y; = 7. No data augmentation is applied such that each instance class has only
one intra-class sample.

* Is: The class labels y; are instance labels y; = 7. Data augmentation is applied such that each instance class has multiple
intra-class samples.

* R: The class labels y; are labeled randomly by a binary number y; € {0, 1}.

O: The class labels y; are labeled with a single label y; = 0 such that every sample is in the same class.

Other setups follow the default setting in PyTorch.

Full results on the impact of inter/intra-class learning The additional results on NAN is given in Fig. 9, which NAN
exhibits the same trend of memorization and generalization as the conventional feature norm.

Full results on the relation to entropy The full results on the relation between the activation entropy and the detection
performance is given in Fig. 10.
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Figure 11: Activation patterns of randomly chosen 50 ID samples after training. Each column corresponds to the activation pattern
sign(a®)e{—1,1}°'2 of an ID sample. Discriminative training {S,R,I,Is} results in diverse activation patterns, while the activation
pattern collapses for the non-discriminative model O.

On the activation pattern If the model is trained in a non-discriminative manner with a single class, then the entropy of
activation is diminished. In this case, the activation pattern collapses as shown in Fig. 11.

C. The Detailed Setup for the Experiments on NAN
C.1. Setup

Setup: ImageNet-1k For the supervised model trained by the cross entropy, we utilize the ResNet-50 backbone trained on
ImageNet-1k. The model is provided by the PyTorch model zoo.

For the supervised model trained by the contrastive loss (thanks to the authors of [42]), we utilize the pretrained ResNet-50
model provided from the official GitHub page of KNN [42], which is trained on ImageNet-1k by the supervised contrastive
loss [23] with the MLP projection head.

For the self-supervised contrastive model trained without the supervised labels of ID, thanks to the authors of MoCo-v2,
we utilize the pretrained MoCo-v2 model provided from the official GitHub page of MoCo-v2 (the one with 71.1 accuracies
on ImageNet-1k).

Setup: OOD CIFAR-10 For the evaluation results of OOD detection ‘with supervised labels of ID’ in Table 3, we train
a cross-entropy model with supervised labels of CIFAR-10. The model has trained on CIFAR-10 over 800 epochs with the
SGD optimizer and its momentum is 0.9. The learning rate decays to 0 from 0.03 by the cosine scheduler. The batch size
is 512. The backbone is ResNet-18, accompanied by an MLP projection head on top of the encoder as in MoCo-v2. The
embedding is normalized, and the cosine similarity logit is divided by the temperature 0.1.

For the evaluation results of OOD detection ‘without supervised labels of ID’ in Table 3, we train MoCo-v2 on CIFAR-10.
The model is trained over 800 epochs with the SGD optimizer and its momentum 0.9. The batch size is 512. The learning
rate is decayed by the cosine scheduler from 0.06 to 0. The model backbone is ResNet-18 combined with an MLP projection
head. For the other configurations, we follow those given in the link'. After training the MoCo-v2 model, the NAN score
is computed over multiple (9 overall) translated images of the test sample including the original image, and the scores are
aggregated by average [43]. This aggregation technique is used exclusively for the model trained by MoCo-v2.

Setup: OOD CIFAR-10 The model training configuration for OCC is similar to that of label-free OOD detection on
CIFAR-10 except that the train dataset is augmented randomly with 90-degree rotations. During the inference, the rotation is
not used.

C.2. Score Fusion

A distance-based score Syist(x) = d(Xina, x) (e.g. KNN, SSD, or Mahalanobis) can be combined with NAN in a simple
manner by

Saistenan (x) = d(Xina, x)/||a™| nan- (49)

Inttps://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_
cifarl0_demo.ipynb


https://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_cifar10_demo.ipynb
https://colab.research.google.com/github/facebookresearch/moco/blob/colab-notebook/colab/moco_cifar10_demo.ipynb

AUROCYH FPRYS.,

ID Architecture Last hidden layer al) [1-norm / NAN [1-norm / NAN

CIFAR-10 ResNet-18 average pool 93.27/93.56 (+0.29)  40.42/38.86 (-1.56)
ResNet-18 + projection head hidden layer in projection head ~ 92.43/94.94 (+2.51)  43.02/30.08 (-12.94)
ResNet-50 average pool 87.09 / 86.33 (-0.76) 44.67 /1 46.56 (+1.89)

TmageNet- 1k o Net-50 + projection head  hidden layer in projection head  57.99/92.32 (+34.33)  95.22/31.59 (-63.63)

Table 6: Ablation of NAN with respect to the projection head. The sparsity term in NAN is particularly effective when applied to the
network architecture that contains the MLP projection head. Note that the /1 -norm here refers to the NAN score without the sparsity term.
The reported performance here is obtained by averaging over all test OOD datasets.

ReLU Leaky ReLU GeLU
AUROCT FPR95| AUROCT FPR95| AUROCT FPR95]

NAN w/o sparsity term (I -norm) 92.43 43.02 92.40 44.65 92.68 43.84
NAN 94.94 30.08 94.92 30.56 94.05 35.02

Table 7: Ablation of NAN with respect to the activation functions used in the last hidden layer. The ID data is CIFAR-10. The results
indicate two aspects: (1) The performance of NAN is fairly robust with different choices of the activation function. (2) The sparsity term
in NAN is always effective. The reported performance here is obtained by averaging over all test OOD datasets.

ID ImageNet-1k CIFAR-10
Formula d  AUROCt FPR9S| | d AUROCT FPR95|

embedding magnitude  ||g(x)||2 128 84.09 72.85 | 128 93.00 43.40
NAN w/o sparsity term  ||a(®)||; 2048  57.99 9522 | 512 9240 43.00
NAN at®)|lwan | 2048 92.32 31,59 | 512 94.90 30.10

Table 8: Comparison of NAN with the embedding magnitude. The embedding magnitude has been widely used in previous works. Here
d indicates the dimension of the corresponding layer. The dimension of the embedding layer is often chosen small for effective training
of the model. Due to its small layer dimension, the embedding magnitude may not fully capture the activation patterns, and hence can be
sub-optimal. The reported performance here is obtained by averaging over all test OOD datasets.

D. Further Analysis on NAN

Setup We follow the same setup given in Sec. 6. When CIFAR-10 is the ID data, the test OOD datasets are LSUN-fix,
ImageNet-fix, CIFAR-100, SVHN, and Places. When ImageNet-1k is the ID data, the test OOD datasets are iNaturalist,
SUN, Places, and Texture.

D.1. Analysis on Projection Head

We analyze NAN with respect to the projection head. Table 6 indicates that NAN is more effective when it is applied to
the hidden layer of the projection head rather than the average pooling layer.

NAN (i.e. particularly its sparsity term) becomes effective when the network learns to increase the number of deactivated
units of ID samples (or have a relatively larger number of deactivated units for ID samples than OOD instances). Due to the
entanglement of the feature map units in the average pooling layer, the network may not effectively increase the number of
deactivated units in the average pooling layer. Hence, NAN can be sub-optimal for the average pooling layer.

D.2. Analysis on Activation Function

We evaluate NAN with different activation functions. We follow the same experimental protocol given in Sec. 6.3. We
apply different activation functions in the hidden layer of the projection head. The results given in Table 7 shows that NAN
is robust with respect to the choice of the activation function.

D.3. Comparison with Embedding Magnitude

For the sake of extensiveness, we compare NAN with the embedding magnitude. The embedding magnitude has been
widely used in prior works for OOD detection-related tasks. The dimension of the embedding layer is often chosen to be
a small number to avoid the curse of dimensionality during training. This may have a trade-off to OOD detection as the



OOD iNaturalist SUN Places Texture Average

AUROCT FPR9S| AUROC} FPR9S| AUROCT FPROS| AUROCT FPR9S|, AUROCT FPRos| DACC
MSP 89.63 5057  80.64 7554 7978 7624 8298 6514 8326 6687  81.07
Energy 8376 4968 5650 7522 5477 7838 7244 6509 6687  67.09  81.07
Mahalanobis 9196 4376 7562 8601 6150 8974 8460  67.93 7842 7186  81.07
KNN 9143 5004 8345 7576 7946 7841 8925 5078 8590 6375  81.07
embedding magnitude 8126 6616 7864 6744 7581 6937 8293  ST11 7966 6502  81.07
NAN w/o sparsity term (i.e. [y-norm) 5493 8398  67.05 8047 6525 8101  67.87 7254 6378 7950  81.07
NAN 9246 4582 8211 6762 8046  69.66 8724 5777 8557 6022  81.07

Table 9: Results on ImageNet-1k (ID) with ViT-B/16.

test OOD datasets LSUN-fix ImageNet-fix CIFAR-100 SVHN Places Average
Score Formula AUROCI FPR95, AUROCI FPR9S, AUROCT FPR9S, AUROCI FPR9S| AUROCI FPR9S, AUROC FPRYS,
hidden classifier | S0y 9506 3335 9454 3592 9217 4500 9466 3991 9466  30.15 9422 36.89
confidence

Table 10: Results on CIFAR-10 (ID) with ResNet-18. The hidden classifier confidence is evaluated as a score function for OOD detection.
The results shows that the hidden classifier confidence is capable of OOD detection.

embedding of a small dimension may not capture diverse activation patterns of embedding layer units and therefore its norm
may not effectively differentiate OOD from ID. This hypothesis seems consistent to the results given in Table 8.

D.4. Evaluation of NAN on ViT

We evaluate NAN on the vision transformer ViT. We utilize ViT-B/16 pretrained on ImageNet-1k, which can be down-
loaded from PyTorch®>. Analogous to the observations in Sec. D.1, direct usage of NAN on the pretrained ViT can be sub-
optimal because the class token output of ViT is the LayerNorm layer, which can cancel out the norm information therein.
Therefore, we add an MLP projection head on top of the pretrained ViT, and fine-tune the projection head while freezing
the pretrained ViT backbone. The MLP projection head consists of a single hidden layer whose dimension is 786 and its
activation function is ReLU. The embedding of the projection head is normalized and divided by the temperature 0.2, and
trained by the cross entropy with 10 epochs under SGD, using the learning rate 0.03 that decays to 0 by the cosine scheduler.

For comparison, the KNN and Mahalanobis scores are applied on the original class token output of the pretrained ViT,
and hence are independent of the projection head fine-tuning. Other OOD detection scores (MSP, Energy, and embedding
magnitude) are applied to the fine-tuned classifier of the projection head. NAN utilizes the hidden layer in the projection
head as this layer is the last hidden layer that involves the activation function computation.

Table 9 shows that NAN is effective for the ViT network as well. In addition, NAN is comparable to the state-of-the-art
OOD detection scores.

Note on the ViT performance of KNN Note that the performance of KNN in Table 9 is lower than that of KNN reported
in [42]. This is because the KNN we implemented is applied on ViT pretrained on ImageNet-1k, while the KNN reported in
[42] is applied on ViT pretrained on ImageNet-21k.

D.5. Evaluation of Hidden Classifier for OOD Detection

We evaluate the hidden classifier for OOD detection. NAN’s numerator is the /;-norm of the activation vector, which
we proved is a confidence value of the hidden classifier. We test this numerator component by testing the OOD detection
capability of this hidden classifier confidence. Table 10 shows the hidden classifier confidence is capable of OOD detection.

D.6. Evaluation of NAN on CIDER

CIDER [29] is a training framework that is particularly effective for the KNN score. We evaluate NAN’s compatibility to
the KNN score from the model trained by CIDER. The results shown in Table 11 indicates that NAN can effectively enhance
the KNN score of CIDER.



SVHN Places365 iSUN Texture LSUN Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95S AUROC FPR9S AUROC FPR95S AUROC
NAN 73.82 90.46 26.33 94.65 25.47 96.46 25.35 95.21 1.17 99.45 30.43 95.25
KNN 4.44 99.36 37.88 92.97 22.94 96.16 17.27 97.15 9.85 98.21 18.48 96.77
NAN+KNN  5.70 98.62 21.79 95.32 14.01 97.64 16.21 96.61 0.95 99.68 11.73 97.57

Table 11: The results of the OOD detection scores (KNN, NAN, NAN+KNN) on the model trained by CIDER on CIFAR-10 (ID).

iNaturalist SUN Places Texture ImageNet-O Openlmage-O Species Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

l1-norm 9752  52.06 95.58  59.40 95.65  61.30 92.11 5921 8820  67.97 9243  63.10 95.83  59.42 93.90  60.35
1/lp-norm  15.66  96.58 3338  91.83 39.10  90.37 4436 8741 88.60  56.76 4129 8858 64.04  79.55 46.63  84.44
Residual 28.74  95.09 46.88  89.76 5891  85.77 11.28  96.45 63.50  84.24 3496  93.34 7443 7372 4553  88.34
NAN 1586  96.94 29.81  92.77 3721  91.46 4346  88.09 87.95 69.74 38.12 9244 64.56  80.09 45.28  87.36
with ReAct:

l1-norm 98.07  37.19 96.37  46.97 96.90 4547 8544  61.21 8495  74.80 93.54  54.48 98.81  41.25 9344  51.62
1/lp-norm  21.19  95.60 36.56  90.81 41.28  89.63 52.16 8223 90.35  53.37 49.25  85.85 6145  81.89 5032 82.77
Residual 28.59  95.06 39.40 9195 51.02  88.18 12.11 96.87 68.30  83.01 36.67  92.62 7227  75.03 4405  88.96
NAN 13.86  97.37 2490  94.69 3331 9252 3402 91.44 84.10 7172 3727 92.02 63.68  81.10 41.59  88.69

Table 12: The comparison of NAN with various forms of vector norms on ImageNet-1k (ID).

D.7. Comparison of NAN to various forms of vector norms

To further highlight the effectiveness of NAN, we compare NAN with various forms of vectors norms; namely, [1-norm,
the reciprocal of /p-norm, and the residual of ViM which is the /5-norm of the orthogonal projection. The experiment protocol
follows [51], and the OOD datasets can be downloaded from its GitHub repository.

The results in Table 12 indicate that NAN is significantly better than the /;-norm and the reciprocal of /j-norm. We note
that [, -norm does not capture deactivation, while the reciprocal of /y-norm captures only deactivation. Hence, the superiority
of NAN over these vector norms indicate that capturing both activation and deactivation is crucial.

Compared to the residual of ViM, on the other hand, NAN is notably superior with respect to the FPR95 metric when
ReAct is applied on the model, while NAN is comparable to the residual when without ReAct. We note, however, that the
residual of ViM requires eigen decomposition of the bankset features, while the computation of NAN is done by a single
forward pass of the network.

E. Limitation of NAN

Based on our theoretical observations, NAN is intrinsically a classifier output and hence may inherit the weaknesses of
classifier-based OOD detectors that have been recently found in [8, 9]. In addition, as observed in Sec. D.1, the optimal usage
of NAN requires networks that involve the MLP projection head.

thtps ://pytorch.org/vision/main/models/generated/torchvision.models.vit_lb_16.html
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Figure 12: Results of hidden classifiers with different activation functions (ReLU, Leaky ReLU, and GeLU) on CIFAR-10.
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Figure 13: Results of hidden classifiers with different activation functions (ReLU, Leaky ReLU, and GeLU) on SVHN.
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Figure 14: Results of hidden classifiers with different activation functions (ReLU, Leaky ReLU, and GeLU) on MNIST.
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