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Abstract

We present FerKD, a novel efficient knowledge distil-
lation framework that incorporates partial soft-hard label
adaptation coupled with a region-calibration mechanism.
Our approach stems from the observation and intuition
that standard data augmentations, such as RandomResized-
Crop, tend to transform inputs into diverse conditions: easy
positives, hard positives, or hard negatives. In traditional
distillation frameworks, these transformed samples are uti-
lized equally through their predictive probabilities derived
from pretrained teacher models. However, merely relying
on prediction values from a pretrained teacher, a common
practice in prior studies, neglects the reliability of these soft
label predictions. To address this, we propose a new scheme
that calibrates the less-confident regions to be the context
using softened hard groundtruth labels. Our approach in-
volves the processes of hard regions mining + calibration.
We demonstrate empirically that this method can dramat-
ically improve the convergence speed and final accuracy.
Additionally, we find that a consistent mixing strategy can
stabilize the distributions of soft supervision, taking advan-
tage of the soft labels. As a result, we introduce a stabi-
lized SelfMix augmentation that weakens the variation of
the mixed images and corresponding soft labels through
mixing similar regions within the same image. FerKD is
an intuitive and well-designed learning system that elim-
inates several heuristics and hyperparameters in former
FKD solution [37]. More importantly, it achieves remark-
able improvement on ImageNet-1K and downstream tasks.
For instance, FerKD achieves 81.2% on ImageNet-1K with
ResNet-50, outperforming FKD and FunMatch by remark-
able margins. Leveraging better pre-trained weights and
larger architectures, our finetuned ViT-G14 even achieves
89.9%. Our code is available at https://github.
com/szq0214/FKD/tree/main/FerKD.

1. Introduction
Knowledge Distillation (KD) [13] has achieved impres-

sive results in various visual domains, including image clas-
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Figure 1: Illustration of motivation for FerKD. The left
figure depicts the original input, and the middle figure
shows the center points of bounding boxes generated using
RandomResizedCrop. The radius of each circle corre-
sponds to the area of the bounding box. It can be observed
that the center points of the bounding boxes are concen-
trated in the center of the image, and their area increases as
they approach the center. The right figure displays several
top and bottom confident bounding boxes and their corre-
sponding predictive probabilities from a pre-trained teacher
or teachers ensemble. The proposed hard region calibration
strategy is established based on these predictions.

sification [52, 36, 5, 37], object detection [6, 46, 11, 8, 53]
and semantic segmentation [22, 15, 16]. However, KD
methods are often computationally expensive and ineffi-
cient due to the additional computational burden imposed
by the teacher models. The primary advantage of KD that
motivates its usage is its ability to generate precise soft la-
bels that convey more informative details about the input
examples. It differs from other label softening techniques,
such as label smoothing [43], Mixup [58], and CutMix [56],
mainly in two aspects: (1) KD generates soft labels dynami-
cally in each iteration, which is more informative than fixed
smoothing patterns used in label smoothing; (2) Mixup and
CutMix techniques essentially combine hard labels with co-
efficients, while KD produces soft labels that are highly cor-
related with the input sample. This allows KD’s soft labels
to become more accurate when different data augmenta-
tions, such as RandomResizedCrop, flipping and rotation,
color jittering, etc., are applied. In general, mixing-based
label softening methods cannot monitor such changes in in-
put content, but KD can address them effortlessly.
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Figure 2: Statistics of soft label max-probability for crops
on ImageNet-1K. The soft label is from FKD [37]. In each
image, 500 regions are randomly cropped.

To overcome the computational inefficiency of tradi-
tional knowledge distillation, FKD [37] was developed to
generate region-level soft labels in advance and reuse them
across multiple training cycles to eliminate redundant com-
putation. This approach only requires the preparation of
soft labels once at the beginning and they can be reused
indefinitely. However, this approach overlooks certain crit-
ical issues. One is the quality of the soft labels. When us-
ing RandomResizedCrop to generate regions, some may be
cropped from background areas, and the teacher model will
still produce a soft label for them based on their similarity
to the dataset classes. However, in some cases, these areas
may contain irrelevant noise, compensatory information, or
context information for the class, and the soft labels may
not accurately reflect the context of information they carry.
To address this problem, this work proposes to recalibrate
these soft labels by incorporating context information from
hard ground-truth labels with smoothing.

Furthermore, due to the random nature of the sampling
process, a certain proportion of crops that are either ex-
cessively easy or difficult do not contribute to the model’s
learning capacity. As demonstrated in Fig. 2 and Table 1,
these samples can be discarded to expedite the convergence
process. The pre-generated soft labels can be utilized as
useful indicators to select these specific samples. In our
adaptation of surgical soft labeling, we categorize the soft
labels into four distinct groups: extreme hard (negative),
moderate hard (background or context), hard positive (par-
tial object), and easy positive. Each of these categories is
subject to different treatment methodologies.
The Role of Background. The role of the background
in images is essential, as it provides critical context and
spatial information that aids the model in accurately iden-
tifying objects of interest within the scene. Backgrounds
can vary in complexity and structure, ranging from sim-
ple monochromatic backgrounds to highly cluttered and de-
tailed ones. Soft labels in background areas are typically
low, and therefore, it is crucial to handle the background
carefully with precise supervision to achieve higher model
capability within our surgical label calibration framework.
Hard Regions Mining and Calibration. Hard Regions
Mining involves the identification and isolation of chal-

range (P ) ratio range (P ) agg. ratio

[0.0, 0.1) 0.43% [0, 0.1) 0.43%
[0.1, 0.2) 0.89% [0, 0.2) 1.32%
[0.2, 0.3) 1.29% [0, 0.3) 2.61%
[0.3, 0.4) 2.03% [0, 0.4) 4.64%
[0.4, 0.5) 3.66% [0, 0.5) 8.31%
[0.5, 0.6) 4.35% [0, 0.6) 12.65%
[0.6, 0.7) 5.04% [0, 0.7) 17.69%
[0.7, 0.8) 7.76% [0, 0.8) 25.45%
[0.8, 0.85) 8.14% [0, 0.85) 33.59%
[0.85, 0.9) 28.73% [0, 0.9) 62.32%
[0.9, 0.95) 37.34% [0, 0.95) 99.67%
[0.95, 1.0) 0.33% [0, 1.0) 100%

Table 1: Detailed statistics of soft labels. “range” indicates
max-probability of crops, “ratio” indicates the percentage
in the whole crops. “agg. ratio” is the aggregated ratio.

lenging or complex regions within an image that the model
struggles to identify accurately. These regions can include
objects with complex shapes, occlusions, or those with low
contrast. By identifying these regions, the model can fo-
cus on learning the features and characteristics of these re-
gions, resulting in improved performance. Calibration, on
the other hand, involves adjusting the confidence levels of
the model’s predictions in challenging regions. The model’s
predictions may be less reliable in hard regions, leading to
lower confidence scores. Calibrating the predictions can im-
prove the model’s accuracy in these regions by adjusting the
confidence levels of the predictions. We found that carefully
discarding a portion of negative crops and selecting those
hard positive crops by calibrating their labels, can force the
training process more efficient and effective.
Stable Training on Soft Labels. Mixture-based augmen-
tations, such as Mixup and CutMix have seen widespread
use for training models under hard supervision, where each
image is labeled with a single class label. However, in the
soft label scenario, we have made a different observation:
when employed together with pre-generated soft labels on a
typical ResNet, Mixup and CutMix tend to be overly strong,
which, conversely, leads to decreased performance. To mit-
igate label fluctuations and achieve more stable training, we
propose a SelfMix scheme, which is particularly suitable
for cases where data augmentation should not be so strong,
such as in finetuning distillation, where mixture-based aug-
mentation is usually disabled. On the other hand, when
training ViT models from scratch, stronger data augmen-
tation can yield better results [45, 42], which is consistent
with the larger capacity perspective of this type of network.

In summary, our contributions of this work are:
- We present FerKD, a sample-calibration framework for

Faster Knowledge Distillation that achieves state-of-the-art
performance. We conduct extensive analysis, ablation, and
discussion on the impact of hard and easy samples.

- We make two key observations in the pre-generated soft



label training framework. Firstly, we observe that the few
most challenging and simplest crops obtained through the
RandomResizedCrop operation do not contribute sig-
nificantly to the model’s learning and can therefore be re-
moved. Secondly, we find that moderately hard crops can
provide crucial contextual information that improves the
model’s ability to learn robust representations.

- We perform extensive experiments on ImageNet-1K and
downstream tasks. On ImageNet-1K, FerKD achieves an
accuracy of 81.2% using the ResNet-50. When leveraging
self-supervised pre-trained weights, our larger model fine-
tuned using ViT-G/14 achieves an accuracy of 89.9%.

2. Related Work
Knowledge Distillation and Fast Knowledge Distillation.
Knowledge Distillation [13] is a learning method in which
a “student” model is trained to imitate the predictions of a
larger, more complex “teacher” model. A key advantage of
this approach is that the teacher model can provide soft su-
pervision that contains more information regarding the in-
put data than traditional one-hot human annotated labels,
particularly when the input data is subject to data augmen-
tation. There have been many recent variants and extensions
of knowledge distillation [31, 26, 47, 59, 25, 27, 35, 7, 41,
50, 45, 18, 51], including approaches that use internal fea-
ture representations [7], adversarial training with discrimi-
nators [33], transfer learning techniques [54], fast distilla-
tion [37] via instance label preparation, and methods that
prioritize patient and consistent learning [5].
Hard Sample Mining. The aim of hard sample min-
ing [23, 38] is to enhance the performance of learning mod-
els by selectively focusing on challenging examples that
are typically difficult to classify. By prioritizing hard sam-
ples during training, models can be trained to better han-
dle a wider range of real-world scenarios and improve their
overall performance. One approach [38] to achieve this
for object detection is to use Online Hard Example Min-
ing (OHEM) which employs a strategy of selecting chal-
lenging examples during training of region-based ConvNet
detectors. The motivation behind this approach is that de-
tection datasets typically comprise an overwhelming num-
ber of easy examples and a small number of hard examples.
Automatic selection of these hard examples can make train-
ing more effective and efficient.

Some other techniques that are close to hard sample
mining: (1) Curriculum learning [3, 48, 40]: it trains a
model on easy examples first and then gradually increasing
the difficulty of the examples over time. (2) Active learn-
ing [32, 24, 28]: it selects the most informative or uncertain
samples for labeling by a human annotator. By focusing
on the samples that the model is most uncertain about, the
model can learn to better generalize and improve its perfor-
mance on difficult samples. (3) Loss functions: Attentive

loss functions can be used to emphasize the importance of
hard samples during training. For example, focal loss [20]
places more weight on the difficult examples during train-
ing, helping the model to learn to handle them better.
Data Augmentations. Several studies have incorporated
data augmentations into distillation frameworks to improve
performance. For instance, FunMatch [5] employed Mixup,
and FKD [37] utilized CutMix. Both techniques achieved
competitive accuracy on large-scale ImageNet-1K dataset.
In this work, we investigate the impact of data augmenta-
tion intensity on soft labels. We discover that different net-
work architectures require unique data augmentation levels.
Specifically, ResNet necessitates mild data augmentation,
while ViTs require stronger data augmentation. However,
even for ViTs, finetuning distillation requires a reduction in
the intensity of data augmentation, especially for mixture-
based methods. Motivated by this observation, we propose
a mild SelfMix approach for ResNet and finetuning dis-
tillation scenarios.

3. Approach

The proposed FerKD is a soft label calibration frame-
work for fast and efficient knowledge distillation training.
In this section, we aim to provide an elaborated overview
of our method, starting with an in-depth analysis of the
roles of hard and soft labels in the distillation process. We
then present the key components of our approach, which in-
clude a region selection strategy and a soft label calibration
scheme. Additionally, we explore the data augmentation re-
quirements for soft labels and introduce a simple label en-
semble technique to enhance the quality of the soft labels.

3.1. Revisiting Hard and Soft Label in Distillation

The utilization of hard and soft labels is dependent on
the comprehension, problem scenarios, and underlying ob-
jectives. Various arguments exist regarding their effective-
ness. The vanilla knowledge distillation method [13] em-
ploys both hard and soft labels to maximize the benefits of
both. However, recent researches [36, 35, 57, 37] suggest
that the use of hard labels is not necessary in distillation on
large-scale datasets as strong teachers can provide more pre-
cise soft supervision. Incorporating hard labels may intro-
duce erroneous supervisory signals, ultimately hampering
student performance. Other than the above views, this work
presents a novel perspective beyond them by acknowledg-
ing that both hard and soft labels offer unique advantages,
highlights the proper practice of usage that is necessary, and
finally proposes an elegant solution to reap benefits derived
from both sources of hard and soft labels.
Combination of Soft and Hard Labels. In vanilla KD de-
sign [13], for each training example, it will minimize two
loss terms for both hard and soft labels. The final objective
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Figure 3: Illustration of region calibration according to their
predictive probabilities in FerKD. Left is the input image
with RandomResizedCrop. Bounding box is with high
probability and bounding box is with low probability.

LVKD can be formulated as:

LVKD =
1

N

∑
x

(α∗Lh(pθ(x), yh(x))︸ ︷︷ ︸
CE loss with hard label

+(1−α)∗Ls(pθ(x), ys(x))︸ ︷︷ ︸
KL loss with soft label

)

(1)
where α is the coefficient to balance the loss signal intensity
from soft and hard labels. pθ(x) is the logits prediction from
the student model and θ is its parameters. yh is the hard
label and ys is the soft label from a pre-trained teacher. N
is the total number of training samples x.
Full Soft Label Training. Fast KD [37] proposes to use the
soft label solely since the prediction from strong teachers is
precise enough. Thus, the loss objective LFKD is:

LFKD =
1

N

∑

x

L̂s(pθ(x), ys(x))︸ ︷︷ ︸
SCE loss with soft label

(2)

where “SCE” is the soft version of cross-entropy loss.

3.2. FerKD: Surgical Label Calibration Distillation

Surgical/Partial Soft and Hard Label Adaptive Train-
ing. Different from VKD, the proposed FerKD strategy
will only involve one loss term but also unlike FKD, FerKD
will employ both hard and soft labels in a single objective
term and exploit the additional information derived from
both sources. The solution is that we only keep their orig-
inal soft labels for positive regions since they contain fine-
grained information regarding the crops, for those back-
ground or context regions, we will re-calibrate them by the
human-annotated ground-truth labels to avoid misinforma-
tion from the soft labels. Hence, the loss function will be:

LFerKD =
1

N

∑

x

Ladap: h or s?(pθ(x), ya(x))︸ ︷︷ ︸
SCE loss with hard/soft label

(3)

where “adap:” indicates {hard} or {soft} used for indi-
vidual training samples. ya is the calibrated soft labels. As
illustrated in Fig. 3, we will calibrate regions’ soft labels ya
using the following rule:

ya =





UR : discarded if ys < TL or ys > TT
HR : 1.0− ε if TL < ys < θM
IR : ys otherwise

(4)

where TL, TM , and TT are thresholds at low, middle, and
top boundaries. “UR” represents the uninformative regions
such as black or white blocks in an image that will be dis-
carded during training. As shown in Fig. 4, “HR” repre-
sents the hard regions with a smoothing value ε and “IR”
represents the important regions. Thus, the key goal in
FerKD becomes to identify the positive or background re-
gions. Thanks to FKD [37], we can have access to all crops’
individual predictions. A quick exploration is performed for
verification and the result is shown in Fig. 5. It is clear that
by discarding a certain ratio of samples (hardest and easi-
est), the performance is consistently improved.
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Figure 3: Illustration of hard regions mining according to
their predictive probabilities in FerKD. Left is the input im-
age with RandomResizedCrop. Bounding box is with
high probability and bounding box is with low probability.

Full Soft Label Training. Fast KD [33] proposes to use the
soft label solely since the prediction from strong teachers is
precise enough. Thus, the loss objective LFKD is:

LFKD =
1

N

X

x

Ls(p✓(x), ys(x))| {z }
SCE loss with soft label

(2)

where “SCE” is the soft version cross-entropy loss.

3.2. FerKD: Surgical Label Calibration Distillation

Surgical/Partial Soft and Hard Label Adaptive Train-
ing. Different from VKD, the proposed FerKD strategy
will only involve one loss term but also unlike FKD, FerKD
will employ both hard and soft labels in a single objective
term and exploit the additional information derived from
both sources. Our solution is that we only keep their orig-
inal soft labels for positive regions since they contain fine-
grained information regarding the crops, for those back-
ground or context regions, we will re-calibrate them by the
human-annotated ground-truth labels to avoid misinforma-
tion from the soft labels. Hence, the loss function will be:

LFerKD =
1

N

X

x

Ladap: h or s?(p✓(x), ya(x))| {z }
SCE loss with hard/soft label

(3)

where “adap:” indicates {hard} or {soft} used for indi-
vidual training samples. ya is the calibrated soft labels. As
illustrated in Fig. 3, we will calibrate regions’ soft labels ya

using the following rule:

ya =

8
<
:

UR : discarded if ys < TL or ys > TT

HR : 1.0 � " if TL < ys < ✓M

IR : ys otherwise
(4)

where TL, TM , and TT are thresholds at low, middle, and
top boundaries. “UR” represents the uninformative regions
such as black or white block in an image that will be dis-
carded during training. As shown in Fig. 4, “HR” repre-
sents the hard regions with a smoothing value " and “IR”
represents the important regions. Thus, the key goal in

FerKD becomes to identify the positive or background re-
gions. Thanks to FKD [33], we can have access to all crops’
individual predictions. A quick exploration is performed
and result is shown in Fig. 5. It is clear that by discarding
a certain ratio of samples (hardest and easiest), the perfor-
mance is consistently improved.

…

…
…

easyhard

UR HR URIR

Low High

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ICCV
#****

ICCV
#****

ICCV 2023 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

discarded HR IR

3%
3%
5%
8%

29%

37%

Chart Title

[0.0, 0.05) [0.05, 0.1)
[0.1, 0.15) [0.15, 0.2)
[0.2, 0.25) [0.25, 0.3)
[0.3, 0.35) [0.35, 0.4)
[0.4, 0.45) [0.45, 0.5)
[0.5, 0.55) [0.55, 0.6)
[0.6, 0.65) [0.65, 0.7)
[0.7, 0.75) [0.75, 0.8)
[0.8, 0.85) [0.85, 0.9)
[0.9, 0.95) [0.95, 1.0]

discarded

Figure 2: Statistics of soft label distribution in FerKD.

the corresponding soft labels through mixing SZQ: hard?
regions within the same image, to make training more con-
sistent and unfluctuating. FerKD is an intuitive and well-
designed learning system that eliminates several heuristics
and hyperparameters in former FKD solution. More impor-
tantly, it obtains consistent and significant boosts in perfor-
mance on large-scale ImageNet-1K and downstream tasks.
FerKD achieves 81.0% on ImageNet-1K using only 1/3
(100) training epochs and roughly 1/10 (50) crops in one
image for training from scratch on ResNet-50 when com-
paring to previous stat-of-the-art FKD with the accuracy of
80.1%. Leveraging weakly supervised pre-trained, our fine-
tuned larger model of xxx can even achieve xxx%. Code
and models will be publicly available.

carefully discard a portion of negative crops and select-
ing those hard positive crops by calibrating their labels,
which makes the training more efficient and effective.

Please follow the steps outlined below when submitting
your manuscript to
The role of background areas. Context,

2. Related Work
Knowledge Distillation and Fast Knowledge Distillation.
Hard Samples Mining.
Data Augmentations.

3. Approach
3.1. Revisiting Hard and Soft Label in Distillation

vanilla KD:
LV KD = ↵ � Lhard + (1 � ↵) � Lsoft

Fast KD:
LFKD = Lsoft

Faster KD:
LFerKD = L��hard+(1��)�soft

Thanks to FKD [9], we can have access to all crops with
their individual predictions easily.

Hard Region Mining
Hard Region Calibration

pc =

8
<
:

UR : discarded if p < ✓L or p > ✓T

HR : 1.0 � " if ✓L < p < ✓M

IR : pt otherwise
(1)

…

…
…

easyhard

UR HR URIR

Low High

Figure 3: Illustration of hard regions mining according to
their predictive probabilities in FerKD. Left is the input im-
age with RandomResizedCrop. Bounding box is with
high probability and bounding box is with low probability.

“UR” represents the uninformative regions such as black
or white block which will be discarded during training.
“HR” represents the hard regions and “IR” represents the
important regions. Fig. ?? shows empirically removing
these regions can help accelerate convergence and boost ac-
curacy.

3.2. Faster Convergence via Hard Regions Mining

What are “hard” or “easy” samples for a model? proba-
bility in a particular range.

remove all incorrect regions (or using hard label).
Observations: 1. low probability usually are back-

ground. 2. high probability can be background or other
object

…

…
…

easyhard
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Low High

Figure 4: Illustration of hard regions mining according to
their predictive probabilities in FerKD. Left is the input im-
age with RandomResizedCrop. Bounding box is with
high probability and bounding box is with low probability.

3.3. SelfMix: Soft Label Needs A Consistent and
Stable Data Augmentation

Soft label Calibration via SelfMix.
Mixing self with hierarchies.

3.4. Mix-Augmentation Combination and Ensem-
ble Supervisions

4. ImageNet Experiments
We conduct distillation training on the ImageNet-1K

(IN1K) [3] training set. We report top-1 validation accuracy
of a single 224⇥224 crop. Details are in Appendix xxx.
Baseline: FKD [9]. We use ResNet-50 and ViT-S/16 as the
backbone in our ablation study.

2
Figure 4: Illustration of hard regions mining according to
their predictive probabilities in FerKD. Left is the input im-
age with RandomResizedCrop. Bounding box is with
high probability and bounding box is with low probability.

Figure 5: Minimal and maximal probability. The upper
figure indicates that only regions having the max probability
in [minimal, 1.0] will be trained, and baseline indicates that
the model is trained with all randomly sampled regions. The
bottom figure indicates that only regions having the max
probability in [0.3, maximal] will be trained, and baseline
indicates that the model is trained with regions in [0.3, 1.0].

3.3. Faster Convergence via Hard Region Mining

“hard” and “easy” samples refer to the level of difficulty
a particular sample presents to a model. This difficulty can
be quantified by the probability assigned to the correct label
by the model. An “easy” sample is one where the probabil-
ity assigned to the correct label is high, indicating that the
model is confident in its prediction. On the other hand, a
“hard” sample is one where the probability assigned to the
correct label is low, indicating that the model is uncertain
about its prediction. The threshold for what constitutes an

4

Figure 4: Illustration of region calibration according to their
predictive probabilities in FerKD. Left is the input image
with RandomResizedCrop. Right is the rule for cali-
brating the probabilities of regions.
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Figure 5: Minimal and maximal probability. The upper
figure indicates that only regions having the max probability
in [minimal, 1.0] will be trained, and baseline indicates that
the model is trained with all randomly sampled regions. The
bottom figure indicates that only regions having the max
probability in [0.3,maximal] will be trained, and baseline
indicates that the model is trained with regions in [0.3, 1.0].

3.3. Training Speed of FerKD

When training a model, easy examples allow the model
to quickly learn the patterns in the data and update its pa-
rameters in a way that minimizes the loss function. This
means that the model will converge faster and require fewer



iterations to reach a satisfactory level of accuracy. On
the other hand, hard examples can slow down the conver-
gence speed but they can force models to learn more robust
classify boundaries. The speed of model convergence can
be impacted significantly by the sampling strategy of hard
and easy examples. In our FerKD framework, “hard” and
“easy” examples refer to the level of difficulty a particular
sample presents to a model. This difficulty can be quanti-
fied by the probability assigned to the correct label by the
teacher. An “easy” sample is one where the probability as-
signed to the correct label is high, indicating that the teacher
is confident in its prediction. On the other hand, a “hard”
sample is one where the probability assigned to the correct
label is low, indicating that the teacher is uncertain about its
prediction. The threshold for what constitutes an “easy” or
“hard” sample can vary depending on the specific task and
model being used, which is the key for exploring in FerKD.
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Figure 6: Illustration of the testing accuracy curves. “300”
represents the training with the full budget. “50, 100, 150,
200” are the training with reduced budgets.

Our sampling strategy involves the removal of the easi-
est and hardest training examples to reduce computational
costs incurred during uninformative training steps. This
strategy offers a clear benefit, as shown in Fig. 6, which
presents the test accuracy curves for different training bud-
gets. The results show that, with a training budget reduced
by 2

3 (200 epochs), the achieved accuracy is comparable
to that of full-budget training. Although further reducing
the budget slightly affects accuracy, our proposed FerKD
method is shown to be robust across different training bud-
gets. Moreover, our calibration process will not involve ad-
ditional training cost since it can be done offline in advance.

3.4. SelfMix: A Mild and Stable Data Augmentation
for Soft Labels

Soft label Calibration with SelfMix. The current pre-
vailing data augmentation techniques are designed for hard
labels or smoothed hard labels. However, in the dynamic
soft label scenario, a different approach is necessary to meet
the unique attributes of pre-generated soft labels. Soft la-
bels themselves can mitigate overfitting, making it imper-
ative to develop tailored data augmentation techniques that
account for soft labels to achieve improved accuracy. The
proposed SelfMix is based on the empirical observations

Attentive CutMix

Image1 Mixup Cutout CutMix

AugMix SelfMix (Ours)Image2

Dog 0.5 Cat 0.5 Dog 1.0 Dog 0.7 Cat 0.3

Dog 1.0 Dog 1.0Dog 0.7 Cat 0.3

Figure 7: Illustration of the high-level outline for SelfMix
to make mixed soft label consistent, reducing the variance.
Practically, each label will be a soft distribution for the input
instead of the hard label as illustrated, thus it is more mod-
erate on supervision in training. Empirically, it is observed
that this strategy is crucial for ConvNet like ResNet but ViT
needs intense data augmentations as introduced in [45].

presented in Table 2, which indicate that strong data aug-
mentation does not necessarily improve accuracy if the net-
work is already saturated and may even hurt performance.
Consequently, we aim to reduce the intensity of data aug-
mentation while still benefiting from its effects. To achieve
this goal, we redesign the data augmentation using a self-
mixing approach, as illustrated in Fig. 7.

The specific steps involved in the SelfMix process are
illustrated in Fig. 8. Mixing operations are exclusively con-
ducted within each individual image to minimize variations
between mixed images and their corresponding mixed soft
labels. This straightforward constraint yields significant im-
provements in the performance of the ResNet backbone and
in finetuning distillation.

…

multi-resized crops

…

… …

…

…

multi-resized crops

x xx
across crops

same crop

Figure 8: Illustration of the detailed SelfMix augmen-
tation for FerKD. In this strategy, mixture operation only
happens within the same image in a mini-batch and cross-
image mixing is disabled to preserve stability of soft labels.

Ensemble Supervisions. It has been demonstrated that en-
sembling more teachers [13, 33] can enhance the perfor-
mance of distilled students. In this work, we apply this ap-
proach to improve the quality of pre-existing soft labels. As



Mixup CutMix SelfMix (Ours) ResNet50 ViT-S/16

✓ 78.94 80.32
✓ 79.52 80.95

✓ 80.47 79.29

✓ ✓ 79.92 81.16
✓ ✓ ✓ 80.26 80.69

Table 2: Top-1 accuracy of data augmentations on different
backbones. On ViT, the soft label can benefit from com-
binations of more mixture operations. The backbones are
ResNet-50 and ViT-S/16 and the teacher model is Efficient-
Net L2 475. We run three trials and report the means.

Teacher TTop-1 (%) SResNet50 (%) SViT-S/16 (%)

Effi L2 475 [52] 88.14 80.23 81.16
Effi L2 800 [52] 88.39 80.16 81.30
RegY 128GF 384 [39] 88.24 80.34 81.42
ViT L16 512 [39] 88.07 80.29 81.43
ViT H14 518 [39] 88.55 80.18 81.41
BEIT L 224 [2] 87.52 80.03 81.16
BEIT L 384 [2] 88.40 80.06 81.11
BEIT L 512 [2] 88.60 80.09 81.07
ViT G14 336 30M [10] 89.59 79.03 79.62
ViT G14 336 CLIP [10] 89.38 79.59 79.48

Table 3: Top-1 accuracy of distillation on ImageNet-1K us-
ing a singe ConvNet or Vision Transformer teacher. Note
that Mixup [58] and CutMix [56] are used for training ViT-
S/16. We run three trials and report the means.

these soft labels are quantized for efficient storage [37], they
must be recovered to their full dimension prior to calibration
and averaging for final supervision. Specifically, we define
the ensemble soft labels yen = 1

M

∑
t∈teachers ŷ

t
a(x), where

ŷta represents the recovered soft label with calibration from
teacher t, x is the input and M is the number of teachers.

4. ImageNet Experiments
We conduct training on the ImageNet-1K (IN1K) [9]

training set. We report top-1 validation accuracy of a single
224×224 crop. The default training budget is 300 epochs,
and the temperature for both teacher and student is 1.0. The
finetuning distillation settings follow their individual de-
signs. All our soft label generation and model training are
performed on the A100-GPU High-Flyer cluster with 80GB
on each. More details are provided in Appendix.
Baselines: FKD [37] and FunMatch [5]. Regions are ran-
domly sampled in these two approaches. We use ResNet-50
and ViT-S/16 as the backbones for the ablation study. FKD
+ Curriculum Sampling: (i) we sample regions for train-
ing from easier ones and gradually increase the level of dif-
ficulty. (ii) In contrast, we sample regions from hard ones
and gradually decrease the level of difficulty.

4.1. Soft Label from Different Teachers

The soft labels produced by distinct teacher models for
the same input image may vary owing to differences in their

calibr. range [0, 0.2] [0, 0.3] [0, 0.4] [0, 0.5] [0,0.6]

Top-1 80.31 80.42 80.14 79.84 79.66

Table 4: Ablation of calibration for different probability
ranges. The base model is the single teacher FerKD us-
ing ResNet-50 without SelfMix data augmentation.

Pre-train Top-1

vanilla 80.23
+calibration&selfmix 80.68+0.45

+multi-teacher ensemble 81.15+0.47

+more epochs 81.44+0.29

Table 5: Ablation results using ResNet-50 on ImageNet-1K.

distinctive features, architectures, and training strategies. In
this section, our objective is to determine which teacher
model has the greatest capacity to distill a student. We eval-
uate two types of student models: ResNet-50 and ViT-S/16.
The results are shown in Table 3, where RegY 128GF 384
and ViT L16 512 achieve the highest student accuracy in-
dividually, despite not being the best on their own.

4.2. Ablations

Ablation on Calibration. The results for different calibra-
tion ranges are shown in Table 4, it can be observed that
[0, 0.3] achieves the best accuracy. In practice, we discard
examples in [0, 0.15) and (0.95, 1.0], meanwhile, calibrate
examples in [0.15, 0.3] for the final strategy. More visual-
ization of the hardest and easiest regions is shown in Fig. 9.
Ablation on teacher ensemble and training budget. The
results are in Table 5, showing that each design has the con-
sistent improvement. Our final results are shown in Table 8,
FerKD performs the best over other SOTA methods.

4.3. Curriculum Distillation

In curriculum distillation, the student model learns from
the teachers’ knowledge in a sequential manner, starting
from easier examples (high probability regions) and grad-
ually increasing the level of difficulty. This allows the stu-
dent model to learn from easier to more complex regions.
By presenting samples in a curriculum, the student model
can learn from the easier samples and build a strong foun-
dation before being exposed to more challenging samples.
However, our experimental results, as shown in Table 7,
demonstrate that this curriculum learning approach is in-
ferior to our surgical label adaptation strategy, FerKD. Our
approach outperforms curriculum distillation by 0.8%. We
attribute this performance improvement to the strong abil-
ity of soft labels to mitigate overfitting and improve gen-
eralization in the initial stages of training. As a result, the
advantage of the curriculum learning approach is not as ap-
parent in this scenario. We also notice that “e-to-h” per-
forms slightly better than “h-to-e” demonstrating the ef-
fectiveness of curriculum strategy, while both of them are



Effi L2 475 Effi L2 800 RegY 128GF 384 ViT L16 512 ViT H14 518 BEIT 224 BEIT 384 BEIT 512 Student Acc.
✓ ✓ 80.23
✓ ✓ 80.52
✓ ✓ ✓ 80.49

✓ ✓ 80.29
✓ ✓ ✓ 80.53
✓ ✓ ✓ ✓ ✓ 80.48

✓ ✓ 80.35
✓ ✓ 80.51
✓ ✓ 80.35

✓ ✓ 80.38
✓ ✓ 80.51

✓ ✓ 80.53
✓ ✓ ✓ 80.52

✓ ✓ ✓ 80.62
✓ ✓ ✓ ✓ 80.74

Table 6: Ablation top-1 accuracy of teacher ensemble on ImageNet-1K with ConvNet, Vision Transformer or hybrid teachers.
The left group is ConvNet teachers, the middle is the ViT teachers and the right group is the corresponding student ResNet-50
accuracy. Note that surgical calibration and SelfMix are not used here.

Method sampling Top-1

Random (FKD [37]) random 80.2
curriculum distillation h-to-e 79.7
curriculum distillation e-to-h 79.9
FerKD (Ours) surgical 80.7

Table 7: Curriculum and surgical (no ensemble) distillation.
“e-to-h” refers to curriculum sampling from easy to hard
regions. “h-to-e” refers to sampling from hard to easy.

Model Epoch Label Top-1

Timm [49] 600 HardLS 80.4
Pytorch (advanced) [44] 600 HardLS 80.9
MEAL [33] 100‡ Soft 78.2
MEAL V2 [36] 180‡ Soft 80.7
MEAL V2 [36]w/ CutMix 180‡ Soft 81.0
ReLabel [57]w/ CutMix 300 Soft 80.2
FunMatch [5]w/ Mixup 300 Soft 80.5
FKD [37] 300 Soft 80.5
FerKD (Ours) 300 Adap 81.2+0.7

FerKD (Ours) 600 Adap 81.4+0.9

Table 8: Top-1 accuracy on ImageNet-1K dataset. The
backbone network in this table is ResNet-50. ‡ indicates
that the model was fine-tuned from hard-label pre-trained
weights, resulting in a total training epoch of “300 + ×”.

inferior to the random sampling baseline.

4.4. Finetuning Distillation

Finetuning distillation [36] has been demonstrated as an
effective approach to improve the accuracy of knowledge
distillation (KD) frameworks. In the case of hard labels,
multiple finetuning schemes have been proposed to adapt
the model parameters to fit the target dataset, including par-
tial finetuning on selected intermediate layers with varying
learning rates [34, 1, 17, 30] or on the last few layers [55].
In this work, we adopt the MEAL V2 [36] protocol by fine-

Pre-train FT Top-1

Timm [49] HardLS 80.38
Timm [49] FKD [37]* 80.62
Timm [49] FerKD* (Ours) 81.06
SWAG [39] HardLS 87.22
SWAG [39] FKD [37]† 87.42
SWAG [39] FerKD† (Ours) 87.76

EVA MIM [10] HardLS 89.59
EVA MIM [10] FKD [37] 89.67
EVA MIM [10] FerKD (Ours) 89.86

Table 9: Fine-tuning distillation results using pre-trained
ResNet-50 (Timm), RegNetY-128GF (SWAG) and ViT-
G14 (EVA) on ImageNet-1K. † We use the same recipe of
EVA for SWAG finetuning since SWAG did not provide the
complete fine-tuning details. * On ResNet-50, we finetune
with 150 epochs for both FKD and FerKD.

tuning the entire network from the pre-trained weights to
evaluate the effectiveness of distillation with surgical soft
label calibration as the objective. Specifically, we employ
three types of pre-trained models:

(1) Supervised pre-train: ResNet-50 on Timm [49];
(2) Weakly-supervised pre-train: RegNetY-128GF from

SWAG [39];
(3) Self-supervised pre-train: ViT-G14 from EVA [10];
We verify whether FerKD can continue improving fine-

tuning distillation. As shown in Table 9, FerKD achieves
consistent improvement across different architectures.

4.5. Single Teacher vs. Teacher Ensemble

The soft labels generated by different teachers for the
same input image can be different due to their unique fea-
tures, architectures, and training strategies. By combin-
ing these soft labels from different teachers, the resulting
label becomes more informative and can help the student
model learn better representations. This approach can be



Figure 9: Illustration of the location points from RandomResizedCrop and the identified crops by teacher model for hard and
easy samples. Note that we do not involve any localization information, but teacher’s probability can reflect it automatically.

Method Label APbox APmask

ReLabel [57] LM 39.1 35.2
FKD [37] Soft 39.7 35.9

FerKD (Ours) Adap 40.2 36.3

Table 10: COCO object detection and segmentation using
a Mask-RCNN with FPN baseline. “LM” represents label
map during pretraining. The backbone is ResNet-50-300ep.

Method iNat 2019224 iNat 2019336 Places365224

EVA MIM [10] 79.9 86.6 61.0
FerKD (Ours) 80.3+0.4 87.1+0.5 61.4+0.4

Table 11: Transfer learning accuracy on various classifica-
tion datasets. The input sizes are 224×224 and 336×336.

particularly useful in scenarios where the teacher models
have complementary strengths or when the input data is
challenging and requires multiple perspectives to be accu-
rately labeled. Furthermore, the use of multiple teachers
can also help mitigate the effects of overfitting and im-
prove the generalization performance of the student model.
The results are shown in Table 6, ensembling four hybrid
teachers of Effi L2 475, RegY 128GF 384, ViT L16 512,
and ViT H14 518 achieves the best accuracy.

5. Transfer Learning Experiments
Object detection and segmentation. We conducted eval-
uations to investigate whether the improvement achieved
by FerKD on ImageNet-1K can be transferred to vari-
ous downstream tasks. Specifically, Table 10 presents the
results of object detection and segmentation on COCO
dataset [21] using models pre-trained on ImageNet-1K with
FerKD. We utilize Mask RCNN [12] with FPN [19] fol-
lowing FKD for the experiment. Our FerKD pre-trained
weight consistently outperforms both the baselines ReLa-
bel and FKD on the downstream tasks.
Classification tasks. Table 11 shows the transfer learning
result on iNaturalists [14] and Places [60] datasets. On both
of these two datasets, our results surpass the baseline EVA
pretrained model by significant margins.

Method IN1K ReaL
ImageNetV2 ImageNetV2 ImageNetV2
Top-images Matched-freq Threshold-0.7

ResNet-50:
ReLabel [57] 78.9 85.0 80.5 67.3 76.0
FKD [37] 80.1 85.8 81.2 68.2 76.9
FerKD 81.2 86.4+0.6 82.1+0.9 69.5+1.3 77.8+0.9

ViT-G14-336:
EVA [10] 89.6 90.8 89.0 81.9 86.7
FerKD 89.9 91.3+0.5 89.4+0.4 82.4+0.5 87.1+0.4

Table 12: Results of FerKD on ImageNet ReaL [4] and
ImageNetV2 [29] with ResNet-50 and ViT-G14 backbones.

6. Robustness

We provide comparisons on ImageNet ReaL [4] and
ImageNetV2 [29] datasets to examine the robustness of
FerKD trained models. On ImageNetV2 [29], we ver-
ify our FerKD models on three metrics “Top-Images”,
“Matched Frequency”, and “Threshold 0.7” following
FKD [37]. We perform experiments on two network struc-
tures: ResNet-50 and ViT-G14. The results are shown in
Table 12, we achieve consistent improvement over ReLa-
bel and FKD on ResNet-50 (224×224) and better accuracy
than EVA on ViT-G14 (336×336).

7. Conclusion

In this work, we have presented a new paradigm of faster
knowledge distillation (FerKD), which employs label adap-
tation on randomly cropped regions. The proposed method
outperforms existing state-of-the-art distillation approaches
in terms of both training speed and convergence. Addition-
ally, we make two key observations that could be leveraged
in future studies. Firstly, we notice that the most challeng-
ing and easiest few crops obtained through the RandomRe-
sizedCrop operation do not contribute to the model’s learn-
ing and can thus be discarded. Secondly, we find that mod-
erate hardness crops can provide crucial context informa-
tion that helps calibrate the model to learn more robust rep-
resentations, which in turn benefit downstream tasks.
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Appendix
In the appendix, we provide more details omitted in the

main paper, including:
• Section A: Implementation details.
• Section B: More visualization of identified crops.

Backbone ResNet-50 ViT-S/16
Epoch 300 300
Batch size 1,024 1,024
Optimizer AdamW AdamW
Init. lr 0.002 0.002
lr scheduler cosine cosine
Weight decay 0.05 0.05
Warmup epochs 5 5
Num crops 4 4
Label smoothing ✗ ✗
Dropout ✗ ✗
Stoch. Depth ✗ 0.1
Repeated Aug ✗ ✗
Gradient Clip. ✗ ✗
Rand Augment ✗ ✗
Mixup prob. ✗ 0.8
Cutmix prob. ✗ 1.0
SelfMix prob. 1.0 ✗
Random erasing ✗ ✗

Table 13: Pre-training setting for ImageNet-1K.

A. Implementation Details
Training details for ResNet-50 and ViT-S/16 in the main
text. We elaborate the detailed training settings and hyper-
parameters of FerKD for pre-training from scratch on
ImageNet-1K with ResNet-50 and ViT-S/16 backbones, as
provided in Table 13. Generally, the training protocal fol-
lows FKD [37]’s training strategy on ViT, DeiT and SReT.
We employ SelfMix for ResNet-50, Mixup and CutMix
for ViT-S/16 separately. We also use 4 as the number of
crops in each image, batch size = 1, 024 during training.
Training details for finetuning ViT-G/14 and RegY-
128GF in the main text. The finetuning settings and
hyper-parameters of FerKD with ViT-G/14 [10] and RegY-
128GF [39] backbones are provided in Table 14, which are
similar to the training protocol in EVA [10]. We employ
SelfMix for both of the two pretrained backbones.
Data augmentation details for Mixup, Cutmix and
SelfMix. The data augmentation configurations adopted
in training are: for Mixup, we use probability 0.8 to gener-
ate the Beta distribution, and 1.0 for CutMix and SelfMix.

B. More Visualization
Fig. 10 illustrates the identified crops by teacher for hard

and easy samples. We do not involve any localization infor-

Backbone ViT-G/14 [10] | RegY-128GF [39]
Peak learning rate 3e-5
Optimizer AdamW
Optimizer hyper-parameters β1, β2, ϵ = 0.9, 0.999, 1e-8
Layer-wise lr decay 0.95
Learning rate schedule cosine decay
Weight decay 0.05
Input resolution 336
Batch size 512
Warmup epochs 2
Training epochs 15
Num crops 2
Drop path 0.4 | 0.0
Augmentation RandAug (9, 0.5)
Label smoothing ✗

Cutmix ✗

Mixup ✗

Random erasing ✗

SelfMix prob. 1.0
Random resized crop (0.08, 1)
Ema 0.9999
Test crop ratio 1.0

Table 14: Fine-tuning setting for ImageNet-1K.

mation, but the teacher’s probability can reflect object and
background areas automatically based on their magnitudes.



Figure 10: Illustration of the identified crops by teacher model for hard (background) and easy (foreground) samples. The
teacher’s probability can reflect object and background areas visually based on their magnitudes.


