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Abstract

Detecting out-of-distribution (OOD) samples are cru-
cial for machine learning models deployed in open-world
environments. Classifier-based scores are a standard ap-
proach for OOD detection due to their fine-grained detec-
tion capability. However, these scores often suffer from
overconfidence issues, misclassifying OOD samples distant
from the in-distribution region. To address this challenge,
we propose a method called Nearest Neighbor Guidance
(NNGuide) that guides the classifier-based score to respect
the boundary geometry of the data manifold. NNGuide re-
duces the overconfidence of OOD samples while preserv-
ing the fine-grained capability of the classifier-based score.
We conduct extensive experiments on ImageNet OOD de-
tection benchmarks under diverse settings, including a sce-
nario where the ID data undergoes natural distribution
shift. Our results demonstrate that NNGuide provides a
significant performance improvement on the base detec-
tion scores, achieving state-of-the-art results on both AU-
ROC, FPR95, and AUPR metrics. The code is given at
https://github.com/roomo7time/nnguide.

1. Introduction

The open-world environment poses a challenge for clas-
sification models as they may encounter input samples with
unknown class labels, i.e., out-of-distribution (OOD) in-
stances [44, 26, 42, 2, 4, 16]. The detection of such anoma-
lous examples is crucial for preventing classifier malfunc-
tions and potential harm. As a result, in safety-critical ap-
plications like self-driving [29, 5, 40, 19] and biosynthe-
sis [46, 37], the OOD detection task plays a critical role in
ensuring the dependable deployment of machine learning
models. Therefore, a significant body of research has been
dedicated to OOD detection [45].

The standard approach for OOD detection is to derive
a score function from the trained network, such that the
in-distribution (ID) samples exhibit relatively higher scores
than OOD. One major paradigm in designing the detection
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Figure 1. (a) Out-of-distribution (OOD) instances can occur
in any white region, including the small area between the in-
distribution (ID) classes. For instance, given ’cat’ and ’dog’ as
ID classes, images of ’fox” will be OOD instances near the ID
data. (b) The classifier-based detector (i.e. confidence) assigns low
scores on the small in-between area but suffers overconfidence is-
sues. (c) Based on the distance information, KNN bounds the de-
tection score on far-OOD regions. However, KNN lacks the fine-
grained detection capability, and thus fails to detect the near-OOD.
(d) NNGuide addresses both of these issues, reducing overconfi-
dence in the far-OOD regions while achieving fine-grained detec-
tion.

score is to derive the score function based on the classi-
fier’s output signals, known as ’confidence’. Examples of
classifier-based scores include maximum softmax probabil-
ity [15] and energy function [24]. A major advantage of the
classifier-based detection scores is their ability to fully uti-
lize the class-dependent information of ID data and provide
fine-grained detection capability. However, the classifier-
based scores may suffer from overconfidence in far OOD
samples, limiting their effectiveness [10, 13].

In contrast, distance-based approaches (e.g. nearest
neighbors [35] and Mahalanobis distance [22, 31]) detect
OOD instances based on their distance to the ID data in the
feature space. These approaches can certify low scores for
far OOD regions but may not fully utilize class-dependent
information, resulting in limited fine-grained detection ca-
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pability.

Our work introduces Nearest Neighbor Guidance
(NNGuide), a novel approach to improving classifier-based
OOD detection scores and mitigating the issue of overconfi-
dence. NNGuide achieves this by guiding the classifier con-
fidence of a test input based on its similarity to its nearest
neighbors in the ID bank set. As a result, NNGuide reduces
the detection score in far-OOD regions while maintaining
fine-grained detection capabilities.

In the toy experiment shown in Fig. 1, the classifier-
based score demonstrates its ability to assign low detec-
tion scores to samples located in the small intermediate re-
gion between the two ID classes, which is where near-OOD
instances may occur. However, the score exhibits exces-
sively high values in the outer region of the ID data. On the
other hand, the distance-based score provided by KNN is
effective at assigning low detection scores to far-OOD sam-
ples, but it fails to credit low scores on the small interme-
diate region, indicating a lack of fine-graininess. Our pro-
posed detection score, NNGuide, mitigates the drawbacks
of both methods; NNGuide assigns bounded low values for
far-OOD samples while retaining fine-grained detection ca-
pability.

We conduct an extensive evaluation of NNGuide in
the large-scale ImageNet-1k benchmark [18] across a va-
riety of deep classification networks, achieving state-of-
the-art results. Furthermore, we investigate the robustness
of NNGuide by testing it on the ImageNet-1k-V2 dataset
[36, 28], where the ID data undergoes natural distribu-
tional shifts. The presence of distribution shifts can lead
to misidentifying ID samples as OOD and hence represents
a challenging, realistic scenario. The final part of our ex-
periments involves an extensive ablation analysis, where we
investigate the key contributing factors to the effectiveness
of NNGuide, as well as its compatibility with a broad range
of classifier-based scores.

Contributions The contributions of our work are summa-
rized as follows:

* We propose a novel method called Nearest Neighbor
Guidance (NNGuide) that guides the classifier-based
detection score to reduce overconfidence in far-OOD
regions while retaining its fine-grained detection capa-
bility.

* We attain state-of-the-art results on the ImageNet-1k
OOD detection benchmarks and demonstrate the ro-
bustness of NNGuide by considering a challenging and
realistic scenario where the ID ImageNet data under-
goes a natural distributional shift.

* We provide an extensive and detailed ablation study,
demonstrating the generality of NNGuide to a broad
range of classifier-based scores.

We note that NNGuide is a post-hoc training-free inference
method, and it is applicable to any standard deep classifica-
tion networks.

2. Related Works

The OOD detection research primarily falls into two cat-
egories: network truncation [23, 33] and the design of a
scalar score function to separate OOD instances from ID
samples [15, 24].

Network truncation [23, 33] aims to increase the gap be-
tween ID and OOD samples by rectifying the propagated
signals or weights of the network. For example, ODIN [23]
perturbs the input signal using a gradient vector to increase
the detection score, while ReAct [33] clips the hidden layer
activation signals using a threshold. The clipped signals in
ReAct are severely perturbed for OOD instances while be-
ing fairly retained for ID samples. Other methods, such as
DICE, RankFeat, and BATS, follow the same principle as
ReAct but rectify other types of signals. DICE [34] spar-
sifies the classification layer by removing fewer contribut-
ing weights therein. RankFeat [32] subtracts the rank-1 ap-
proximation of the feature map from the initial feature map.
BATS [48] cut-outs signals that deviate from the batch norm
statistics. The network truncation, however, cannot be used
independently and need to be combined with a score func-
tion to detect OOD instances.

Another approach involves developing scalar score func-
tions. These detection scores can be broadly categorized
into two types: classifier-based and distance-based. The
classifier-based scores, often referred to confidence, lever-
age the classification layer of a neural network to derive the
score. For example, [15] evaluated the effectiveness of the
maximum output of softmax classifier probability (MSP).
[24] proposed the energy function that can be viewed as
a class conditional probability without bias. The maxi-
mum of logit [39, 14] captures both the class likelihood
and the feature magnitude [8], and is shown to outperform
the MSP counterpart. To utilize the class-dependent infor-
mation extensively, [14] utilized the Kullback—Leibler (KL)
divergence between the prediction and uniform distribution.
GradNorm [17] on the other hand uses the norm of the gra-
dient to minimize the KL score.

The other type of score-based approach is distance-based
detectors. They identify an input sample as OOD based
on its distance to the ID dataset in the feature space. One
example is the Mahalanobis detector [22], which measures
the minimum distance to the class-wise means based on the
shared data feature covariance. A unified approach SSD
[31] operates on the same principle as Mahalanobis but in-
stead assumes that the ID samples follow a single Gaussian
distribution with a single mean. In contrast, KNN [35] is
non-parametric and therefore provides a more accurate rep-
resentation of the distance to the boundary of the data man-



Algorithm 1 NNGuide Pseudocode, PyTorch-like

def nnguide(z, s, Z, S, k):
z: 1l-by-d array of a test sample feat

#

i

# 3 sC base confic of the

# Z: n-by-c ray of d-c onal features
sample rom the t

# S: n-by-1 array of 1! confidences of n
samples from the k set

# k: the number of nearest neighbors

7Z = normalize(zZ, dim=1)

z = normalize(z, dim=1)

g_topk, _ = matmul(z, (SxZ)).topk(k, dim=1)

g = g_topk.mean(dim=1) # the guidance term

return s*g # the guided score for the test sample

ifold. CIDER [25] shows that KNN particularly well fits to
the networks with strong discriminative nature.

Classifier-based detectors exhibit low confidence scores
on the class decision boundaries, and hence they are able to
detect near-OOD instances around these boundaries. How-
ever, the classifier confidence is cursed to be overly confi-
dent in the far-OOD region [13]. Distance-based detectors
on the other hand can certify low scores on the far-OOD re-
gions. Nevertheless, they may struggle to assign low scores
to samples located in the intermediate regions around ID
classes, failing to detect near-OOD instances. This limita-
tion can be particularly problematic for parametric methods
like Mahalanobis and SSD when the modeled distribution
does not align well with the true data manifold.

3. Preliminaries

The out-of-distribution (OOD) detection is formulated as
follows: Let &’ denote the input space with the output space
Y ={1,..., K}, where K is the number of classes in the
in-distribution (ID) dataset. Let f : X — RIY | be a neural
network that outputs classification logits. The objective of
OOD detection is to devise a detection score function S that
determines whether a given test input x € X" belongs to ID
or OOD based on the score value S(x):

if Sx)>r

xe P (1)
00D if S(x)<r

The score function S is either derived from the classifier
outputs f(x) or by computing the distances to the hidden
layer features ¢(x) of the network f.

Terminology For brevity, we call the classifier-based de-
tection score ’confidence’.

4. Method
4.1. Proposed method: NNGuide

Let Spase : X — [0,00) be a given base confidence
score function. We guide this base confidence by

SNNGuide (X> = Sbase (X) : G(X) (2)

The guidance term G(x) is derived from the ID nearest
neighbors. Particularly, let {zy,...,z,} be a small bank
set where n is a a% of features randomly sampled from
the train set. z; = ¢(x;) is the feature computed from a
bank set sample x; by the penultimate layer of the network
f. Let s; = Spase(x;) denote the confidence scores of x;.
Then for a test input x, the guidance term G(x) is given by
the average similarity to the k-nearest neighbors in the bank
set

k
1 .
G(x) = Z E 5(;) sim(z;), z) 3)
i=1

where z = ¢(x) is the test input feature, and sim is the
cosine similarity. The reordered index () is given in the de-
scending order of confidence-scaled nearest neighbor simi-
larities

5(1) SiM(2(1),2) > -+ > 8 sim(2(yy), 2). ()

Due to the confidence scale term s; = Spase(X;), the near-
est neighbors are selected in the high-confidence region.
This can enhance the utilization of more salient ID features
while reducing the effect of possible outliers in ID. Overall,
the confidence-scaled search makes the guided score more
robust than the conventional KNN. The Pytorch-like pseudo
algorithm is given in Algorithm 1.

Unless specified otherwise, we use the (negative) energy
function Spese (x) = —Energy(x) as the default base confi-
dence score due to its generality [24].

Theoretical Understanding Let .S = Sy nguides qAS(x) =
o(x)/l¢(x)ll2, 2 = z/||z]|>.

Proposition 1. If min;||¢(x) — 2|2 > 2, then S(x) < 0.
If |¢(x) — 2w ll2 < € then S(x) > M(Spase(x) — €/2) if
min;<y, 8¢5y > M, and S(x) < 0Spase(X) if max;<k () <

The proposition states that if a test sample x is far-
distanced from the ID bank set in the feature space, then the
guided score is certified to be low. On the other hand, if x is
near to the ID, then the guidance up-scales the base confi-
dence in the high-confidence region, while relatively down-
scaling the base confidence around the low-confidence re-
gion (e.g. class decision boundaries). Thus, near the ID
region, the guidance either retains or improves the fine-
grained detection capability.



Training scheme

From scratch

Transfer learning

Model ResNet-50 MobileNet ViT-B/16 RegNet-Y/16GF

ID accuracy 78.73 72.15 85.3 86.01

Detection method FPR95| AUROCT AUPR?T ‘ FPR95| AUROCT AUPR?T ‘ FPR95| AUROCT AUPRT ‘ FPR95| AUROCT AUPRT
MSP (ICLR’17[15]) 49.54 87.44 96.71 77.04 79.46 94.65 48.74 87.67 96.94 43.37 88.95 97.30
MaxLogit (ICML'22[14]) 42.12 90.49 97.57 78.06 77.99 94.10 37.62 89.29 97.11 26.00 9291 98.16
KL (ICML’22[14]) 40.01 90.80 97.63 88.70 68.85 91.56 38.44 89.01 97.03 24.74 93.07 98.18
ViM (CVPR’22[41]) 29.86 93.00 98.13 76.27 73.59 92.53 35.16 91.04 97.73 21.39 94.89 98.74
Mahalanobis (NeurIPS’22[22])  44.58 90.93 97.76 64.87 80.29 94.56 39.34 91.73 98.08 32.15 93.07 98.36
SSD (ICLR’21[31]) 40.94 91.47 97.82 77.78 69.01 90.18 59.74 80.38 94.74 40.64 90.22 97.57
GradNorm (NeurIPS’22[17]) 28.92 93.00 98.09 89.88 65.28 89.88 38.04 89.28 96.91 82.86 62.98 87.76
KNN (ICML’22[35]) 42.73 90.19 97.44 74.24 75.22 93.14 54.45 87.62 96.93 31.26 91.96 97.91
Energy (NeurIPS[24]) 40.01 90.80 97.63 88.70 68.85 91.56 38.44 89.01 97.03 24.73 93.08 98.18
NNGuide (Ours) 27.81 92.89 98.03 65.92 81.26 94.94 34.20 92.14 98.10 16.53 95.89 98.98

Table 1. Results on ImageNet-1k. We report the average performance across five different OODs (i.e. iNaturalist, SUN, Places, Textures,

Openlmage-O).

Detection method Backbone Venue FPR95 AUROC AUPR
ODIN* ResNet-50  ICLR’18 56.48 8541 -
GODIN* ResNet-50  CVPR’20 66.07  82.02 -
DICE* ResNet-50  ECCV’22 3475 90.77 -
ReAct + DICE* ResNet-50  ECCV’22 27.25  93.40 -
RankFeat™* ResNet-101  NeurIPS’22  36.80  92.15 -
BATS* ResNet-50  NeurIPS’22  27.11 94.28 -
ASH* ResNet-50  Arxiv’22 2273 95.06 -
ReAct (+ Energy)* ResNet-50  NeurIPS’21  31.43 92.95 -
ReAct + MSP ResNet-50  reproduced  55.72 87.27 97.25
ReAct + MaxLogit ResNet-50  reproduced 3997  91.80 98.29
ReAct + KL ResNet-50  reproduced  32.69  93.07 98.54
ReAct + VIM ResNet-50  reproduced  26.06 94.83 98.85
ReAct + Mahalanobis  ResNet-50  reproduced 47.90  88.27 97.26
ReAct + SSD ResNet-50  reproduced  56.17  83.77 95.91
ReAct + GradNorm ResNet-50  reproduced  25.13 94.22 98.72
ReAct + KNN ResNet-50  reproduced  42.42 89.46 97.46
ReAct + Energy ResNet-50  reproduced  32.69  93.07 98.54
ReAct + NNGuide ResNet-50  reproduced  19.72  95.45 98.98

Table 2. The comparison with the state-of-the-art network trun-
cation methods. The average performance across four different
OODs (i.e. iNaturalist, SUN, Places, and Textures) is reported. *
indicates that the results are taken from the references.

5. Experiments

Our experiments on NNGuide are divided into the fol-
lowing parts: (1) We evaluate the performance of NNGuide
on the standard ImageNet-1k OOD detection benchmark.
(2) We examine the robustness of NNGuide against distri-
bution shift. In this setting, the train ID data is ImageNet-1k
while the test ID data is ImageNet-1k-V2 which comprises
natural distribution shift examples. (3) NNGuide is eval-
uated on the small-scale CIFAR-100 [21] benchmark. (4)
We conduct a thorough ablation study on NNGuide to iden-
tify its key components, assess its compatibility with other
classifier-based scores, and determine the optimal condi-
tions for its use. Supplementary Sec. B provides complete
experimental results.

Configuration NNGuide involves two hyperparameters
related to the k-nearest neighbor search, i.e. the number k of
nearest neighbors, and sampling ratio a% to construct the
bank set from the train data. In all evaluations below, we
follow the guideline of [35], and use «=1% and k=10 to

keep the balance between efficiency and performance. Ex-
tensive analysis of the hyperparameters is deferred to the
ablation study in Sec. 5.4.3.

Comments on the computation speed The computa-
tional speed of nearest neighbor search has been exten-
sively analyzed in [35] for OOD detection. [35] reports that
KNN is as fast as or faster than most of the other detec-
tion methods in modern hardware and optimized libraries
(e.g. faiss). NNGuide adds no computation overhead on the
nearest neighbor search algorithm.

Evaluation metrics We evaluate OOD detection methods
by the widely-used metrics: the false positive rate (FPR9S5)
when the true positive rate of ID samples is at 95%, the area
under the receiver operating characteristic curve (AUROC),
and the area under the precision-recall curve (AUPR). In
all the metrics, we regard the ID samples as positive. In
addition, we report the closed-set classification accuracy of
the model on the ID dataset.

5.1. Evaluation on the ImageNet-1k

Datasets In this evaluation, the train and test ID sets are
all from ImageNet-1k [7]. For extensiveness, the detection
method is evaluated on a diverse set of OOD datasets [18]:
iNaturalist [38], SUN [43], Places [47], Textures [6], and
Openlmage-O [41]. The OOD sets have no overlapping cat-
egories with ImageNet-1k. Though there is no strict crite-
rion to differentiate between near-OOD and far-OOD [10],
[44] categorizes iNaturalist and Openlmage-O as near-OOD
and Textures as far-OOD. The other two OOD sets SUN
and Places have overlapping characteristics. Overall, the
five OOD sets involve diverse class semantics [18]. Hence,
the average performance over these OOD sets indicates the
robustness of the detection method against general OOD.

Backbone models We evaluate our proposed detection
score NNGuide across four different model architectures
ResNet-50 [12], MobileNet [30], ViT [9], and RegNet [27].



Training scheme

From scratch

Transfer learning

Model ResNet-50 MobileNet ViT RegNet

ID accuracyt 74.43 67.78 81.16 82.79

Detection score  FPR95| AUROCT AUPRT ‘ FPR95| AUROCT AUPRfY ‘ FPR95| AUROCT AUPR?t ‘ FPR95) AUROCT AUPR?T
MSP 55.54 85.30 84.57 79.40 76.64 77.14 54.61 84.93 84.74 48.99 86.38 85.93
MaxLogit 47.97 88.54 88.01 80.19 75.17 75.06 4597 86.32 84.75 34.17 89.67 87.97
KL 44.67 88.97 88.24 89.57 66.17 67.92 47.03 8591 84.41 32.69 89.74 87.87
ViM 33.11 91.88 90.75 76.90 72.32 72.16 39.13 89.39 88.74 28.02 92.80 92.09
Mahalanobis 47.85 89.45 89.65 65.27 79.37 78.87 42.99 90.29 90.76 36.58 91.72 91.87
SSD 43.21 90.36 90.09 77.24 69.32 67.66 58.28 81.21 81.39 44.19 88.73 88.65
GradNorm 32.66 91.87 90.62 89.98 64.50 65.27 47.62 86.07 83.75 84.47 61.02 59.56
KNN 44.57 89.22 88.64 75.49 74.33 75.20 57.98 86.52 86.73 33.74 91.34 90.54
Energy 44.68 88.97 88.24 89.57 66.17 67.92 47.03 85.91 84.41 32.86 89.75 87.89
NNGuide 30.78 91.70 90.08 67.80 79.40 78.93 41.73 90.08 89.95 21.97 94.17 93.44

Table 3. Results on ImageNet-1k-V2. The average performance across five different OODs is reported.

ResNet-50 is a standard architecture for OOD evaluation,
while MobileNet is a network designed particularly for effi-
ciency. ViT partitions an image into multiple visual tokens
and processes them by a deep stack of multi-head attention
blocks, whose usage has shown excellent performance in
language modeling. Unlike ViT, the RegNet architecture
is targeted for both efficiency and performance. RegNet is
constructed by applying a network search principle at the
network-population level rather than a network level, mak-
ing it robust across diverse environments including distribu-
tion shifts and domain generalization [3, 1].

All four models are trained on the training fold of
ImageNet-1k, and the classification layers are strictly pro-
hibited to see any instance from OOD datasets. The first
two, ResNet-50 and MobileNet, are trained from scratch
on the train set. The latter two, ViT and RegNet, on the
other hand, are initialized from the pretrained weights on
ImageNet-21k, and then the full weights are fine-tuned on
ImageNet-1k. The particular versions we use are ViT-B/16
and RegNet-Y/16GF. The transfer learning scheme for ViT
and RegNet is a more practical approach due to their higher
ID (closed-set) accuracy and overall better detection perfor-
mance.

5.1.1 Comparison on detection scores

We compare NNGuide with the state-of-the-art post-hoc
detection score methods. The baselines include MSP,
MaxLogit, ViM, Mahalanobis, SSD, GradNorm, KNN, and
Energy detection scores, as described in Sec. 2. Tab. 1 in-
dicates that our proposed NNGuide is more effective than
or on par with other detection scores across model archi-
tectures, training schemes, and evaluation metrics. Upon
the RegNet model, particularly, we achieve a new state-
of-the-art performance, by significantly outperforming all
other methods. This shows that with a well-trained model,
NNGuide can achieve robust OOD detection on the large-
scale benchmark.

5.1.2 State-of-the-art performance with network trun-
cator

The recent works in OOD detection showed that the trun-
cation methods that rectify the hidden/output layer signals
give excellent performance. The insight of these approaches
is that a particular truncation function perturbs only the sig-
nals from the OOD instance while retaining those of ID
samples, hence enhancing the score gap between ID and
OOD. The truncators however cannot be used alone and re-
quire an external OOD detection score (such as MSP, En-
ergy, or KNN).

For a fair comparison with truncation approaches, we
combine our detection score NNGuide with ReAct. Tab. 2
shows that when combined with the simple truncator i.e.
ReAct, our proposed NNGuide performs the best over other
recently proposed network truncators in both the FPR95
and AUROC metrics. Particularly, NNGuide outperforms
BATS, which is limited to the networks with batch normal-
ization. ‘ReAct + NNGuide’ performs significantly better
than a classifier rectifier DICE, even when used in conjunc-
tion with ReAct. In addition, When comparing ReAct com-
bined with various detection scores, NNGuide demonstrates
greater effectiveness and relevance than the other detection
scores.

5.2. Evaluation against natural distribution shift

Datasets and configuration We evaluate the robustness
of NNGuide against the natural distribution shift of the ID
dataset. To this end, we consider the setting where the train
ID data is ImageNet-1k and the test ID dataset is ImageNet-
1k-V2 which consists of natural distribution shift samples.
We note that both train and test ID datasets share the same
semantics classes (i.e., the 1k number of classes in Ima-
geNet). OOD detection in this setup can be challenging
since the detection score may incorrectly identify the test
ID sample as an OOD instance due to the distribution dif-
ference between the test and train ID sets. As to model con-
figurations, we use the same models that are used for the
ImageNet-1k evaluation in Sec. 5.1.
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Figure 2. The performance summary of NNGuide and other de-
tection scores on the ImageNet benchmarks across different mod-
els, test IDs, and OODs.

Results on ImageNet-1k-V2 Tab. 3 indicates that
NNGuide is comparable to the state-of-the-art detection
method ViM and Mahalanobis under MobileNet and the
vision transformer, and significantly outperforms all other
detection scores with ResNet-50 and RegNet. Even across
MobileNet and ViT, however, NNGuide is overall more ro-
bust than Mahalanobis and ViM, indicated by the smaller
fluctuation in the performance metrics.

Both the Mahalanobis and ViM detectors are known to
excel in the ViT-type architecture due to the Gaussian na-
ture of the vision transformer embedding space [11, 20].
We note however that ViT is suboptimal in this task even
with large-scale pretraining and a much larger number of
network parameters and inference time; ResNet-50 trained
from scratch achieves better overall performance metrics
than ViT.

We found that the RegNet architecture built by the
network-population level search principle is shown to be the
best in our comparison across all metrics. Under this back-
bone, our proposed NNGuide outperforms other detection
scores by a large margin in the FPR95 metric.

We present a summary of our performance evaluation in
Fig. 2. The figure demonstrates that NNGuide exhibits less
performance variation and better average performance com-
pared to all other detection scores, including ViM, which is
also based on fusing classifier signals with distance infor-
mation.

5.3. Evaluation on the CIFAR-100 benchmark

We evaluate NNGuide on the small-scale CIFAR-100 by
training ResNet-18 on the train fold from scratch. Each
class of CIFAR-100 contains a small number of low-
resolution images, and hence the trained model can be sub-
optimal for both classification and OOD detection [39].
Tab. 4 shows the average performance of NNGuide against
five different OODs that are commonly used for evaluation

FPR95| AUROC{ AUPR}

MSP 72.53 82.34 83.05
MaxLogit 67.92 85.14 85.61
KL 66.27 85.47 85.84
ViM 80.07 77.70 78.63
Mahalanobis  77.54 78.88 79.18
SSD 83.21 69.05 65.52
GradNorm 66.90 76.71 72.14
KNN 70.07 84.17 84.23
Energy 66.27 85.47 85.84
NNGuide 64.56 86.39 86.96

Table 4. Results on the CIFAR-100 benchmark with the ResNet-
18 model trained on CIFAR-100 from scratch, achieving 75.66%
ID accuracy. The average performance across five different OODs
is reported.

FPR95| AUROCT AUPR?T

baselines:

KNN 42.73 90.19 97.44
KNN with average similarity =~ 43.96 90.71 97.64
Energy 40.01 90.80 97.63
naive fusion:

Product fusion 33.53 92.17 97.92
Sum fusion 34.03 92.27 97.96
Max fusion 42.72 90.19 97.44
Min fusion 40.01 90.80 97.63
missing core components

Mahalanobis guidance 37.19 92.00 97.97
Guidance term only 30.31 91.58 97.42
'W/O confidence scaling 36.23 91.81 97.87
NNGuide 27.81 92.89 98.03

Table 5. Ablation study on the components of NNGuide. The
average performance across five different OODs is reported.

(i.e. CIFAR-10, SVHN, resized LSUN, resized ImageNet,
and iSUN). NNGuide outperforms other baseline detection
methods. However, unlike the ImageNet benchmarks, the
performance boost by NNGuide is marginal on the CIFAR-
100 evaluation protocol. This is due to the suboptimal
model trained on low-quality ID data. Such a limitation of
NNGuide is more carefully analyzed in the ablation study
(Sec. 5.4.4).

5.4. Ablation

The ablation study is divided into several parts. (1) We
examine the compatibility of NNGuide with other classifier-
based detection scores besides the negative energy function.
(2) We analyze which components of NNGuide contribute
to improving the classifier-based confidence score. (3) We
evaluate the impact of the hyperparameters k and « related
to the nearest neighbor search. (4) We present a limitation
analysis of NNGuide from various aspects, highlighting the
necessary requirements for its optimal usage.
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Figure 3. The compatibility to other classifier-based scores. The average performance across five different OODs is reported.
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Figure 4. The hyperparameter analysis on the number & of nearest neighbors and the sampling ratio c.

5.4.1 Compatibility to other classifier-based confi-
dence scores

We extend the use of NNGuide beyond the energy function
by evaluating its compatibility with other classifier-based
confidence scores, i.e., MSP, MaxLogit, KL, and Grad-
Norm. Fig. 3 demonstrates that NNGuide effectively en-
hances the performance of all considered scores. Notably,
the performance improvement is remarkable, particularly
for the scores that fully utilize class-dependent information
(both target and non-target class outputs) without the soft-
max nonlinearity. However, we note that the final perfor-
mance of NNGuide heavily relies on the base confidence
score. As such, NNGuide may not be effective when the
base score is poor. We further analyze the limitations of
NNGuide in Sec. 5.4.4.

5.4.2 Ablation on the components of NNGuide

NNGuide consists of the base classifier confidence score
Shase(x) and the nearest-neighbor-based guidance term
G(x). The guidance term can be further broken down to
the confidence scaling in Eq. (4) and the similarity ensem-
ble in Eq. (3).

Tab. 5 shows the overall results of evaluations conducted
to ablate each component of NNGuide. Here, the original
KNN detector as formulated in [35] detects an OOD in-
stance based on only the similarity to the k-th nearest neigh-
bor; i.e. Sknn(2) = sim(z(y), z). To see the effect of sim-
ilarity ensemble, we modify the KNN detector to compute
the average of top-k similarities to nearest ID instances; i.e.
Savg-KNN(X) = Zle sim(zx),z). As indicated by ‘KNN
with average similarity’, the similarity ensemble alone does
not boost the performance.

We argue that similarity ensemble is effective only when
combined with confidence scaling. To validate this, we
evaluate the performance of the guidance term G(x). The
term can be considered as a weighted KNN, where the

weights are the confidences s;. Indicated by *Guidance term
only’, Tab. 5 shows a notable improvement to the original
KNN. As discussed in Sec. 4, the nearest neighbor search
based on confidence-scaled similarities selects the bank set
instances in the high-confidence region. Hence, this search
algorithm operates with the most salient ID features, ignor-
ing possible outliers.

We further verify the effectiveness of the confidence-
scaled nearest neighbor search by removing the confidence-
scaling component from NNGuide. The result indicated by
"W/O confidence scaling’ shows that confidence scaling is
a significant factor in NNGuide.

We note that the Mahalanobis (density) score can also
be used to bind the overconfidence of the classifier on the
far-OOD region. Hence, we evaluate its impact by substitut-
ing the guiding term with the Mahalanobis distance. Tab. 5
shows that the guidance by Mahalnobis score is not as ef-
fective as NNGuide. The disadvantage of Mahalanobis may
stem from a strong parametric assumption that the ID fea-
tures should be Gaussian.

Finally, we test with other types of fusion techniques.
We find that a naive combination of the KNN and classifier-
based detection score by basic algebraic operations such
as min, max, sum, and the product is not as effective as
the NNGuide. Although these basic fusion approaches are
aligned with our high-level objective, the confidence-scaled
nearest neighbor search and similarity ensemble parts are
missing therein. Hence, the naive fusion detectors could be
neither fine-grained nor robust, testified by their worse per-
formances.

5.4.3 Analysis of the hyperparameters

We evaluate the impact of hyperparameters o and £ in
NNGuide. We consider « € {0.5, 1, 5,10, 25, 50,100} and
k e {1,10,20, 50,100,200, 500, 1000, 3000, 5000} and
for the sampling ratio and a number of neighbors, respec-



model: ResNet-50 / test ID: ImageNet-1k model: RegNet / test ID: 1k

w/o NNGuide w/o NNGuide
w0 w/ NNGuide & w/ NNGuide
wn
P 0w
o o
& & w0
» 2
R 3 R 3
4\‘\ & (,;5’ A\V\ & (;,)O
& &
N N
@ @
< o
W W
model: ResNet-50 / test ID: ImageNet-1k-v2 | model: RegNet / test ID: ImageNet-1k-V2
w/o NNGuide w/o NNGuide
w/ NNGuide w/ NNGuide
n
0w 0w
o« 4
a a
w w
2 2
3 R 3
& & & & & &
& N
NG N
2 2
& &
W W

Figure 5. NNGuide could be suboptimal when combined with
distance-based scores.
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Figure 6. The dependency of NNGuide on the classifier confi-
dence and KNN.

tively. Fig. 4 indicates that the performance of NNGuide
is fairly robust across different k as long as £ > 10. More-
over, the performance has a consistent trend across different
sampling ratios . This is in contrast to the vanilla KNN de-
tection score; as reported in [35], the KNN score exhibits a
degree of performance fluctuation under the variation of k
and «. In addition, the performance variance is lower in the
small sampling regime (i.e. small %), suggesting that the
hyperparameters of NNGuide can be fairly easily tuned.

5.4.4 Limitation analysis of NNGuide

Despite the superiority of NNGuide compared to other de-
tection scores, it is not perfect. We analyze its limitation,
figuring out necessary requirements for NNGuide.

The necessity of classifier for NNGuide With the near-
est neighbor guidance by Eq. (2), the base confidence score
is assumed to be a classifier-based score with fine-grained
detection capability. One possible approach is to extend the
base confidence score to distance-based scores (e.g. Maha-
lanobis, SSD, and ViM), which however may lack a fine-
grained nature. We argue that NNGuide could be subopti-
mal if the base confidence is a distance-based score. Guid-
ing a distance-based score by the nearest neighbor guid-
ance may not significantly boost its detection capability. As

shown in Fig. 5, the improvement by NNGuide is inconsis-
tent and sometimes marginal. The guidance is particularly
insignificant when the base score is ViM, where the overly
low energy in the far-OOD region is already mitigated by
the orthogonal distance to the ID subspace.

In some cases, NNGuide improves Mahalanobis and
SSD. We believe this is due to the following fact: Maha-
lanobis and SSD represent poor distance functions when the
data feature has deviated from Gaussian. On the other hand,
the nearest neighbors represent the data boundary more ac-
curately, providing a better distance function. Thus, the
guidance by nearest neighbors refines the Mahlanobis and
SSD distances.

Dependency on both classifier confidence and KNN
NNGuide is formulated by nearest neighbors and the clas-
sifier outputs. Hence, the performance of NNGuide in-
evitably depends on both KNN and the classifier’s confi-
dence. Fig. 6 indicates a strong linear correlation between
NNGuide and the base classifier’s confidence in terms of
the performance metric. NNGuide exhibits a strong correla-
tion with KNN only when the classifier-based score demon-
strates robust OOD detection capability. Specifically, the
correlation is not observed with suboptimal classifier confi-
dences such as GradNorm and MSP (Fig. 3). Conversely,
NNGuide shows a strong correlation with KNN when
the confidences are based on Energy, KL, and MaxLogit.
This correlation trend suggests that the optimal usage of
NNGuide requires both good classifier confidence and a
strong feature extractor.

The analysis also explains our results on ResNet-18
(CIFAR-100) and RegNet (ImageNet). The suboptimal
ResNet-18 trained on CIFAR-100 from scratch likely pro-
duces poor classification outputs and extracted features.
Thus, NNGuide improves the base score only marginally. In
contrast, the RegNet model trained on large-scale datasets
with the best principles attains a highly discriminative clas-
sifier and representation. Accordingly, in RegNet, the per-
formance boost by NNGuide is significant.

6. Conclusion

We proposed a novel method for OOD detection called
the nearest neighbor guidance (NNGuide) that improves a
classifier’s confidence by guiding it with the nearest neigh-
bors’ information. NNGuide prevents the overconfidence of
the classifier while retaining its fine-grained detection capa-
bility, thereby achieving balanced robustness against both
far- and near-OODs. NNGuide has been examined exten-
sively on the large-scale ImageNet-1k benchmarks, includ-
ing the natural distribution shift and transfer learning sce-
narios. NNGuide has shown to be robust across different
model backbones and OODs, achieving state-of-the-art per-
formance with RegNet.
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A. Supplementary to Method
Here, we provide the proof for Proposition 1
Proposition 1.
(a) If ming||p(x) — Z|]2 > 2, then S(x) < 0.

(b) Suppose max;<|¢(x) — Z(yll2 < e Ifmini<y sy > M, then

S(x) > M (Spase(x) — €/2) ®)

On the other hand, if max;<y, (;) < 0, then
S(x) < 0Spase(x) 6)

Proof. (a) Note that R
lp(x) — Z;||a = 2 — 2sim(z;, 2). @)

Hence, if min; ||¢(x) — ;|2 > 2, then max; sim(z;,z) < 0. Therefore,
S( ) Sbase k ZS(Z) sim Z(,L), ) < Sbase( ) - 0. (8)

(b) Assume maxq;gkﬂgg(x) —2(;)|l2 < €. Then, sim(z(;),2) > 1 — €/2 due to (7). Therefore, if min;<. s¢;y > M

k
S(x) = Sbase(x)% > s sim(z(), z) )
i=1 L

> Spase (%) (1= ¢/2)7 g (10)
> Spase(x)(1 — 6/2)EkM (11)
= MSpase(¥)(1 = ¢/2). (12)
(13)

On the other hand, if max; <y s5(;y < 4, then
S(x) = Spase(x Z 5(;) sim(z;y,z) < Sbase(x)%kd -1 = 6Spase(x) (14)
as sim(z;),z) < 1. This completes the proof. O

Corollary 2. Consider x5, and x; such that
5(1), SIM(Z(1),, Zn) > -+ > 5(p), SIN(Z(n), , Zh)- (15)

and

5(1), Sim(z(1),,21) > -+ > Sy, SIM(Z (), , Z1)- (16)

where z, = ¢(xp) and z; = ¢(x;). Suppose maxinga(xh) —Z(),ll2 < €and maxigk\|$(xl) — 23, |l2 < e Suppose
min;<y 5(;), (Xn) > M and max;<y, s¢;y,(xn) < 9. Then,
S(xn)  _Sx)
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Detection score  Model FPR9S AUROC AUPR | FPR9S AUROC AUPR | FPR9S AUROC AUPR | FPR9S AUROC AUPR | FPR9S AUROC AUPR | FPR9S AUROC AUPR | FPR9S AUROC AUPR
MSP ResNet50 | 2974 9378 9859 | 59.54 8456 9569 | 6094 8428 9592 | 5002 8490 9745 | 4744 8968 9590 | 5006 8688 9691 | 4954 8744 9671
MaxLogit ResNet-50 | 2206 9599 99.15 | 50.90 8843 9699 | 5378 8737 9679 | 4225 8842 9790 | 4163 9223  97.04 | 4225 9005 9771 | 4212 9049 9757
KL ResNet50 | 2098 9617  99.19 | 47.06 8891  97.08 | 5115 8770 9685 | 3931 8890 9796 | 4157 9232 9706 | 39.63 9042 9777 | 4001 9080  97.63
ViM ResNet-50 | 1668 9687 9935 | 3934 9086 9756 | 4921 8848  97.03 | 1587 9421 9877 | 2818 9459 9794 | 3028 9260 9818 | 2986  93.00  98.13
Mahalanobis ~ ResNet-50 | 3504 9479 9894 | 6499 8655 9673 | 7031 8392 9600 | 1502 9552 9929 | 3752 9389 9784 | 4634 9019 9774 | 4458 9093 9776
SSD ResNet-50 | 3376 9464 9889 | 5604 8835  97.14 | 6502 8452 9606 | 1181 9654 9945 | 37.97 9329  97.56 | 4168 9101 9788 | 4094 9147 9782
GradNorm ResNetS0 | 1370 9724 9941 | 2875 9334 9834 | 3773 9104 9771 | 28690 9188 9855 | 3575 9150 9646 | 2722 9338 9850 | 2892 9300  98.09
KNN ResNet-50 | 37.53 9386 9867 | 54.57 8698 9671 | 6334 8354 9568 | 1745 9413 9900 | 4077 9246 9715 | 4322  89.63 9751 | 4273 9019 9744
Energy ResNet-50 | 2098 9617  99.19 | 4705 8891  97.08 | 5115 8770 9685 | 3931 8890 9796 | 4156 9232 9706 | 39.62 9042 9777 | 4001 9080  97.63
NNGuide ResNet-50 | 1202 9747 9943 3162 9166 9763 3888 9002 9734 2493 9152 9827 | 3160 9366 9747 | 2686 9269 9817 | 27.81 9289 9803
MSP MobileNet | 72.65 8401 9627 | 8178 7649 9390 | 8139 7623 9383 | 7390 7851 9643 | 7547 8204 9283 | 7743 7881 9511 | 7704 7946  94.65
MaxLogit MobileNet | 7624 8180 9562 | 83.00 7488 9331 | 8248 7472 9328 | 7355  77.66 9621 | 7503 8090 9206 | 7882 7726 9460 | 7806 7799  94.10
KL MobileNet | 9193 67.88 9198 | 9436 6580  91.02 | 9316 6626 9110 | 8028 7155 9519 | 8378 7278 8850 | $9.93  67.87 9232 | 8870 6885  91.56
ViM MobileNet | 86.86 6957  92.14 | 88.67 6637  90.80 | 9216 6243  89.56 | 4071 8959 9834 | 7295 8001 9179 | 77.10 7199 9271 | 7627 7359 9253
Mahalanobis ~ MobileNet | 66.86 8262 9580 | 80.01 7249 9261 | 8651  67.54 9102 | 3195 9254 9885 | 5900 8626 9453 | 6633 7880 9457 | 6487 8029  94.56
SSD MobileNet | 8634 6432 8937 | 8842 6187 8852 | 9324 5399 8557 | 4168 9045 98.67 | 7921 7442 8879 | 7742  67.66 9053 | 7778 69.01 9018
GradNorm MobileNet | 9424 6285 9008 | 93.66 6323  89.80 | 9524 G018 8883 | 7856 7361 9579 | 87.69 6652 8491 | 9042 6497  9L12 | 89.88 6528  89.88
KNN MobileNet | 8176 7573  94.17 | 9117 6604 9096 | 9262 6202  89.56 | 3580 9087 9850 | 69.87 8143 9254 | 7534 7367 9330 | 7424 7522 9314
Energy MobileNet | 9192 67.88 9198 | 9436 6580 9102 | 9316 6626 9110 | 8028 7155 9519 | 8378 7278 8850 | 89.93  67.87 9232 | 8870 6885  91.56
NNGuide MobileNet | 6824 8207 9569 7957 7610 9386 8187 7423 9319 3878 8932 9818 | 6116 8458 9377 | 67.11 8043 9523 | 6592 8126  94.94
MSP ViT 2758 9396  98.63 | 5743 8518 9636 | 6113 8434 9612 | 5321 8496 9761 | 4432 8989 9595 | 4984 8701 9718 | 4874  87.67 9694
MaxLogit ViT 1319 9719 9937 | 4745 8680 9643 | 5436 8313 9520 | 4470 8611 9752 | 2841 9323  97.02 | 3993 8831  97.I3 | 3762 8929 9711
KL ViT 1264 9734 9940 | 4805 8647 9633 | 5641 8222 9493 | 4679 8572 9747 | 2833 9331  97.04 | 4097 8794 9703 | 3844 8901  97.03
ViM ViT 342 9920 9982 | 49.66  88.05 9686 | 59.69 8368 9558 | 4255 8846 9811 | 2050 9579 9829 | 3883 8985  97.59 | 3516 9104 97.73
Mahalanobis ~ ViT 494 9885 9974 | 5877 8815 9707 | 6562 8546 9645 | 4349 9030 9860 | 2387 9592 9853 | 4321 9069 9797 | 3934 9173 9808
SSD ViT 1119 9750 9943 | 8491 7087 9207 | 8823 6510 9029 | 6938 7981 9669 | 4501 8862 9524 | 6343 7832 9462 | 5974 8038 9474
GradNorm ViT 1406 9662 9914 | 4668 8660 9609 | 5670 8284 9495 | 4337 8773  97.89 | 2941 9263 9650 | 4020 8845  97.02 | 3804 8928 9691
KNN ViT 2046 9407 9864 | 7215 8388 9576 | 7417 8147 9536 | 5121 8718 9806 | 4525 9149 9681 | 5675 8665 9696 | 5445  87.62 9693
Energy ViT 1264 9734 9940 | 4805 8647 9633 | 5641 8222 9493 | 4679 8572 9747 | 2833 9331  97.04 | 4097 8794 9703 | 3844 8901  97.03
NNGuide ViT 917 9796 9955 4564 9003 9748 5382 8725 9675 3926 9001 9842 | 23.11 9547 9828 | 3697 9131  98.05 | 3420 9214 9810
MSP RegNet | 2362 9464 9875 | 5253 8658 9670 | 5683 8513 9632 | 4922 8647 9797 | 3465 9194 9675 | 4555 8821 9744 | 4337 8895 9730
MaxLogit RegNet 779 9803 9952 | 3168 9155 9779 | 4105 8808 9678 | 3273  9LI9 9864 | 1676 9568 9806 | 2831 9221 9818 | 2600 9291  98.16
KL RegNet 658 9829 9958 | 2046 9185 9784 | 4071 8789 9670 | 30.87 9151 9868 | 1610 9583 9810 | 2691 9239 9820 | 2474 9307  98.18
ViM RegNet 197 9952 9990 | 2819 9315 9830 | 4272  §9.05 9726 | 2053 9558 9940 | 1355 9715 9887 | 2335 9433 9872 | 2139 9489 9874
Mahalanobis ~ RegNet 222 9936 9987 | 4930 8985 9754 | 61.84 8577 9654 | 2791 9390 9915 | 1950 9648 9871 | 3532 9222 9828 | 3215 9307 9836
SSD RegNet 509 9882 9976 | 6033 8588 9655 | 70.87 8027 9508 | 3814 9258 9901 | 2875 9354 9743 | 4361 8939 9760 | 4064 9022 9757
GradNorm RegNet | 8758 5701 8708 | 8297 6584 9021 | 9101 5604 8670 | 7481 7563 9620 | 7795 6039  78.62 | 8409  63.63 9005 | 8286 6298 8776
KNN RegNet 430 9876 9973 | 4612 8845 9669 | 5628 8515 9611 | 2833 9193 9872 | 2126 9551 9828 | 3376 9107 9781 | 3126 9196 9791
Energy RegNet 668 9828  99.57 | 2041 9188 9785 | 4051 8797 9672 | 30.85 9148 9868 | 1619 9581 9809 | 2686 9240 9821 | 2473 9308  98.18
NNGuide RegNet 183 9957 9990 2158 9443 9858 3147 9187 9792 1700 9582 9942 | 1079 9773 9909 | 17.97 9542 9896 | 1653 9589 9898

Table 6. Results on ImageNet-1k (ID) across five different OODs (i.e. iNaturalist, SUN, Places, Textures, Openlmage-O). ’Average-
curated’ corresponds to the the results averaged over iNaturalist, SUN, Places, and Textures.

Proof. Note that we have (5) and (6). Thus, we have

S(Xh) > M(Sbase(xh) - 6/2) > 5Sbase(xl) > S(Xl)

> > (19)
Sbase(xh) Sbase(xh) Sbase(xl> Sbase(xl>
if and only if
€
M—-6————F>0 (20)
2Sbase (Xh)
which is equivalent to M — ¢ > m This completes the proof. [

Corollary 2 states the following: Consider x;, in a high confidence region, and x; in a relatively lower confidence region.
Assume both x;, and x; are near to the train ID data (i.e. bank set). Then, the incremental factor is higher on x;, than x; if x,
if the nearest neighbors to x; have sufficiently high confidence.

B. Supplementary to Experiments

B.1. Evaluation on ImageNet-1k

Backbone models We evaluate detection scores on four different model architectures ResNet-50 [12], MobileNet [30], ViT
[9], and RegNet [27].

* We use ResNet-50 trained on ImageNet-1k from scratch. The model can be downloaded from https://github.
com/deeplearning-wisc/knn—ood in ‘Pre-trained model’.

* We use MobileNet-v2 trained on ImageNet-1k from scratch. The model can be downloaded from https:
//pytorch.org/vision/stable/models/generated/torchvision.models.mobilenet_v2.
html#torchvision.models.MobileNet_V2_Weights.

* We use ViT-B/16 pretrained on ImageNet-21k and then fine-tuned on ImageNet-1k with the full weight up-
date. The model can be downloaded from https://pytorch.org/vision/stable/models/generated/
torchvision.models.vit_b_1l6.html#torchvision.models.ViT_B_16_Weights.


https://github.com/deeplearning-wisc/knn-ood
https://github.com/deeplearning-wisc/knn-ood
https://pytorch.org/vision/stable/models/generated/torchvision.models.mobilenet_v2.html#torchvision.models.MobileNet_V2_Weights
https://pytorch.org/vision/stable/models/generated/torchvision.models.mobilenet_v2.html#torchvision.models.MobileNet_V2_Weights
https://pytorch.org/vision/stable/models/generated/torchvision.models.mobilenet_v2.html#torchvision.models.MobileNet_V2_Weights
https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html#torchvision.models.ViT_B_16_Weights
https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html#torchvision.models.ViT_B_16_Weights

iNaturalist SUN Places Textures Openlmage-O Average on curated OODs Average on all

Detection method FPR95 AUROC AUPR | FPR95 AUROC AUPR | FPR9S AUROC AUPR | FPR95 AUROC AUPR | FPR95 AUROC AUPR | FPR95 AUROC AUPR | FPR9S AUROC AUPR
ODIN* 47.66  89.66 - 60.15  84.59 - 67.89  81.78 - 5023 85.62 - - - - 56.48 8541

GODIN* 61.91 85.40 - 60.83  85.60 - 6370  83.81 - 77.85 7327 - - - - 66.07  82.02

DICE* 2563  94.49 - 3515 90.83 - 4649 8748 - 3172 90.30 - - - - 3475 90.78

RankFeat* 4131 9191 - 2927 94.07 - 3934 90.93 - 3729 91.70 - - - - 36.80  92.15

BATS* 1257 97.67 - 2262 9533 - 3434 91.83 - 3890  92.27 - - - - 27.11  94.28

ASH* 14.21 97.32 - 2208 9510 - 3345 9231 - 21.17 9550 - - - - 2273 95.06

ReAct* (+ Energy) 2038 96.22 - 2420 9420 - 3385  91.58 - 4730 89.80 - - - - 3143 9295 - - - -
ReAct + MSP 4436 91.62 98.17 | 58.46  86.43 96.65 | 63.83  84.51 96.18 | 56.24  86.51 98.01 | 57.04  88.40 95.64 | 5572  87.27 97.25 | 5599  87.49 96.93
ReAct + MaxLogit 2647 9529 99.00 | 39.83  91.74 98.04 | 48.18  89.44 97.42 | 4541 90.75 9872 | 4482  91.54 96.88 | 39.97  91.80 98.29 | 4094 91.75 98.01
ReAct + KL 19.99  96.31 99.21 | 29.67  93.40 98.38 | 39.70  90.95 97.71 | 4142 91.62 98.84 | 41.54 9185 96.93 | 32.69  93.07 98.54 | 3446  92.82 98.21
ReAct + VIM 18.87  96.69 99.32 | 3239  93.82 98.60 | 4545  90.38 97.67 | 7.55 98.45 99.81 | 3872  92.34 97.15 | 26.06  94.83 98.85 | 28.60  94.33 98.51
ReAct + Mahalanobis | 44.96  91.44 98.14 | 6250  84.64 96.37 | 73.04  79.23 94.80 | 11.10  97.78 99.72 | 55.98  85.90 9433 | 4790  88.27 97.26 | 49.52  87.80 96.67
ReAct + SSD 56.83  86.00 96.65 | 71.06  79.56 9479 | 80.38  73.08 92,67 | 1640  96.45 99.53 | 65.70  78.79 90.01 | 56.17  83.77 95.91 | 58.07 8278 94.73
ReAct + GradNorm 1488 97.01 99.33 | 25.54  94.19 98.57 | 3649 9112 97.74 | 23.60  94.57 99.23 | 39.46  89.67 9546 | 2513 94.22 98.72 | 27.99  93.31 98.07
ReAct + KNN 37.05  93.03 9849 | 5573  86.11 96.58 | 67.99  80.70 95.04 | 8.92 98.01 99.74 | 53.02 8826 9543 | 4242  89.46 97.46 | 4454  89.22 97.06
ReAct + Energy 19.99  96.31 99.21 | 29.67  93.40 98.38 | 39.70  90.95 97.71 | 4142 91.62 98.84 | 41.54  91.85 96.93 | 32.69  93.07 98.54 | 3446  92.82 98.21
ReAct + NNGuide 11.12 9770 99.50 | 20.51 95.26 98.83 2999  92.70 98.13 | 17.27  96.11 99.46 | 35.10  92.49 97.09 1972 9545 98.98 | 22.80 94.85 98.60

Table 7. Results on ImageNet-1k with the network truncators using ResNet-50. The ’curated OODs’ are the datasets of iNaturalist, SUN,
Places, and Textures.

* We use RegNet-Y-16GF pretrained on ImageNet-21k and then fine-tuned on ImageNet-1k with the full weight up-
date. The model can be downloaded from https://pytorch.org/vision/stable/models/generated/
torchvision.models.regnet_y_l6gf.html#torchvision.models.RegNet_Y_16GF_Weights.

B.1.1 Comparison of detection scores

Results The result on the ImageNet-1k OOD benchmark is given in Tab. 6.

B.1.2 Compatibility with network truncator
B.2. Evaluation against natural distribution shift (ImageNet-1k-V2)

Dataset ImageNet-1k-V2 [36, 28] contains samples of the same semantic classes as those of original ImageNet-1k. Due to
the different data collecting schemes applied on ImageNet-1k-V2, the data experiences natural distribution shift. The dataset
involves three different data folds. Their differing characteristics are determined by how they are collected. We evaluate the
performance by combining the different folds.

Backbone models We use the same backbone models used in the ImageNet-1k benchmark.

Setup The model is trained on the train fold of original ImageNet-1k. Then, during testing, the test set ID is the combined
ImageNet-1k-V2 folds, and the test OOD is either of five different OODs (i.e., iNaturalist, SUN, Places, Textures, and
Openlmage-O).

Results The results on the ImageNet-1k-V2 are given in Tab. 8.

B.3. Evaluation on the CIFAR-100 benchmark

Backbone model A standard ResNet-18 model with the default PyTorch configuration is trained on the train fold of CIFAR-
100 from scratch for 200 epochs with the SGD optimizer. We select the best model by the validation set accuracy.

Results The results on the CIFAR-100 OOD benchmark is given in Tab. 9.

B.4. Ablation

B.4.1 Compatibility to other classifier-based confidence scores

Note Note that the all confidence scores we use have their range in [0, c0). Particularly, the MaxLogit and Energy confi-

dence scores satisfy this range as long as the maximum unit of the logit is greater than or equal to 0.

Results The result is given in Fig. 7.
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00D iNaturalist SUN Places Textures OpenImage-O Average
Method Model FPR95 AUROC AUPR | FPR95 AUROC AUPR | FPR95 AUROC AUPR | FPR95 AUROC AUPR | FPR95 AUROC AUPR | FPR95S AUROC AUPR
MSP ResNet-50 | 36.31 92.39 92.64 | 65.44 82.07 80.12 | 66.23 81.69 81.13 | 55.35 82.73 87.05 | 54.39 87.64 81.91 55.54 85.30 84.57
MaxLogit ResNet-50 | 28.51 94.85 95.41 56.70 86.13 85.10 | 59.06 84.89 84.27 | 47.15 86.49 89.03 | 48.43 90.35 86.24 | 47.97 88.54 88.01
KL ResNet-50 | 26.39  95.11 95.62 | 51.87  86.78 8545 | 5550 8534 8449 | 42.84  87.12 89.30 | 46.78  90.51 86.34 | 44.67  88.97 88.24
ViM ResNet-50 | 20.34 96.24 96.61 | 43.10 89.39 87.86 | 52.86 86.61 85.54 17.18 93.58 93.48 | 32.06 93.55 90.25 | 33.11 91.88 90.75
Mahalanobis  ResNet-50 | 39.90 93.76 94.89 | 68.36 84.35 84.93 | 73.32 81.46 81.94 16.05 94.96 96.11 | 41.63 92.73 90.40 | 47.85 89.45 89.65
SSD ResNet-50 | 36.68  93.81 94.74 | 58.82  86.86 86.82 | 67.51 82.67 8244 | 1238  96.19 97.02 | 40.66  92.30 89.44 | 4321 90.36 90.09
GradNorm ResNet-50 | 16.75 96.61 96.83 | 32.99 9221 91.51 | 41.85 89.63 88.59 | 31.87 90.78 92.31 39.83 90.12 83.85 | 32.66 91.87 90.62
KNN ResNet-50 | 39.81 93.07 93.77 | 56.63 85.71 85.29 | 65.30 82.05 81.33 17.91 93.69 94.82 | 43.20 91.56 87.98 | 44.57 89.22 88.64
Energy ResNet-50 | 26.38  95.11 95.62 | 51.88  86.78 8545 | 5550 8534 84.49 | 42.85 87.12 89.30 | 46.78  90.51 86.34 | 44.68  88.97 88.24
NNGuide ResNet-50 | 1427  96.89 96.80 3456  90.32 8795 | 4223 8848 86.68 | 27.38  90.44 91.04 3544 9235 87.91 | 30.78 91.70 90.08
MSP MobileNet | 75.68 81.49 83.19 | 83.66 73.43 73.93 | 83.46 73.15 7375 | 76.32 75.80 82.79 | 7791 79.35 72.03 | 79.40 76.64 77.14
MaxLogit MobileNet | 78.71 79.15 80.55 | 84.84 71.81 71.85 | 84.48 71.64 71.80 | 75.50 75.00 81.86 | 77.43 78.23 69.24 | 80.19 75.17 75.06
KL MobileNet | 92.70  64.99 69.21 | 95.02  62.87 65.74 | 93.86  63.39 66.00 | 81.31 69.24 78.25 | 8495  70.36 60.39 | 89.57  66.17 67.92
ViM MobileNet | 87.49 68.06 70.28 | 89.03 64.78 65.70 | 92.47 60.69 62.33 | 41.55 89.07 91.93 | 73.97 78.99 70.57 | 76.90 72.32 72.16
Mahalanobis  MobileNet | 67.52 81.74 82.69 | 80.25 71.24 7139 | 86.72 66.12 66.61 32.29 92.21 94.38 | 59.56 85.56 79.29 | 65.27 79.37 78.87
SSD MobileNet | 85.87 64.66 63.62 | 88.03 62.20 61.47 | 93.03 54.31 54.69 | 40.74 90.66 94.19 | 78.53 74.76 64.32 | 77.24 69.32 67.66
GradNorm MobileNet | 9432  62.01 65.30 | 93.74 6241 63.90 | 9528 5931 61.44 | 78.67  73.00 82.00 | 87.87  65.77 53.72 | 89.98  64.50 65.27
KNN MobileNet | 83.08 74.75 77.98 | 92.08 64.94 67.67 | 93.23 60.90 63.73 | 37.51 90.44 92.79 | 71.57 80.62 73.82 | 75.49 74.33 75.20
Energy MobileNet | 92.69 64.99 69.21 95.02 62.87 65.74 | 93.86 63.39 66.00 | 81.31 69.24 78.25 | 84.95 70.36 60.39 | 89.57 66.17 67.92
NNGuide MobileNet | 70.18 80.16 8141 8127 73.81 74.61 | 83.59  71.86 72.26 | 40.65  88.28 90.77 6331 82.89 75.60 | 67.80  79.40 78.93
MSP ViT 33.17 9232 9240 | 63.43 81.97 82.01 | 66.79  80.97 81.06 | 58.90  81.96 87.14 | 50.76 8743 81.09 | 54.61 84.93 84.74
MaxLogit ViT 19.72 95.88 95.86 | 56.13 83.15 81.28 | 62.67 79.01 76.22 | 53.64 82.71 86.32 | 37.69 90.84 84.06 | 45.97 86.32 84.75
KL ViT 19.33 95.99 95.98 | 57.33 82.69 80.81 64.98 77.90 75.17 | 55.74 82.12 86.03 | 37.79 90.83 84.08 | 47.03 85.91 84.41
ViM ViT 4.34 98.96 9891 | 55.11 85.81 84.50 | 64.44  80.93 79.21 | 47.21 86.47 8991 | 2453 9477 91.17 | 39.13  89.39 88.74
Mahalanobis ~ ViT 6.30 98.58 98.48 | 62.70 86.11 86.09 | 69.17 83.13 83.65 | 48.42 88.66 92.61 28.34 94.97 92.95 | 42.99 90.29 90.76
SSD ViT 10.31 97.66 97.61 83.16 72.06 7234 | 87.18 66.35 67.51 | 67.40 80.75 86.47 | 43.36 89.25 83.03 | 58.28 81.21 81.39
GradNorm ViT 21.85  95.06 9445 | 56.94  82.79 79.68 | 66.08  78.35 75.14 | 5330  84.18 87.96 | 39.91 89.97 81.55 | 47.62  86.07 83.75
KNN ViT 33.94 93.34 93.60 | 75.12 82.53 81.79 | 76.53 80.05 80.60 | 54.72 86.11 90.64 | 49.59 90.54 87.04 | 57.98 86.52 86.73
Energy ViT 19.33 95.99 9598 | 57.33 82.69 80.81 64.98 77.90 75.17 | 55.74 82.12 86.03 | 37.79 90.83 84.08 | 47.03 85.91 84.41
NNGuide ViT 13.96  97.18 97.25  54.73 87.42 86.80 | 61.47  84.18 83.57 | 46.86  87.68 91.11  31.65 93.92 91.00 | 41.73  90.08 89.95
MSP RegNet 28.48  93.13 92.83 | 58.44 8354 83.03 | 62.95 81.83 8141 | 54.71 83.54 88.58 | 4037  89.88 83.82 | 4899  86.38 85.93
MaxLogit RegNet 12.18 96.84 96.28 | 41.26 87.68 85.59 | 51.19 83.14 80.32 | 42.35 87.25 90.56 | 23.88 93.47 87.12 | 34.17 89.67 87.97
KL RegNet 10.59 97.19 96.59 | 38.75 87.91 85.54 | 50.02 82.62 79.54 | 41.26 87.40 90.63 | 22.81 93.56 87.03 | 32.69 89.74 87.87
ViM RegNet 3.38 99.22 99.19 | 37.13  90.39 89.18 | 52.27  85.02 83.67 | 2839 9358 95.77 | 1893  95.78 92.62 | 28.02  92.80 92.09
Mahalanobis  RegNet 3.08 99.14 99.26 | 55.81 87.90 87.75 | 67.00 83.27 83.56 | 33.83 92.67 95.25 | 23.19 95.64 93.55 | 36.58 91.72 91.87
SSD RegNet 6.45 98.52 98.70 | 65.12 83.77 83.83 | 74.48 77.58 78.13 | 43.07 91.30 94.74 | 31.84 92.45 87.86 | 44.19 88.73 88.65
GradNorm RegNet 88.78 5491 5598 | 84.73 63.85 63.64 | 92.11 53.86 54.84 | 77.46 73.88 82.86 | 79.28 58.61 4045 | 84.47 61.02 59.56
KNN RegNet 4.82 98.67 98.67 | 49.88  87.55 8499 | 59.94  84.05 83.05 | 3042 91.36 93.64 | 23.63  95.08 92.34 | 3374 9134 90.54
Energy RegNet 10.80 97.16 96.57 | 38.82 87.95 85.61 50.09 82.73 79.70 | 41.57 87.37 90.61 23.01 93.54 86.98 | 32.86 89.75 87.89
NNGuide RegNet 295 99.32 99.22  28.56 92.20 90.88 | 39.10 88.81 87.30 | 23.85 93.96 95.91 15.38 96.56 93.87 | 2197 94.17 93.44
Table 8. Results on ImageNet-1k-V2 (ID) across five different OODs (i.e. iNaturalist, SUN, Places, Textures, Openlmage-O).
CIFAR-100 SVHN LSUN iSUN ImageNet Average

FPR95 AUROC AUPR ‘ FPR95 AUROC AUPR | FPR95S AUROC AUPR | FPR95 AUROC AUPR | FPR95 AUROC AUPR ‘ FPR95 AUROC AUPR
MSP 82.25 77.28 79.96 | 64.72 86.24 78.30 | 71.45 83.21 85.75 | 71.31 83.01 86.69 | 72.95 81.98 84.53 | 72.53 82.34 83.05
MaxLogit 8206 7795 80.07 | 59.83  88.87 8224 | 6453  86.84 88.79 | 6587  86.62 89.51 | 67.30 8542 8742 | 6792 8514 85.61
KL 8257 7175 79.95 | 5939  89.10 8253 | 61.86  87.41 89.15 | 62.41 87.19 89.83 | 65.14 8591 8771 | 6627 8547 85.84
ViM 87.57 71.04 73.85 | 74.78 81.65 72.62 | 81.01 78.13 81.55 | 77.84 79.21 83.58 | 79.18 78.45 81.53 | 80.07 71.70 78.63
Mahalanobis | 87.61 70.50 7140 | 75.90 81.69 7297 | 75.29 81.53 84.44 | 73.86 80.90 84.63 | 75.05 79.80 8247 | 77.54 78.88 79.18
SSD 90.85 60.32 59.83 | 83.19 70.20 49.35 | 82.50 71.80 73.08 | 80.29 71.33 7374 | 79.21 71.59 7159 | 83.21 69.05 65.52
GradNorm 83.16  68.15 6622 | 51.85  86.12 7158 | 6578  76.58 73.68 | 64.69 7820 7790 | 69.01 7450 7130 | 66.90  76.71 72.14
KNN 8279  76.24 7543 | 6548 8721 80.51 | 6596  86.62 88.94 | 67.15 8544 88.45 | 68.99 8535 87.82 | 70.07  84.17 84.23
Energy 82.57 71.75 79.95 | 59.39 89.10 82.53 | 61.86 87.41 89.15 | 62.41 87.19 89.83 | 65.14 8591 87.71 66.27 85.47 85.84
NNGuide 81.74 78.34 80.46 | 52.04 90.93 85.25 | 61.30 88.02 89.78 | 62.08 87.84 90.50 | 65.61 86.82 88.82  64.56 86.39 86.96

Table 9. Results on CIFAR-100.
00D iNaturalist SUN Places Textures Openlmage-O Average

Components Model FPR95 AUROC AUPR ‘ FPR95 AUROC AUPR ‘ FPR95 AUROC AUPR ‘ FPR95 AUROC AUPR ‘ FPR95 AUROC AUPR | FPR95 AUROC AUPR
KNN ResNet-50 | 37.53 93.86 98.67 | 54.57 86.98 96.71 63.34 83.54 95.68 17.45 94.13 99.00 | 40.77 92.46 97.15 | 4273 90.19 97.44
KNN with average similarity ResNet-50 | 40.80 93.82 98.71 54.65 87.84 96.91 62.34 85.13 96.14 19.84 93.91 98.99 | 42.16 92.87 97.42 | 43.96 90.71 97.64
Energy ResNet-50 | 20.98 96.17 99.19 | 47.05 88.91 97.08 | 51.15 87.70 96.85 | 39.31 88.90 97.96 | 41.56 92.32 97.06 | 40.01 90.80 97.63
Product fusion ResNet-50 | 18.16 96.64 99.29 | 43.62 89.86 97.27 | 50.33 88.07 96.91 23.58 92.26 98.42 | 31.98 94.02 97.73 | 33.53 92.17 97.92
Sum fusion ResNet-50 | 21.51 96.38 99.24 | 44.61 89.87 97.30 | 52.44 87.78 96.85 | 20.14 93.05 98.55 | 3143 94.26 97.83 | 34.03 92.27 97.96
Max fusion ResNet-50 | 37.53  93.87 98.67 | 54.55  86.98 96.71 | 63.33  83.54 95.69 | 1745 94.13 98.97 | 40.76  92.46 97.15 | 4272 90.19 97.44
Min fusion ResNet-50 | 20.98 96.17 99.19 | 47.05 88.91 97.08 | 51.15 87.70 96.85 | 39.31 88.90 97.96 | 41.56 92.32 97.06 | 40.01 90.80 97.63
Mahalanobis guidance ResNet-50 | 21.35 96.33 99.25 | 53.52 88.72 97.15 | 59.53 86.76 96.69 19.04 93.84 98.81 32.49 94.36 97.93 | 37.19 92.00 97.97
Guidance term only ResNet-50 | 1822  95.83 98.97 | 3046  91.16 9737 | 39.11 88.86 96.82 | 2323 9234 98.39 | 40.54  89.71 95.55 | 30.31 91.58 97.42
‘W/O confidence scaling ResNet-50 | 22.12 96.22 99.21 46.09 89.47 97.22 | 51.63 87.82 96.88 | 25.39 91.86 98.40 | 3591 93.66 97.62 | 36.23 91.81 97.87
NNGuide ResNet-50 | 12.02 97.47 99.43 | 31.62 91.66 97.63  38.88 90.12 97.34 | 24.93 91.52 98.27 | 31.60 93.66 97.47 | 27.81 92.89 98.03
KNN RegNet 4.30 98.76 99.73 | 46.12 88.45 96.69 | 56.28 85.15 96.11 28.33 91.93 98.72 | 21.26 95.51 98.28 | 31.26 91.96 97.91
KNN with average similarity ~RegNet 3.24 99.28 99.83 | 37.68 90.59 97.32 | 46.79 87.91 96.84 | 24.45 93.00 98.87 14.79 97.06 98.85 | 25.39 93.57 98.34
Energy RegNet 6.68 98.28 99.57 | 29.41 91.88 97.85 | 40.51 87.97 96.72 | 30.85  91.48 98.68 | 16.19  95.81 98.09 | 2473 93.08 98.18
Product fusion RegNet 2.51 99.44 99.87 | 25.98 93.43 98.21 36.91 90.50 97.54 | 20.25 95.07 99.26 10.49 97.97 99.21 19.23 95.28 98.82
Sum fusion RegNet 3.55 99.20 99.81 24.74 93.69 98.39 | 35.67 90.54 97.53 | 23.16 94.44 99.20 | 10.99 97.55 98.97 19.62 95.08 98.78
Max fusion RegNet 4.30 98.76 99.73 | 46.09  88.46 96.69 | 56.26  85.17 96.11 | 2832  91.94 98.73 | 2125  95.52 98.28 | 31.24  91.97 97.91
Min fusion RegNet 6.68 98.28 99.57 | 29.41 91.88 97.85 | 40.51 87.97 96.72 | 30.85 91.48 98.68 16.19 95.81 98.09 | 24.73 93.08 98.18
Mahalanobis guidance RegNet 1.24 99.61 99.92 | 34.07 92.65 98.23 | 47.87 88.98 97.31 19.77 95.37 99.36 12.45 97.70 99.16 | 23.08 94.86 98.80
Guidance term only RegNet 227 99.43 99.86 | 30.68 91.71 97.66 | 40.14 89.34 97.20 19.59 94.21 99.11 18.82 95.78 98.27 | 22.30 94.09 98.42
‘W/O confidence scaling RegNet 2.35 99.50 99.89 | 23.99 94.09 98.46 | 34.06 91.50 97.83 19.84 95.23 99.31 8.68 98.30 99.35 17.78 95.72 98.97
NNGuide RegNet 1.83 99.57 99.90 | 21.58  94.43 98.58 3147 91.87 97.92 | 17.00  95.82 99.42 | 1079  97.73 99.09 | 16.53  95.89 98.98

Table 10. Ablation study on the components of NNGuide. The ID is ImageNet-1k.



00D iNaturalist SUN Places Textures Openlmage-O Average
Components Model FPR95 AUROC AUPR ‘ FPR95 AUROC AUPR ‘ FPR95 AUROC AUPR ‘ FPR95 AUROC AUPR ‘ FPR95 AUROC AUPR ‘ FPR95 AUROC AUPR
KNN ResNet-50 | 39.81  93.07 93.77 | 56.63  85.71 8529 | 6530  82.05 81.33 | 1791  93.69 94.82 | 4320  91.56 87.98 | 4457  89.22 88.64
KNN with average similarity ~ResNet-50 | 44.61  92.66 93.80 | 5847  86.10 8570 | 6582  83.14 82.60 | 21.11 9324 94.67 | 4601  91.61 88.80 | 4720  89.35 89.11
Energy ResNet-50 | 26.38  95.11 95.62 | 51.88 86.78 8545 | 5550 8534 84.49 | 42.85 87.12 89.30 | 46.78  90.51 86.34 | 44.68 88.97 88.24
Product fusion ResNet-50 | 2345 95.79 96.20 | 48.01  88.03 86.44 | 5437 8593 8491 | 2531 91.25 91.69 | 3777 92.68 89.23 | 3778  90.74 89.69
Sum fusion ResNet-50 | 26.44  95.55 96.05 | 48.58 88.14 86.72 | 56.06  85.72 84.84 | 21.55 92.24 9238 | 3649  93.06 89.81 | 37.82  90.94 89.96
Max fusion ResNet-50 | 39.81 93.07 93.77 | 56.63 85.71 85.30 | 6530  82.05 81.33 17.91 93.69 94.69 | 4320  91.56 87.98 | 44.57 89.22 88.61
Min fusion ResNet-50 | 26.38  95.11 95.62 | 51.88  86.78 8545 | 5550  85.34 84.49 | 4285  87.12 8930 | 46.78  90.51 86.34 | 44.68  88.97 88.24
Mahalanobis guidance ResNet-50 | 26.57  95.46 96.15 | 57.85 86.62 86.15 | 63.44 8435 84.14 | 20.16  93.03 93.60 | 37.02  93.10 90.29 | 41.01 90.51 90.07
Guidance term only ResNet-50 | 20.15 9541 9493 | 3250  90.55 8773 | 4143 88.10 85.54 | 2497  91.89 92.10 | 42.83 8893 81.63 | 3237  90.98 88.38
W/O confidence scaling ResNet-50 | 28.12 9523 9585 | 50.65  87.52 86.23 | 5627 8558 84.78 | 27.54  90.73 91.52 | 41.89 9218 88.82 | 40.89  90.25 89.44
NNGuide ResNet-50 | 1427  96.89 96.80 | 3456  90.32 87.95 4223 88.48 86.68 | 27.38 90.44 91.04 | 3544 9235 8791 | 30.78 9170 90.08
KNN RegNet 4.82 98.67 98.67 | 49.88  87.55 84.99 | 59.94  84.05 83.05 | 3042 91.36 93.64 | 23.63  95.08 92.34 | 3374 9134 90.54
KNN with average similarity ~RegNet 3.99 99.14 99.05 | 42.51 89.34 87.03 | 51.81 86.42 85.28 | 27.44  92.17 94.04 | 1745 96.51 9425 | 28.64 92.72 91.93
Energy RegNet 1080  97.16 96.57 | 38.82 87.95 85.61 | 50.09 82.73 79.70 | 41.57 87.37 90.61 | 23.01 93.54 86.98 | 32.86 89.75 87.89
Product fusion RegNet 3.79 99.15 99.05 | 33.50  91.18 89.16 | 45.05  87.41 85.87 | 2773 9323 95.15 | 1507  96.95 94.86 | 2503  93.58 92.82
Sum fusion RegNet 5.62 98.63 98.44 | 3327  90.62 89.04 | 45.00 86.35 84.20 | 32.06 9158 94.12 | 1677  96.04 92.60 | 26.55 92.64 91.68
Max fusion RegNet 4.82 98.67 98.67 | 49.88 8755 85.00 | 59.94  84.06 83.06 | 3042 91.37 93.64 | 23.63  95.08 92.35 | 3374 9135 90.54
Min fusion RegNet 10.80  97.16 96.57 | 38.82  87.95 85.61 | 50.09 8273 79.70 | 41.57 8737 90.61 | 23.01  93.54 86.98 | 3286  89.75 87.89
Mahalanobis guidance RegNet 1.96 99.39 99.44 | 4334 90.25 89.77 | 56.84  85.71 85.30 | 26.83 93.78 9592 | 1722 96.73 9499 | 2924  93.17 93.09
Guidance term only RegNet 2.74 99.32 99.21 | 3415 90.65 88.41 | 4391  88.01 86.62 | 2229  93.48 9526 | 21.10  95.13 91.53 | 24.84 9332 92.21
W/O confidence scaling RegNet 3.79 99.19 99.11 | 3271 9172 90.27 | 4347 8832 86.95 | 2765 9323 9527 | 13.81 9729 9550 | 2429  93.95 93.42
NNGuide RegNet 2.95 99.32 99.22 | 28.56  92.20 90.88  39.10  88.81 87.30 | 23.85 93.96 9591 1538  96.56 93.87 | 21.97 94.17 93.44

Table 11. Ablation study on the components of NNGuide. The ID is ImageNet-1k-V2, where test ID samples undergo natural distribution
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Figure 7. The compatibility to other classifier-based scores. The average performance across five different OODs is reported.

B.4.2 Ablation on the components of NNGuide

Descriptions

We describe in detail the detection methods used in the ablation study of NNGuide components (i.e. Tab. 5).

Let f be a neural network that outputs the classification logit, and ¢ the feature extractor inside the network. Let Spqs. be
the score function that computes the base confidence (i.e. negative Energy) score given an input. Let {x1, ..., X, } be the ID
bank set, and {z1, ..., 2, } the corresponding features (i.e. z; = ¢(x;)) with s; = Spase(X;). Let x be a test input and z its

extracted feature.

* KNN: The KNN score is computed by

SkNN(x) = sim(zy), z)

@n
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Figure 8. The performance of NNGuide across the number k of nearest neighbors and the sampling ratio a.

where the ordered indices (7) satisfy
sim(z(1),z) > --- > sim(z,), ). (22)

* KNN with average similarity: The score of KNN with the average similarity slightly modifies the original KNN by
L
SKNN—(wg(X) = % ;sim(z(i),z). (23)
* Energy: The (negative) Energy score is computed by
K
Shase(x) = log Z exp fo(x) (24)
c=1

* Naive fusion: The basic fusion of KNN and the base confidence is performed by either of Sxnyn () © Spase(),
CsumSKNN(Z) + Spase(T)s CmaxSENN(Z) + Shase(x), and cmin Sk NN () + Spase(z). Note that the coefficients
Csums Cmaxs and cpi, are the coefficients to min-max normalize the scores to manually balance the importance of the
two scores. Note that min-max normalization is done based on the bank set.

« Mahalanobis guidance: In this case, the guidance term G(x) is given as the Mahalanobis score

K
G(x) = exp(— rcnznll(x —p )T N (x—p,)/(2-d)) (25)

where p1,. is the mean of c-th class features, X is the shared covariance matirx, and d is the dimension of feature. (Without
the

¢ Guidance-term only: In this case, the score function in utilization is
Sguidefonly(x) - G(X) (26)
where GG(x) is the nearest-neighbor guidance term given in (3).

* Without confidence scaling: In this case, the detection score function is computed by without the scaling term in the
nearest neighbor similarities. Namely,

Sw/o—scale(x) = Sbase (X) . Gw/o—scale (X) (27)

where G, /o scate(X) = SKNN—avg(X) as given in (23).

Results We perform ablation study on the NNGuide components on both ImageNet-1k and ImageNet-1k-V2 across
ResNet-18 and RegNet. The results are given in Tab. 10 and 11.

B.4.3 Analysis of the hyperparameters

Fig. 8 indicates the full analysis of the nearest neighbor hyperparameters « and k.
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Figure 9. The improvement by our proposed nearest neighbor guidance against far-OOD data (Textures) and near-OOD data (iNaturalist
and Openlmage-O). The ID data is ImageNet-1k and the model is ResNet-50.

SVHN Places365 iSUN Texture LSUN AVG
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
CIDER 21.42 94.87 82.16 67.32 63.75 82.25 32.96 92.49 9.38 98.13 41.93 87.01

CIDER-NNGuide 21.52  94.97 81.95 67.40 58.71 84.65 30.18  93.24 9.75 98.00 4042  87.65
Table 12. The results of NNGuide with CIDER on CIFAR-100 (ID).

OOD data KNN Energy ViM NNGuide-Energy NNGuide-ViM

ImageNet-O 51.90/89.16 41.30/90.46 36.75/92.55 41.65/91.04 33.10/92.96
Table 13. The result of NNGuide with ViM on ImageNet-O in (FPR95] / AUROCY). Here, ID is the ImageNet-1k, and the backbone is
ViT-B-P16-384.

B.4.4 Dataset analysis: near-OOD vs far-OOD

Fig. 9 indicates that the nearest neighbor guidance improves the base confidence score against both far-OOD data (i.e.
Textures) and near-OOD data (i.e. iNaturalist and OpenImage-O). Notably, the improvement is more significant against the
far-OOD data. This is expected by Theorem 1. Overall, NNGuide achieves balanced robustness against both far-OOD and
near-OOD.

C. Additional Experiments
C.1. Experiments with CIDER

To analyze the compatibility of NNGuide with the state-of-the-art trainig method CIDER [25] that is particularly effective
for the KNN score, we implemented NNGuide based on the official Github repository of CIDER' using the provided model
weights therefrom. Tab. 12 shows the performance of NNGuide with CIDER on CIFAR-100, indicating that NNGuide is
compatible to CIDER. We note that, to compute base energy score for NNGuide, we defined the classifier weights by the
class-wise means, and used k£ = 100 with o = 1%.

C.2. Experiments on ImageNet-O with ViM

To evaluate on ImageNet-O [16], we applied NNGuide on ViM utilizing the implementation from the official Github
repository of ViM?. We used the ViT-B-P16-384 backbone from mmcls as it achieves the SOTA with ViM. Using the
same provided ImageNet-1k train feature bankset with k=100 and the sampling ratio « = 10%, we obtained the result
in Tab. 13, where ‘NNGuide-Energy’ indicates the application of NNGuide with the base score being the negative energy
(i.e. Spase(x) = —Energy(x)), while ‘NNGuide-ViM’ denotes NNGuide with the base score being VIM (i.e. Spyse(x) =
—ViM(x)). As the ImageNet-O is specifically designed to weaken the classifier-based confidence, both the vanilla Energy
and our NNGuide-Energy perform poorly for OOD detection. For the ImageNet-O dataset, the integration of ViM with
the ViT architecture proves to be exceptionally effective. The adversarial nature of ImageNet-O primarily targets classifier
confidence and convolutional networks. This makes the combination of ViT and ViM especially robust against ImageNet-O
as ViT is non-convolutional and ViM does not rely solely on raw confidence. Accordingly, the result in Tab. 13 indicates that
NNGuide’s effectiveness is significantly enhanced when used in conjunction with ViM.

Ihttps://github.com/deeplearning-wisc/cider
thtps://qithub.com/vim/vim
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near-OOD far-OOD
Method CIFAR-100 TIN Average (near-OOD) ‘ MNIST SVHN Texture Places365 Average (far-OOD)

Energy 51.46/86.15 45.02/88.58 48.24/87.36 44.50/90.59 44.94/88.39 48.32/86.85 41.88/89.60 44.91/88.86
KNN 52.49/89.55 46.66/91.41 49.58/90.48 50.08/91.63 33.32/95.13 46.01/92.77 43.78/91.82 43.30/92.83
NNGuide | 51.54/86.64 43.99/89.07 47.77187.86 47.43/89.82 43.64/89.62 4691/88.44 40.62/90.39 44.65/89.57

Table 14. The result of NNGuide on CIFAR-10 (ID) in (FPR95| / AUROC?)

C.3. Experiments on CIFAR-10

NNGuide is particularly effective for large-scale data. For a small-scale data with few classes such as CIFAR-10, ID
features are already well separated class-wise. Hence KNN can already well detect near-OOD in a fine-grained manner
without NNGuide, indicated by its performance similar to Energy. The result shown in Tab. 14 (attained by using the official
OpenOOD Github repository?) verifies our claim. Note that the above result is obtained with o = 10% and k = 10.

3https://qithub.com/Jinqkanq5O/OpenOOD
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