
Learning to Identify Critical States for Reinforcement Learning from Videos

Haozhe Liu1†, Mingchen Zhuge1†, Bing Li1B, Yuhui Wang1, Francesco Faccio1,2

Bernard Ghanem1, Jürgen Schmidhuber1,2,3
1AI Initiative, King Abdullah University of Science and Technology

2The Swiss AI Lab IDSIA/USI/SUPSI, 3NNAISENSE
{haozhe.liu, mingchen.zhuge, bing.li, yuhui.wang,

francesco.faccio, bernard.ghanem, juergen.schmidhuber}@kaust.edu.sa

Abstract

Recent work on deep reinforcement learning (DRL) has
pointed out that algorithmic information about good poli-
cies can be extracted from offline data which lack explicit
information about executed actions [50, 51, 35]. For exam-
ple, videos of humans or robots may convey a lot of im-
plicit information about rewarding action sequences, but
a DRL machine that wants to profit from watching such
videos must first learn by itself to identify and recognize
relevant states/actions/rewards. Without relying on ground-
truth annotations, our new method called Deep State Iden-
tifier learns to predict returns from episodes encoded as
videos. Then it uses a kind of mask-based sensitivity analy-
sis to extract/identify important critical states. Extensive ex-
periments showcase our method’s potential for understand-
ing and improving agent behavior. The source code and the
generated datasets are available at Github.

1. Introduction

In deep reinforcement learning (DRL), the cumulative
reward—also known as the return—of an episode is ob-
tained through a long sequence of dynamic interactions be-
tween an agent (i.e., a decision-maker) and its environment.
In such a setting, the rewards may be sparse and delayed,
and it is often unclear which decision points were critical to
achieve a specific return.

Several existing methods use the notion of localizing
critical states, such as EDGE [21] and RUDDER [1]. These
methods typically require explicit action information or pol-
icy parameters to localize critical states. This limits their
potential applicability in settings like video-based offline
RL, where an agent’s actions are often hard to measure, an-

† Equal Contribution.
B Corresponding Author.
Accepted to ICCV23.

Figure 1. Motivation of the proposed method. In the illustrated
race between a turtle and a rabbit, the sleep state is critical in deter-
mining the winner of the race. Our method is proposed to identify
such critical states.

notate, or estimate [76, 37]. To avoid this pitfall, in this
work, we explicitly study the relationship between sequen-
tial visual observations and episodic returns without access-
ing explicit action information.

Inspired by the existing evidence that frequently only a
few decision points are important in determining the return
of an episode [1, 13], and as shown in Fig. 1, we focus
on identifying the state underlying these critical decision
points. However, the problem of directly inferring critical
visual input based on the return is nontrivial [13], and com-
pounded by our lack of explicit access to actions or policies
during inference. To overcome these problems—inspired
by the success of data-driven approaches [72, 44, 27]—our
method learns to infer critical states from historical visual
trajectories of agents.

We propose a novel framework, namely the Deep State
Identifier, to identify critical states in video-based environ-
ments. A principal challenge of working in such settings
lies in acquiring ground-truth annotations of critical states;
it is laborious to manually label in videos critical states cor-

ar
X

iv
:2

30
8.

07
79

5v
1

 [
cs

.C
V

]
 1

5
A

ug
 2

02
3

https://github.com/AI-Initiative-KAUST/VideoRLCS

responding to complex spatio-temporal patterns. The Deep
State Identifier is designed to directly overcome this chal-
lenge by identifying the critical states based solely on visual
inputs and rewards. Our proposed architecture comprises a
return predictor and a critical state detector. The former pre-
dicts the return of an agent given a visual trajectory, while
the latter learns a soft mask over the visual trajectory where
the non-masked frames are sufficient for accurately predict-
ing the return. Our training technique explicitly minimizes
the number of critical states to avoid redundant information
through a novel loss function. If the predictor can achieve
the same performance using a small set of frames, we con-
sider those frames critical. Using a soft mask, we obtain
a rank that indicates the importance of states in a trajec-
tory, allowing for the selection of critical states with high
scores. During inference, critical states can be directly de-
tected without relying on the existence of a return predictor.
Our contributions can be summarized as follows:

• We propose a novel framework that effectively iden-
tifies critical states for reinforcement learning from
videos, despite the lack of explicit action information.

• We propose new loss functions that effectively enforce
compact sets of identified critical states.

• We demonstrate the utility of the learned critical states
for policy improvement and comparing policies.

2. Related Work
In the past decade, researchers have explored the po-

tential of combining computer vision (CV) and RL to de-
velop more intelligent agents. A pioneering study by Kout-
nik et al. [32] used recurrent neural networks to tackle
vision-based RL problems through an evolutionary strat-
egy [33]. Since then, this topic has gained popularity. Mnih
et al. [40, 41] trained a deep neural network using raw
pixel data from Atari games to learn the Q-function for RL
agents. Recently, Visual MPC [15] proposed a method us-
ing deep convolutional neural networks to predict the future
states of a robot’s environment based on its current visual
input. RIG [43] trains agents to achieve imagined goals in a
visual environment using a combination of RL and an aux-
iliary visual network. Ha and Schmidhuber [22] propose a
version of the world model, which employs a Variational
Autoencoder (VAE) [31] to construct representations of the
visual environment and help train a model using imagined
future states. Robotprediction [14] designs a method for un-
supervised learning of physical interactions through video
prediction, achieved by an adversarial model that assists RL
agents in learning to interact with the environment. More
recently, researchers have explored novel CV advances,
such as self-attention and self-supervised learning, applied
to RL algorithms [28, 7, 73, 18, 10], leading to satisfactory

improvements. While visual input is integral to RL agents
and can benefit RL in numerous ways, our paper proposes a
method to assist agents in identifying the most crucial visual
information for decision-making rather than solely focusing
on improving visual representation.

Our method offers a novel perspective on explainable
RL by identifying a small set of crucial states. Explain-
ing the decision-making process in RL is more challeng-
ing than in CV, due to its reliance on sequential interac-
tions and temporal dependencies. Various methods have
been employed to address this challenge. Recent attention-
based approaches [28, 7, 42] focus on modeling large-scale
episodes offline [28, 7] to localize crucial decision-making
points [42]. However, the attention structure typically op-
erates on feature space, where the spatial correspondence
is not aligned with the input space [5, 21]. Therefore, it is
challenging to directly threshold attention values to identify
critical temporal points. Post-training explanation is an ef-
ficient method that directly derives the explanation from an
agent’s policy or value network [38, 20, 19, 16], thereby
reducing memory and computation costs. Other popular
explainable DRL methods include self-interpretable meth-
ods, such as Relational-Control Agent [74] and Alex [42],
and model approximation methods, such as VIPER [4] and
PIRL [67]. These methods are widely used in the field of
DRL [38, 20, 19, 16, 74, 42, 4, 67]. For example, Alex [42]
proposes using the output of the attention mechanism to en-
able direct observation of the information used by the agent
to choose its action, making this model easier to interpret
than traditional models. Tang et al. [64] use a small frac-
tion of the available visual input and demonstrate that their
policies are directly interpretable in pixel space. The PIRL
method [67] produces interpretable and verifiable policies
using a high-level, domain-specific language. Recent work
uses policy fingerprinting [24] to build a single value func-
tion to evaluate multiple DRL policies [13, 12, 11]. The au-
thors use only the policy parameters and the return to iden-
tify critical abstract states for predicting the return. How-
ever, policy parameters are often unavailable in practical
applications, and storing them for multiple policies can re-
quire significant memory resources. We circumvent this is-
sue by using visual states observed from the environment
rather than relying on policy parameters.

Apart from the methods mentioned above, reward de-
composition is also popular. Such methods [56, 29] re-
engineer the agent’s reward function to make the rewards
earned at each time step more meaningful and understand-
able. Compared to these methods, our approach evaluates
the specific states. It provides a context-based framework
for long-horizon trajectories in a challenging, yet practical
domain, specifically learning without actions. Our method
is also related to the concept of Hierarchical RL [71, 63],
which aims to identify high-level subgoals [53, 47] that a

low-level policy should achieve. Using a few crucial states
to explain an RL agent is closely connected to the concept
of history compression [46, 48], where a neural network is
trained to learn compact representations that are useful for
modeling longer data sequences.

3. Method
3.1. Problem Formulation

In Reinforcement Learning (RL) [62], an agent inter-
acts sequentially with an environment. At each time step
t, the agent observes a state s(t)—in our case, the frame of
a video, chooses an action a(t), obtains a scalar immediate
reward r(t) = R(s(t), a(t)), where R is the reward func-
tion, and transitions to a new state s(t+1) with probability
P (s(t+1)|s(t), a(t)).

The behavior of an agent is expressed by its policy
π(a|s), which defines a probability distribution over actions
given a state. The agent starts from an initial state and inter-
acts with the environment until it reaches a specific state (a
goal state or a failing state) or hits a time horizon T . Each
of these interactions generates an episode and a return, i.e.,
the discounted cumulative reward y =

∑T
t=0 γ

tr(t), where
γ ∈ [0, 1) is a discount factor. Due to the general form of
the return and the complex agent-environment interaction,
it is generally difficult to identify which decision points—
or states—are essential to achieve a specific return in an
episode. In other words, it is difficult to explain the behav-
ior of a policy.

Inspired by the success of data-driven approaches [72,
44, 27, 77], we design a learning-based method to identify
a few crucial states in an episode that are critical to achiev-
ing the return y. Unlike previous approaches [1, 21], we fo-
cus on identifying critical states in a video without needing
an explicit representation of the policy or actions executed.
More formally, let {si,yi}i be the collected episode-return
training data, where si = {s(t)i }t is the i-th state trajectory,
s
(t)
i is a state at the time step t, and yi is the return achieved

in the state trajectory si.
To identify critical states, we suggest a novel framework,

called the Deep State Identifier, consisting of the following
two steps. First, we propose a return predictor that esti-
mates the return yi given a state trajectory si. Second, we
use the return predictor to train a critical state detector to
identify critical states. The detector receives the states as in-
put and outputs a mask over the states. It is used to measure
how important each state is to the return. Fig. 2 illustrates
the architecture of our method.

3.2. Return Predictor

Our return predictor G(·) aims to predict the return of
a sequence of states. We build it using a neural network
and train it in a supervised manner. There are two types

Figure 2. Illustration of the proposed framework. During train-
ing, our return predictor learns to predict the return of an episode
from a state trajectory. Our critical state detector learns to exploit
the return predictor to identify a compact set of states critical for
return prediction. During testing, the critical state detector takes a
state trajectory as input and automatically detects its critical states
without using the return predictor.

of learning objectives depending on whether the return is
discrete or continuous. For discrete return values (e.g., 1
indicates success, while 0 denotes failure), we train G(·)
using cross-entropy loss:

Lc
G =

∑
i

Lc
G(si,yi) = −

∑
i

yilogG(si), (1)

where yi is the category-level annotation of si. If the return
is continuous, we employ a regression loss Lr

G to train G(·),

Lr
G =

∑
i

Lr
G(si,yi) =

∑
i

||G(si)− yi||2, (2)

where yi ∈ R is the scalar return of state trajectory si.

3.3. Critical State Detector

In a general environment, manually labeling critical
states is expensive and impractical. The unavailability of
ground-truth critical states prevents our method from be-
ing fully-supervised. We hereby propose a novel way of
leveraging the return predictor for training a critical state
detector. Note that the critical states are elements of the
state trajectory and can be discontinuous along the tempo-
ral dimension. We cast the task of identifying critical states
as deriving a soft mask on a state trajectory. In particular,
given a state trajectory si = {s(t)i }, the critical state de-
tector D outputs a mask on si, i.e., mi = D(si), where
mi = {m(t)

i }, m(t)
i ∈ [0 1] can be interpreted as confi-

dence that s(t)i is a critical state. Intuitively, a high value of
m

(t)
i indicates a higher probability that the corresponding

state s
(t)
i is critical. To enforce D to identify critical states,

we design three loss functions, namely, importance preser-
vation loss, compactness loss, and reverse loss, for training
D:

LD = λsLimp
D + λrLcom

D + λvLrev
D , (3)

where λs, λr and λv are the weights for importance preser-
vation loss, compactness loss, and reverse loss respectively.
Importance preservation loss. Given a state trajectory si,
the goal of the importance preservation loss is to ensure the
states discovered by the critical state detector are important
to predict the return yi. Hence, the loss enforces the masked
state sequence discovered by D to contain a similar predic-
tive information of the original state trajectory si. Given the
training data {(si,yi)}, the importance preservation loss is
defined as follows:

Limp
D =

∑
i

LG(G(si ◦ D(si)),yi), (4)

where ◦ denotes the element-wise multiplication (si ◦
D(si))

(t) ≜ m
(t)
i s

(t)
i , G(si ◦ D(si)) predicts the return of

the masked state sequence si ◦ D(si), LG stands for Lc
G or

Lr
G , as defined in the previous subsection. Note that the

masked state sequence can be discontinuous, and the in-
formation is dropped by skipping some redundant states.
As a result, we cannot obtain a ground-truth return for a
masked state sequence by running an agent in its environ-
ment. Thanks to the generalization abilities of neural net-
works [75, 68, 52, 49], we expect that the return predictor
trained on the original state trajectories can predict well the
return for masked state trajectories when critical states are
not masked.
Compactness loss. Solely using the importance preserva-
tion loss Limp

G leads to a trivial solution where the mask
identifies all states in si as critical. Critical states should
instead be as compact as possible to avoid involving redun-
dant and irrelevant states. To address this issue, we fur-
ther introduce the compactness loss Lcom

D . The compact-
ness loss forces the discovered critical state to be as few as
possible. Specifically, we employ the L1-norm to encour-
age the mask, i.e., the output of D, to be sparse given each
si :

Lcom
D =

∑
i

||D(si)||1. (5)

It is difficult to balance the importance preservation loss and
compactness loss. The detector may ignore some critical
states for compactness. We propose a reverse loss for train-
ing D to mitigate this problem.
Reverse loss. The third loss is designed for undetected
states. We remove the critical states by inverting the mask

from the original state trajectory si ◦ (1 − D(si)) and pro-
cess this masked sequence where the remaining states are
useless for return prediction. This loss ensures that all the
remaining states are not useful for estimating the return. We
define the reverse loss as:

Lrev
D = −

∑
i

LG(G(si ◦ (1−D(si))),yi). (6)

3.4. Iterative Training

Here we introduce the training strategy of our frame-
work. We train the return predictor on complete and contin-
uous state trajectories. At the same time, we use it to predict
the return of masked state sequences that are incomplete
and discontinuous when training the critical state detector.
We iteratively train the predictor and the detector, where the
learning objective of the whole framework is given by:

min
G

min
D

LD + LG . (7)

After training, our critical state detector automatically de-
tects critical states without using the return predictor. Ap-
pendix A lists the pseudo-code of the proposed method.

4. Experiments
4.1. Benchmark and Protocol Navigation

We begin this section by releasing a benchmark to test
our method and facilitate the research on explainability. As
shown in Table 1, we collect five datasets on three different
RL environments, i.e., Grid World [9, 8], Atari-Pong [6],
and Atari-Seaquest [6]. We select Grid World for qualitative
analysis since it is very intuitive for human understanding.
We study a challenging environment with partial observa-
tion. In the context of Grid World, we define a ”state” as
a combination of the current visual frame and historical in-
formation. Although this surrogate representation does not
equate to the full, true state of the environment, it serves
as an agent’s internal understanding, developed from its se-
quence of past observations. To elaborate, when we say
that our model identifies a ”state” in this context, we imply
that it recognizes a specific observation or frame, based on
the agent’s history of previous observations. For fully ob-
servable environments like Atari, the term ”state” assumes
its traditional definition, providing complete information
about the system at any given time. We use Atari-Pong and
Atari-Seaquest environments to compare our method with
similar approaches based on critical state identification, us-
ing adversarial attacks, and evaluating policy improvement.
Note that evaluating critical states using adversarial attacks
was first proposed by work on Edge [21]. However, Edge
does not consider cross-policy attacks where the policies for
training and testing the detector are different. More details
can be found in the supplementary material.

Table 1. The specification of the five collected datasets. The
datasets cover discrete and continuous returns for a comprehensive
study of the proposed method. y here is the cumulative reward.

Length Training Test Total
Grid World-S (Memory: 353 MB)

Reaching Goal 31.97 1000 200 1200
Fail 25.72 1000 200 1200

Grid World-M (Memory: 412 MB)
Policy-1 31.97 1000 200 1200
Policy-2 38.62 995 200 1195

Atari-Pong-[S/M](Memory: 174 GB /352 GB)
Agent Win 200 13158/17412 1213/1702 14371/19114
Agent Lose 200 8342/4088 787/298 9129/4386
Total - 21500 2000 23500

Atari-Seaquest-S (Memory:706 GB)
E[y]=2968.6 2652.5 8000 2000 10000

Table 2. Summary of improvements due to our method, where
Gain refers to improvement over the baselines. Our method im-
proves performance across various tasks. The baselines in the
2nd-6th rows are our method using Imp. Loss on Grid-World-S,
EDGE [21] for Atari-Pong-S, an attack with 30 randomly selected
frames on Atari-Pong-M, and DQN trained with 25M time steps
on Atari-Seaquest-S, respectively.

Datasets Navigation Task Gain

GridWorld-S Sec. 4.2 Critical State Identify 16.38%
GridWorld-S Sec. 4.2 Sequence Reasoning Qualitative
GridWorld-M Sec. 4.3 Policy Evaluation First Study
Atari-Pong-S Sec. 4.4 In-Policy Adv. Attack 18.63%
Atari-Pong-M Sec. 4.4 Robust Analysis 50.35%

Atari-Seaquest-S Sec. 4.5 Policy Improvement 17.65%

Figure 3. Illustration of an instance of the GridWorld environ-
ment. The environment consists of six rooms and one corridor.
The agent starts from a random initial location in the corridor, and
the final goal is to get the ball. Since the ball is locked in a room,
the agent must pick up the key and open the yellow locked door.
In a successful episode, the agent must open the unlocked doors
(colored in green and blue), pick up the key, unlock the yellow
door, and reach the purple ball. Note that the agent has only par-
tial observation (colored white) of the environment at a time step.

4.2. Critical State Discovery

Performance. This section provides a qualitative analy-
sis of the critical time point identified by our Deep State
Identifier. We choose the ‘MiniGrid-KeyCorridorS6R3-v0’

Table 3. Ablation study for the critical state detector.
Imp. Loss Com. Loss Rev. Loss F-1 Score (%)↑

✓ × × 68.98
✓ ✓ × unstable
× ✓ ✓ 74.42
✓ × ✓ 76.09
✓ ✓ ✓ 80.28

task [54, 9] of the GridWorld environment, where the goal
is to reach a target position in a locked room after picking
up a key (see the yellow block in Fig. 3). This task is use-
ful to visually evaluate our method since it is intuitive to
identify what states are critical: top row in Fig. 4 shows
that states immediately before actions such as ‘opening the
door’ (S.1, S.2, S.3), ‘picking up the key’ and ’opening the
locked door’ are critical to successfully reaching the goal.
Note that there is no ground truth on the critical state for a
general, more complex environment.

We use a pre-defined DRL agent to collect trajectories.
Since our method detects critical states by masking the tra-
jectory, we evaluate how our critical state detector accu-
rately assigns high scores to the states we intuitively labeled
as critical. As shown in Fig. 4, our method assigns high
values to human-annotated critical states and low values to
remaining states, showing its effectiveness in discovering
critical states.
Ablation study. We analyze the contribution of each com-
ponent of the critical state detector loss in Tab. 3 and Fig. 5.
If we remove the compactness loss and the reverse loss, our
method wrongly assigns high confidence to all states in an
episode, i.e., all states are detected as critical ones. Sim-
ilarly, if we remove the reverse loss, our method detects
all states as non-critical. Finally, removing only the com-
pactness loss, most states (including non-critical ones) are
wrongly detected as critical. This ablation shows that each
loss component is crucial to critical state identification.
More Analysis. In RL, states within an episode can be
highly correlated. We show how our method can discover
state dependencies essential to identifying critical states. It
is challenging to capture the dependencies among states in
the Gridworld since the agent can only partially observe the
environment through a small local view.

Tab. 4 provides examples of states in the environment1.
In Gridworld, the states that occur immediately before or
after the action “opening door” are frequently observed in
a trajectory. In these states, the agent can be either with
or without the key. However, obtaining the key is crucial
for achieving the goal of GridWorld (see Fig. 3). With-
out the key, the agent cannot successfully finish the task.
Therefore, the states immediately before or after the action
“opening door” without the key are not as critical as the

1We use a text description of states due to space constraints. We pro-
vide visual states in the supplemental material.

Figure 4. The performance of our method in identifying critical states. The top row shows human-annotated critical states (i.e., ground
truth) in an episode. The bottom row shows for each time step in the environment how confident the detector is that the current state is
critical. Our method assigns high scores to human-annotated critical states, demonstrating its identification abilities.

Figure 5. Ablation study of the detector’s loss function. For each
time step and loss component, the line indicates how confident the
detector is that the current input is critical. Red blocks mark the
human annotation.

states immediately before or after the action “opening the
door” with the key to predict the return. Tab. 4 shows how
our method captures such dependencies between “opening
door” and “picking up the key.” Our method successfully
assigns much higher confidence to the critical states imme-
diately before or after the action “opening door” with the
key and lower confidence to the states immediately before
or after the action “opening door” without the key.

4.3. Policy Comparison by Critical States

In general, researchers use cumulative rewards to vali-
date policy performance. However, these metrics cannot
elucidate the diverse behavioral patterns exhibited by dif-
ferent policies. To better distinguish and explain the behav-
ioral differences among various policies, a return predictor
is trained to recognize the distinct trajectories of each pol-
icy. Our detector then is trained to identify critical states
for highlighting the contrasts between policies rather than
merely focusing on returns, thus facilitating a more compre-

Table 4. State detector’s confidence score over different states.
Our method has different confidence scores for the states imme-
diately before and after (i.b.a.) opening a door with or without
the key, which indicates that it can capture temporal dependencies
among states. Normal states refer to states where the agent has a
distance greater than two from positions where it can take a rele-
vant action (pick up the key or open a door). We report the mean
and standard deviation of the confidence over four random seeds.

State Description Confidence
Score

Normal States (Full) 53.66 ± 0.12
Normal States Before Picking up the Key 49.59 ± 0.13
State i.b.a. Opening Door (without the Key) 67.13 ± 0.12
State i.b.a. Trying Locked Door (without the Key) 50.81 ± 0.08
State i.b.a. Picking up the Key 78.35 ± 0.04
Normal States After Picking Up the Key 56.58 ± 0.10
State i.b.a. Opening Door (with the Key) 80.65 ± 0.06
State i.b.a. Opening Locked Door 87.55 ± 0.01

hensive comparison of their behaviors. Consequently, we
can leverage the ability of the critical state detector to pin-
point the key states that discriminate between the two poli-
cies and visually represent the dissimilarities between them.
As shown in Fig. 6, both policy-A and policy-B can achieve
the final goal, but in policy-B, the agent always enters an
invalid room after picking up the key, leading to more steps
in the environment before achieving the goal. Both policies
achieve a high return. However, our approach identifies the
most discriminating states. Our method precisely assigns
the highest confidence to the states inside the invalid room.
The visualization shows that our method can explain the dif-
ference between the two policies. More details are provided
in Appendix A.

Figure 6. Visualization of the Deep State Identifier for policy comparison. We pre-collect policy-A and policy-B. While policy-A is
optimal, policy-B first causes the agent to enter the incorrect room after picking up the key and then reach the goal. We train our method
to discriminate between policy-A and policy-B, given sequences of trajectories generated by them. The critical state detector assigns high
confidence to states where policy-B is suboptimal.

Table 5. Win rate changes of the agent before/after attacks by
following the protocol of EDGE [21]. We use the detected top 30
states as input to attack the policy. We report means and standard
deviations over three random seeds. The reported results of all the
baselines are from previous work [21]. s,a,y, π denote the state,
action, return, and policy parameters, respectively.

.
Method Input Win Rate Changes ↓

Rudder [1] (s, a, y) -19.93 ± 4.43
Saliency [57, 59, 60] (s, a, y) -30.33 ± 0.47
Attention RNN [2] (s, a, y, π) -25.27 ± 1.79
Rationale Net [36] (s, a, y, π) -29.20 ± 4.24
Edge [21] (s, a, y, π) -65.47 ± 2.90
Ours with single policy (s, y) -77.67 ± 0.56
Ours with multiple policies (s, y) -85.90 ± 1.47

4.4. Efficient Attack using Critical States

In the previous sections, we showed that our method
identifies the critical states with the highest impact on re-
turn prediction. However, for complex environments, it is
difficult to evaluate the performance of this class of meth-
ods because the ground-truth critical states are not available.
Following previous approaches [21], we use adversarial at-
tacks to validate whether the identified states are critical.
Intuitively, if a state is critical, introducing noise in the ac-
tion that a policy would take in such a state will significantly
deteriorate performance (the return will be lower). Here we
follow the same protocol of previous approaches [21], and
we compare the policy’s performance drop to the baseline
methods when the 30 most critical states are attacked (i.e.,
whenever the agent reaches those states, its action is per-
turbed).

Table 5 shows that our method outperforms the other
techniques in the Atari-Pong environment, exhibiting the
most significant changes in win rates, highlighting its ef-
ficacy in localizing critical states. In particular, we achieve
an 18.63% improvement over the previous SOTA method
Edge[21], suggesting that the states identified by our Deep
State Identifier are more crucial to achieve a high return.
Note that the previous methods, such as Edge [21], are
based on sequences of states and action pairs. Our method
instead achieves higher performance by only observing a
state sequence. In the real-world scenario, imaging sys-
tems can easily capture sequences of visual states, while
actions are more difficult to collect, requiring special sen-
sors or manual annotations. In other words, our method can
work with pure visual information to achieve higher per-
formance, resulting in flexibility toward various potential
applications. Moreover, when different policies collect the
training dataset, the proposed method can benefit from data
diversity, inducing more satisfactory results (i.e., an 85.90
drop in winning performance).

We then analyze the attack performance across different
policies to test the robustness against policy shifts. In Table
6, we set the baseline that attacks 30 states chosen randomly
and attacks a policy that was never used to train our method.
To ensure policy diversity for testing, we derive the policies
with various random seeds, training steps, and network ar-
chitectures. Compared with the baseline, our method can-
not improve performance using a single policy, which indi-
cates that a cross-policy protocol is challenging for adver-
sarial attacks. However, when we increase the training data

Table 6. Win rate changes of the agent before/after attacks for
different policies. We assess whether our method, trained on
trajectories generated by one or multiple policies, can accurately
identify critical time points within a trajectory generated by an-
other unseen policy. We consider three kinds of unseen policies,
including different random seeds (seeds), different training steps
(steps), and different network architectures (Arch.), to test the per-
formance of our method against cross-policy challenges. We re-
port mean and standard error over three random seeds. We attack
the policy perturbing its action in the top 30 states detected.

Baseline Ours (Single) Ours (Multi.)

In-Policy (baseline) 54.88 ± 1.80 -77.67 ± 0.56 -85.90 ± 1.47
Cross-Policy (Seeds) -63.32 ± 0.93 -30.67 ± 0.58 -85.45 ± 0.86
Cross-Policy (Steps) -50.23 ± 1.21 -30.57 ± 1.01 -83.72 ± 0.91
Cross-Policy (Arch.) -49.85 ± 3.50 -39.55 ± 2.38 -76.50 ± 3.11

Table 7. Performance of DQN with different adaptive step
strategies on Atari-Seaquest. We base the implementation on
the Tianshou Platform [70]. Our method effectively improves the
performance of DQN. n-step stands for the lookahead steps.

Methods Return ↑ ± St.d.
PPO (time steps=5M) [55] 887.00 ± 4.36
SAC (time steps=5M) [23] 1395.50 ± 339.34
Rainbow (step=3,time steps=5M) [25] 2168.50 ± 332.89
DQN(time steps=10M) [40] 3094.75 ± 1022.54
DQN (n-step=random(1,5),time steps=5M) [61] 3250.25 ± 638.13
Baseline: DQN (n-step=5,time steps=5M) [61] 1987.00 ± 115.71
DQN (n-step=12,time steps=5M) [61] 1472.50 ± 407.40
DQN (n-step=grid search,time steps=5M) [61] 3936.50 ± 459.19
SAC (time steps=25M)[23] 1444.00 ± 136.86
Rainbow (time steps=25M)[25] 2151.25 ± 329.29
DQN (time steps=25M)[40] 3525.00 ± 63.87
HL based on Frequency (time steps=5M)[39, 58] 2477.00 ± 223.65
DQN + Ours (n-step≤5,time steps=5M) 4147.25 ± 378.16

diversity by adding policies, we achieve a higher general-
ization, and the model’s drop in performance improves from
49.85 to 76.50. A potential explanation is that each policy
induces a specific distribution over the state space in the en-
vironment. Using different policies to collect data allows
us to generalize to unseen policies and achieve more invari-
ant representations of the policy behavior. Indeed, when
the dataset can cover the distribution of states in the envi-
ronment, our method generalizes to arbitrary unseen poli-
cies. We thereby achieve an environment-specific policy-
agnostic solution for interoperability.

4.5. Policy Improvement

We show how our method can improve DRL policies.
The experimental results in the previous sections demon-
strate that our Deep State Identifier can efficiently identify
critical states. Here we show how one can use these states
to perform rapid credit assignment for policy improvement.
In particular, we combine our method with the widely-used
DQN [40] for multi-step credit assignment. The objective
function of traditional Multi-step DQN[25, 61] is:

∑
(s(j),a(j))∈Rep.

[
Q(s(j), a(j))−

(
j+n−1∑
t=j

γt−jr(t)+

γn max
a(j+n)

QT(s(j+n), a(j+n))

)]2
,

(8)

where Q is the action-value function, i.e., a network pre-
dicting the expected return of the policy from a particular
state-action pair, Rep. is the replay buffer, QT is a copy of
Q, which is periodically synchronized with Q to facilitate
learning, γ is the discount factor, and a denotes an action.

A recent study [69] highlights the importance of varying
the lookahead step n in Multi-step DQN. Here we combine
our method with Multi-step DQN by first identifying critical
states and then dynamically setting lookahead steps to learn
DQN. In other words, we set n as the number of time steps
from the state to the most critical state detected within a
specific range. Here, we set the maximum lookahead step
to 5.

Table 7 presents preliminary results which illustrate that
Multi-step DQN combined with our method improves the
return of DQN from 1987.00 to 4147.25. Since our method
effectively discovers states important for return predic-
tion, our Deep State Identifier provides DQN with faster
credit assignment, improving its performance. Moreover,
our method performs slightly better than finely tuning the
lookahead step n using grid search. Table 7 also includes
improved versions of DQN [39, 58] for comparison. Our
method outperforms all of them.

5. Conclusion
Our novel method identifies critical states from episodes

encoded as videos. Its return predictor and critical state de-
tector collaborate to achieve this. When the critical state de-
tector is trained, it outputs a soft mask over the sequence of
states. This mask can be interpreted as the detector’s belief
in the importance of each state. Experimental results con-
firm that the generated belief distribution closely approxi-
mates the importance of each state. Our approach outper-
forms comparable methods for identifying critical states in
the analyzed environments. It can also explain the behav-
ioral differences between policies and improve policy per-
formance through rapid credit assignment. Future work will
focus on applying this method to hierarchical RL and ex-
ploring its potential in more complex domains.

Acknowledgements
We thank Dylan R. Ashley for his valuable comments

and help to polish the paper. This work was supported
by the European Research Council (ERC, Advanced Grant

Number 742870) and the SDAIA-KAUST Center of Excel-
lence in Data Science and Artificial Intelligence (SDAIA-
KAUST AI).

References
[1] Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich,

Thomas Unterthiner, Johannes Brandstetter, and Sepp
Hochreiter. Rudder: Return decomposition for delayed re-
wards. NIPS, 32, 2019.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. ICLR, 2015.

[3] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya
Sutskever, and Igor Mordatch. Emergent complexity via
multi-agent competition. arXiv preprint arXiv:1710.03748,
2017.

[4] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Ver-
ifiable reinforcement learning via policy extraction. NIPS,
31, 2018.

[5] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza,
Bolei Zhou, and Antonio Torralba. Understanding the role of
individual units in a deep neural network. Proceedings of the
National Academy of Sciences, 117(48):30071–30078, 2020.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
Openai gym, 2016.

[7] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srini-
vas, and Igor Mordatch. Decision transformer: Reinforce-
ment learning via sequence modeling. Advances in neural
information processing systems, 34:15084–15097, 2021.

[8] Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. Babyai: A platform to study
the sample efficiency of grounded language learning. arXiv
preprint arXiv:1810.08272, 2018.

[9] Maxime Chevalier-Boisvert, Lucas Willems, and Suman
Pal. Minimalistic gridworld environment for gymnasium.
Github, 2018.

[10] Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov,
and Sergey Levine. Contrastive learning as goal-conditioned
reinforcement learning. arXiv preprint arXiv:2206.07568,
2022.

[11] Francesco Faccio, Vincent Herrmann, Aditya Ramesh, Louis
Kirsch, and Jürgen Schmidhuber. Goal-conditioned gener-
ators of deep policies. arXiv preprint arXiv:2207.01570,
2022.

[12] Francesco Faccio, Louis Kirsch, and Jürgen Schmidhuber.
Parameter-based value functions. In 9th International Con-
ference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[13] Francesco Faccio, Aditya Ramesh, Vincent Herrmann, Jean
Harb, and Jürgen Schmidhuber. General policy evaluation
and improvement by learning to identify few but crucial
states. arXiv preprint arXiv:2207.01566, 2022.

[14] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsuper-
vised learning for physical interaction through video predic-
tion. Advances in neural information processing systems, 29,
2016.

[15] Chelsea Finn and Sergey Levine. Deep visual foresight for
planning robot motion. In 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2786–2793.
IEEE, 2017.

[16] Ruth C Fong and Andrea Vedaldi. Interpretable explanations
of black boxes by meaningful perturbation. In ICCV, pages
3429–3437, 2017.

[17] Kunihiko Fukushima. Neocognitron: A self-organizing
neural network model for a mechanism of pattern recogni-
tion unaffected by shift in position. Biological cybernetics,
36(4):193–202, 1980.

[18] Xinyang Geng, Hao Liu, Lisa Lee, Dale Schuurams, Sergey
Levine, and Pieter Abbeel. Multimodal masked autoen-
coders learn transferable representations. arXiv preprint
arXiv:2205.14204, 2022.

[19] Wenbo Guo, Sui Huang, Yunzhe Tao, Xinyu Xing, and
Lin Lin. Explaining deep learning models–a bayesian non-
parametric approach. NIPS, 31, 2018.

[20] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang,
and Xinyu Xing. Lemna: Explaining deep learning based se-
curity applications. In proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, pages
364–379, 2018.

[21] Wenbo Guo, Xian Wu, Usmann Khan, and Xinyu Xing.
Edge: Explaining deep reinforcement learning policies.
NIPS, 34:12222–12236, 2021.

[22] David Ha and Jürgen Schmidhuber. World models. arXiv
preprint arXiv:1803.10122, 2018.

[23] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In ICML,
pages 1861–1870. PMLR, 2018.

[24] Jean Harb, Tom Schaul, Doina Precup, and Pierre-Luc
Bacon. Policy evaluation networks. arXiv preprint
arXiv:2002.11833, 2020.

[25] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom
Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal
Piot, Mohammad Azar, and David Silver. Rainbow: Com-
bining improvements in deep reinforcement learning. In
AAAI, volume 32, 2018.

[26] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Comput., 9(8):1735–1780, Nov. 1997.

[27] Qibin Hou, PengTao Jiang, Yunchao Wei, and Ming-Ming
Cheng. Self-erasing network for integral object attention.
Advances in Neural Information Processing Systems, 31,
2018.

[28] Michael Janner, Qiyang Li, and Sergey Levine. Offline re-
inforcement learning as one big sequence modeling prob-
lem. In Advances in Neural Information Processing Systems,
2021.

[29] Zoe Juozapaitis, Anurag Koul, Alan Fern, Martin Erwig, and
Finale Doshi-Velez. Explainable reinforcement learning via
reward decomposition. In IJCAI/ECAI Workshop, 2019.

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[31] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[32] Jan Koutnı́k, Giuseppe Cuccu, Jürgen Schmidhuber, and
Faustino Gomez. Evolving large-scale neural networks for
vision-based reinforcement learning. In Proceedings of the
15th annual conference on Genetic and evolutionary compu-
tation, pages 1061–1068, 2013.

[33] Jan Koutnik, Faustino Gomez, and Jürgen Schmidhuber.
Evolving neural networks in compressed weight space. In
Proceedings of the 12th annual conference on Genetic and
evolutionary computation, pages 619–626, 2010.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017.

[35] Yann LeCun. A path towards autonomous machine intelli-
gence version 0.9. 2, 2022-06-27. Open Review, 62, 2022.

[36] Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationaliz-
ing neural predictions. EMNLP-IJCNLP, 2017.

[37] YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey
Levine. Imitation from observation: Learning to imitate
behaviors from raw video via context translation. In 2018
IEEE International Conference on Robotics and Automation
(ICRA), pages 1118–1125. IEEE, 2018.

[38] Yang Young Lu, Wenbo Guo, Xinyu Xing, and
William Stafford Noble. Dance: Enhancing saliency
maps using decoys. In ICML, pages 7124–7133. PMLR,
2021.

[39] Amy McGovern and Andrew G Barto. Automatic discovery
of subgoals in reinforcement learning using diverse density.
Computer Science Department Faculty Publication Series.
8., 2001.

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[41] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-level control through deep reinforcement learn-
ing. nature, 518(7540):529–533, 2015.

[42] Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan
Wierstra, and Danilo Jimenez Rezende. Towards inter-
pretable reinforcement learning using attention augmented
agents. NIPS, 32, 2019.

[43] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl,
Steven Lin, and Sergey Levine. Visual reinforcement learn-
ing with imagined goals. Advances in neural information
processing systems, 31, 2018.

[44] Phuc Nguyen, Ting Liu, Gautam Prasad, and Bohyung Han.
Weakly supervised action localization by sparse temporal
pooling network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6752–
6761, 2018.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.

[46] J. Schmidhuber. Adaptive history compression for learning
to divide and conquer. In Proc. International Joint Confer-
ence on Neural Networks, Singapore, volume 2, pages 1130–
1135. IEEE, 1991.

[47] J. Schmidhuber. Neural sequence chunkers. Technical Re-
port FKI-148-91, Institut für Informatik, Technische Univer-
sität München, April 1991.

[48] Jürgen Schmidhuber. Learning complex, extended sequences
using the principle of history compression. Neural Compu-
tation, 4(2):234–242, 1992.

[49] Jürgen Schmidhuber. Deep learning in neural networks: An
overview. Neural networks, 61:85–117, 2015.

[50] Jürgen Schmidhuber. On learning to think: Algorithmic
information theory for novel combinations of reinforce-
ment learning controllers and recurrent neural world models.
arXiv preprint arXiv:1511.09249, 2015.

[51] Jürgen Schmidhuber. One big net for everything. arXiv
preprint arXiv:1802.08864, 2018.

[52] Juergen Schmidhuber. Annotated history of modern ai and
deep learning. arXiv preprint arXiv:2212.11279, 2022.

[53] Jürgen Schmidhuber and Reiner Wahnsiedler. Planning sim-
ple trajectories using neural subgoal generators. In From An-
imals to Animats 2: Proceedings of the Second International
Conference on Simulation of Adaptive Behavior, volume 2,
page 196. MIT Press, 1993.

[54] Juergen Schmidhuber, Jieyu Zhao, and MA Wiering. Simple
principles of metalearning. Technical report IDSIA, 69:1–23,
1996.

[55] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017.

[56] Tianmin Shu, Caiming Xiong, and Richard Socher. Hierar-
chical and interpretable skill acquisition in multi-task rein-
forcement learning. arXiv preprint arXiv:1712.07294, 2017.

[57] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[58] Özgür Şimşek and Andrew Barto. Skill characterization
based on betweenness. Advances in neural information pro-
cessing systems, 21, 2008.

[59] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas,
and Martin Wattenberg. Smoothgrad: removing noise by
adding noise. arXiv preprint arXiv:1706.03825, 2017.

[60] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic
attribution for deep networks. In ICML, pages 3319–3328.
PMLR, 2017.

[61] Richard S Sutton. Learning to predict by the methods of
temporal differences. Machine learning, 3:9–44, 1988.

[62] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. A Bradford Book, USA, 2018.

[63] Richard S Sutton, Doina Precup, and Satinder Singh. Be-
tween mdps and semi-mdps: A framework for temporal ab-
straction in reinforcement learning. Artificial intelligence,
112(1-2):181–211, 1999.

[64] Yujin Tang, Duong Nguyen, and David Ha. Neuroevolu-
tion of self-interpretable agents. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference, pages
414–424, 2020.

[65] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE, 2012.

[66] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015.

[67] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh,
Pushmeet Kohli, and Swarat Chaudhuri. Programmatically
interpretable reinforcement learning. In ICML, pages 5045–
5054. PMLR, 2018.

[68] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang,
Tao Qin, Wang Lu, Yiqiang Chen, Wenjun Zeng, and Philip
Yu. Generalizing to unseen domains: A survey on domain
generalization. IEEE Transactions on Knowledge and Data
Engineering, 2022.

[69] Yuhui Wang, Haozhe Liu, Miroslav Strupl, Francesco Fac-
cio, Qingyuan Wu, Xiaoyang Tan, and Jürgen Schmidhuber.
Highway reinforcement learning. Open Review, 2023.

[70] Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis
Duburcq, Minghao Zhang, Yi Su, Hang Su, and Jun Zhu.
Tianshou: A highly modularized deep reinforcement learn-
ing library. JMLR, 23(267):1–6, 2022.

[71] Marco Wiering and Jürgen Schmidhuber. Hq-learning.
Adaptive Behavior, 6:219–246, 09 1997.

[72] Jinheng Xie, Xianxu Hou, Kai Ye, and Linlin Shen. Clims:
cross language image matching for weakly supervised se-
mantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4483–4492, 2022.

[73] Tao Yu, Zhizheng Zhang, Cuiling Lan, Zhibo Chen, and
Yan Lu. Mask-based latent reconstruction for reinforcement
learning. NIPS, 2022.

[74] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor
Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Re-
ichert, Timothy Lillicrap, Edward Lockhart, et al. Deep rein-
forcement learning with relational inductive biases. In ICLR,
2018.

[75] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and
Chen Change Loy. Domain generalization: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2022.

[76] Deyao Zhu, Yuhui Wang, Jürgen Schmidhuber, and Mo-
hamed Elhoseiny. Guiding online reinforcement learn-
ing with action-free offline pretraining. arXiv preprint
arXiv:2301.12876, 2023.

[77] Mingchen Zhuge, Deng-Ping Fan, Nian Liu, Dingwen
Zhang, Dong Xu, and Ling Shao. Salient object detection

via integrity learning. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2022.

This appendix provides the implementation details of our
Deep State Identifier. In Section A, we provide the pseudo-
code for the Deep State Identifier, its network architecture,
and the hyperparameters used during training. Then, Sec-
tion B discusses the datasets we collected and our experi-
mental protocol. Finally, Section C provides additional ex-
perimental results related to the ablation study and the com-
parison with EDGE [21] on MuJoCo.

A. Implementation Details
This section details our implementation of the proposed

method. We implement our method and conduct our experi-
ments using PyTorch [45]. All experiments were conducted
on a cluster node equipped with 4 Nvidia Tesla A100 80GB
GPUs.

The proposed method—while quite effective—is con-
ceptually simple. The training pipeline can be written in
25 lines of pseudo-code:

1 import torch as T
2 def cs_detector_train(input_states, labels):
3 mask = cs_detector(input_states)
4 loss_reg = lambda_r*T.linalg.norm(mask,ord=1)
5 masked_states = mask * input_states
6 output = return_predictor(masked_states)
7 loss_sub = lambda_s*criterion(output,labels)
8 reverse_mask = torch.ones_like(mask) - mask
9 reverse_states = reverse_mask * input_states

10 output_r = return_predictor(reverse_states)
11 confused_label = torch.ones_like(output_r)

*0.5 #binary classification case
12 loss_vic = lambda_v * criterion(output_r,

confused_label)
13 loss_total = loss_reg + loss_sub + loss_vic
14 loss_total.backward()
15 optimizer_cs.step()
16 def return_predictor_train(input_states, labels):
17 output = return_predictor(input_states)
18 loss_d = criterion(output,labels)
19 loss_d.backward()
20 optimizer_return.step()
21 def main_train(input_states, labels):
22 optimizer_cs.zero_grad()
23 cs_detector_train(input_states, labels)
24 optimizer_return.zero_grad()
25 return_predictor_train(input_states, labels)

We use two potential network architectures in our work,
3DCNN [66], and CNN-LSTM [17, 26, 34], to implement
our Deep State Identifier. Tables 8 and 9 show the specifi-
cation of the corresponding architectures. We use 3DCNN
architecture in Table 10 and employ LSTM structure in the
other empirical studies.

To train the critical state detector and return predic-
tor, we use the Adam optimizer [30] with β1 = 0.9 and
β2 = 0.999. The learning rate is set as 1 × 10−4 and the
weight decay is 1×10−4. The input length of 3DCNN is 12
frames and is a partial observation (7× 7 pixels) of the en-
vironment [9, 8]. The remaining hyper-parameters λs, λr,
and λv are set to 1, 5× 10−3 and 2 respectively.

Table 8. The specification of the 3DCNN-based Neural Net-
work adopted in this paper. In-Norm refers to the Instance Nor-
malization, 3D Conv. is the 3D convolutional Layer, and F.C.
refers to the fully connected layer. In the last layer, the [return
predictor/critical state detector] has a different architecture speci-
fied in the last column.

3DCNN Channel Filter Stride In-Norm Activation
3D Conv. 12 → 32 (1,3,3) (1,2,2) False Relu
3D Conv. 32 → 64 (1,3,3) (1,1,1) True Relu
3D Conv. 64 → 128 (1,3,3) (1,2,2) False Relu
3D Conv. 128 → 128 (1,3,3) (1,1,1) True Relu
3D Conv. 128 →256 (3,2,2) (1,1,1) False Relu

Avg Pooling - - - - -
F.C. 256 → 512 - - - -
F.C. 512 → [2/12] - - - [-/sigmoid]

Table 9. The specification of the CNN-LSTM Neural Network
in this paper. In the last layer, the critical state detector outputs
a vector with the same length as the input (i.e., 256→1). The
return predictor estimates a scalar for the whole episode (i.e., 256
× length →2)

CNN-LSTM Channel Filter Stride In-Norm Activation
2D Conv. 3 → 32 3 2 False Relu
2D Conv. 32 → 64 3 1 True Relu
2D Conv. 64 → 128 3 2 False Relu
2D Conv. 128 → 128 3 1 True Relu
2D Conv. 128 → 256 2 1 False Relu

Avg Pooling - - - - -
Input Hidden Bi-Direct. Activation

LSTM 256 128 True -
F.C. [length×256] → [2/length] [-/sigmoid]

Figure 7. Illustration of the Deep State Identifier for policy
comparison. We modify the return predictor as a binary classi-
fier. Its training data comprises pairs {si, ci}, where si represents
a trajectory and ci ∈ R is a class label indicating whether it be-
longs to policy-A or policy-B. By exploiting the return predictor,
the critical state detector can directly localize the states that pri-
marily explain the difference between policy-A and policy-B.

Fig. 7 shows how we can adapt the return predictor to
find the critical frame that explains the difference in behav-
ior between the two policies. We can train the return predic-

tor to identify which of the two policies generates a specific
trajectory.

B. Experimental details
Critical States Discovery. We use a GridWorld environ-
ment (MiniGrid-KeyCorridorS6R3-v0) to collect a dataset
(Grid-World-S) to test the accuracy of the critical state de-
tector. Data is collected by acting in the environment us-
ing an optimal policy based on a depth-first search algo-
rithm (DFS). Additional data is collected from a random-
exploring policy. Since, in this environment, one can find
critical states by visual inspection (they correspond to the
states immediately before or after the action of opening
doors or picking up keys), we can directly test the accuracy
of the proposed method. We use the F1 score as a metric.
Policy Comparison by Critical States. Here, we collect a
dataset, Grid-World-M, for our experiments on policy com-
parison. The labels in Grid-World-M are the policies that
collected the corresponding episode. We use two policies
to collect data: Policy-A is the optimal policy used to col-
lect Grid-World-S, while Policy-B is an exploratory policy.
Efficient Attack using Critical States. Here we use ad-
versarial attacks on Atari-Pong to validate whether the de-
tected states are critical. Following the same protocol
as Edge [21], we use a trained policy downloaded from
https://github.com/greydanus/baby-a3c to
collect the training data. We call the corresponding dataset
Atari-Pong-S. In particular, we collect 21500 episodes for
training and 2000 for testing, and we fix the length of each
episode as 200. We augment the input by randomly in-
creasing or decreasing the length within 50 frames, and the
padding value is set as 0. To validate the generalization
of the proposed method for unseen policies, we then col-
lect another dataset, denoted Atari-Pong-M. We train poli-
cies with different seeds using the same implementation as
Edge [21] from https://github.com/greydanus/
baby-a3c. In particular, we use ten different policies
to collect training data. In cross-policy (seeds), we use
the trained policy on different random seeds to test the
performance. In cross-policy (steps), we use the policy
trained with 80M and 40M steps for training and testing our
method, respectively. In cross-policy (Arch.), we change
the architecture to make the setting more challenging. In
particular, we train our method using a policy with 32 chan-
nels but test it by attacking a policy trained using 64 chan-
nels. The result in each case is collected by attacking the
agent for 1500 episodes using three random seeds.
Policy Improvement. We test the potential of our method
to improve policy performance in the Atari-Seaquest envi-
ronment. We first train the policies based on DQN follow-
ing the implementation of Tianshou [70]. Then we use the
trained policies to collect a dataset called Atari-Seaquest-S,
consisting of 8000 trajectories for training and 2000 trajec-

tories for testing. The average length of the trajectories is
2652.5, and the average return is 2968.6. We cut the tra-
jectory into subsequences with 200 states for training. To
stabilize the training, we equip an orthogonal regularization
for our method. Considering the output of the predictor is
a matrix, M ∈ Rb×l where n refers to the batch size and
l is the length of m, we drive the model to minimize the
accumulation of MMT . As the critical states of each tra-
jectory are generally with different time steps, this regular-
ization can benefit our approach. We train our Deep State
Identifier on this video dataset and then test its effectiveness
by re-training a new adaptive multi-step DQN from scratch,
where the critical state detector adaptively determines the
lookahead step. We use our trained critical state detector to
determine the lookahead steps for rapid credit assignment
during re-training.

C. Experimental Results

To justify the effectiveness of the proposed method, we
carry out some additional visualization and analysis. Ta-
ble 10 shows some statistics of the output of the critical
state detector and return predictor. We observe that the
identified states are few (the L1 Norm is low), and the out-
put of the return predictor does not change when it ignores
non-critical states. If instead, the return predictor observes
only states identified as non-critical, then the performance is
much lower. These results further validate the effectiveness
of the proposed method. We provide additional visualiza-
tion of the performance of our method when using different
losses for the critical state detector. The results are con-
sistent with our empirical studies. In particular, Fig. 8(a)
shows that when using only the importance preservation
loss, all the states are considered critical. When adding only
the compactness loss (see Fig. 8(b)) or the reverse loss (see
Fig. 8(c)), the performance is still not satisfactory. The pro-
posed method can precisely detect the critical states only
when using all three losses. Indeed, as shown in Fig. 9, our
method correctly outputs high confidence when the agent
observes critical states (0.73, 0.94, and 0.92) and low confi-
dence (0.6) otherwise.

C.1. Non-Vision Environment

We also tested the performance in non-vision environ-
ments [3] and compared our method with the same methods
in Table 5. As shown in Table 12, our method achieves a
win rate change of -45.10 on the MuJoCo [65] environment
You-Shall-Not-Pass game, surpassing the performance of
EDGE (-35.13) by 28.38%. In the Kick-and-Defense envi-
ronment, our method achieves a win rate change of -48.03,
outperforming EDGE (-43.47) by 10.49%. The consistent
improvement indicates that our method exhibits strong ro-
bustness in non-vision environments.

https://github.com/greydanus/baby-a3c
https://github.com/greydanus/baby-a3c
https://github.com/greydanus/baby-a3c

Figure 8. Visualization of our method with different losses. The number at the top-left corner indicates the confidence score predicted
by the critical state detector, indicating whether the corresponding state is important. (a) Baseline trained with Importance Preservation
loss; (b) Baseline with Importance Preservation loss and Compactness loss. (c) Baseline with Importance Preservation loss and Reverse
loss. None of them can detect critical states effectively.

Table 10. Ablation study for the Deep State Identifier. Clean Acc. refers to the accuracy of the return predictor in the test set; Masked
Acc. is the accuracy of the return predictor with the input (critical states) detected by the critical state detector; R-Masked Acc. is the
accuracy of the return predictor where the masked is inverted (non-critical states are treated as critical and vice versa); L1(Mask) and
Var(Mask) are the L1 norm and the average variance of the output of the critical state detector respectively.

Imp. Loss Com. Loss Rev. Loss 3DCNN CNN-LSTM Clean Acc. (%) ↑ Masked Acc.(%) ↑ R-Masked Acc.(%) ↓ L1(Mask) ↓ Var(Mask) ↑
✓ × × ✓ × 90.07 90.07 44.57 63.74 2 × 10−6

✓ ✓ × ✓ × 91.45 87.71 89.28 8.79 0.01
✓ × ✓ ✓ × 91.45 91.39 76.12 63.73 0.03
✓ ✓ ✓ ✓ × 90.78 89.45 64.55 57.35 0.04
✓ ✓ ✓ × ✓ 98.66 98.44 55.58 41.05 0.12

Figure 9. Sampled observations from an episode collected by our method. The number at the top-left corner indicates the confidence
score predicted by the critical state detector, indicating whether the corresponding state is critical. Our method can localize the critical
states effectively.

Table 11. Sensitivity Analysis of the Deep State Identifier.
We show the F1 score ↑ of our method using different hyper-
parameters on GridWorld-S datasets.

λr(×10−3) 1 2.5 5 7.5 10 Variance
F1 Score 76.69 78.44 80.28 78.26 76.44 1.39

λs 0.5 0.75 1 1.25 1.5 Variance
F1 Score 76.68 77.50 80.28 78.18 78.83 1.22

λv 1.5 1.75 2 2.25 2.5 Variance
F1 Score 77.77 77.04 80.28 78.76 83.78 2.39

C.2. Sensitivity analysis

We evaluate the performance of our method using dif-
ferent values of hyperparameters λr,λs, and λv . Table 11
shows that our algorithm has moderate sensitivity to hyper-
parameters when their values are within a specific range.

Table 12. Win rate changes of the agent before/after attacks
by following the protocol of EDGE [21] We compare the meth-
ods on two MuJoCo environments: You-Should-Not-Pass game
[3] (MuJoCo-Y) and Kick-And-Defend game [3] (MuJoCo-K).

Method MuJoCo-Y MuJoCo-K

Rudder [1] -32.53 -21.80
Saliency [57, 59, 60] -29.33 -37.87
Attention RNN [2] -33.93 -41.20
Rationale Net [36] -30.00 -7.13
Edge [21] -35.13 -43.47

Ours -45.10 -48.03

For example, given λs ∈ [0.5, 1.5], the performance vari-
ance is only 1.22, indicating stable performance. To de-
termine the optimal hyperparameters, we searched a range

of values. The best hyperparameters found in GridWorld-S
were then used in all other environments.

