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Mimic3D: Thriving 3D-Aware GANs via 3D-to-2D Imitation
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aware GAN to generate high-quality images while main-
taining their strict 3D consistency, by letting the images
synthesized by the generator’s 3D rendering branch mimic
those generated by its 2D super-resolution branch. We
also introduce 3D-aware convolutions into the generator
for better 3D representation learning, which further im-
proves the image generation quality. With the above strate-
gies, our method reaches FID scores of 5.4 and 4.3 on
FFHQ and AFHQ-v2 Cats, respectively, at 512x512 res-
olution, largely outperforming existing 3D-aware GANs
using direct 3D rendering and coming very close to the
previous state-of-the-art method that leverages 2D super-
resolution. Project website: https://seanchenxy.
github.io/Mimic3DWeb.

1. Introduction

3D-aware GANs [37, 9, 6, 3] have experienced rapid
development in recent years and shown great potential for
large-scale realistic 3D content creation. The core of 3D-
aware GANSs is to incorporate 3D representation learning
and differentiable rendering into image-level adversarial
learning [8]. In this way, the generated 3D representations
are forced to mimic real image distribution from arbitrary
viewing angles, resulting in their faithful reconstruction of
the underlying 3D structures of the subjects for free-view
image synthesis. Among different 3D representations, neu-
ral radiance field (NeRF) [24] has been proven to be ef-
fective in the 3D-aware GAN scenario [37, 4], which guar-
antees strong 3D consistency when synthesizing multiview
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Figure 1. Comparison between different 3D-aware GANs on im-
age generation quality and multiview 3D consistency. The image
generation quality is evaluated via FID between generated and real
images. The 3D consistency is measured by conducting 3D re-
construction [45] on generated multiview images and calculating
PSNR between them and the re-rendered reconstruction results.
Our method inherits the high image quality of approaches lever-
aging 2D super-resolution meanwhile maintains strict 3D consis-
tency by taking the advantage of direct 3D rendering.

images via volume rendering [15].

However, NeRF’s volumetric representation also brings
high computation costs to GAN training. This hinders the
generative models from synthesizing high-resolution im-
ages with fine details. Several attempts have been made to
facilitate NeRF-based GAN training at high resolution, via
sparse representations [38, 6, 47, 54] or patch-wise adver-
sarial learning [43], yet the performance is still unsatisfac-
tory and lags far behind state-of-the-art 2D GANs [19, 17].

Along another line, instead of using direct NeRF ren-
dering, plenty of works [26, 9, 28, 3, 50] introduce 2D
super-resolution module to deal with 3D-aware GAN train-
ing at high resolution. A typical procedure is to first ren-
der a NeRF-like feature field into low-resolution feature
maps, then apply a 2D CNN to generate high-resolution
images from them. The representative work among this
line, namely EG3D [3], utilizes tri-plane representation to
effectively model the low-resolution feature field and lever-
ages StyleGAN2-like [ 19] super-resolution block to achieve
image synthesis at high-quality. It sets a record for image
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Figure 2. Our method enables high-quality image generation at 512 x 512 resolution without using a 2D super-resolution module.

quality among 3D-aware GANs and gets very close to that
of state-of-the-art 2D GANs. However, a fatal drawback of
this line of works is a sacrifice of strict 3D consistency, due
to leveraging a black-box 2D CNN for image synthesis.

A question naturally arises Is there any way to
combine the above two lines to achieve strict 3D consis-
tency and high-quality image generation simultaneously?
The answer, as we will show in this paper, is arguably yes.
The key intuition is to let the images synthesized by direct
NeRF rendering to mimic those generated by a 2D super-
resolution module, which we name 3D-to-2D imitation.

Specifically, we start from an EG3D backbone that
adopts 2D super-resolution to generate high-resolution im-
ages from a low-resolution feature field. Based on this ar-
chitecture, we add another 3D super-resolution module to
generate high-resolution NeRF from the low-resolution fea-
ture field and force the images rendered by the former to
imitate those generated by the 2D super-resolution branch.
This process can be seen as a multiview reconstruction pro-
cess images sharing the same latent code from differ-
ent views produced by the 2D branch are pseudo multiview
data, and the high-resolution NeRF branch represents the
3D scene to be reconstructed. Previous methods [29, 53, 33]
have shown that this procedure can obtain reasonable 3D re-
construction, even if the multiview data are not strictly 3D
consistent. We believe this is partially due to the induc-
tive bias (e.g., continuity and sparsity) of the underlying 3D
representation. With the above process, the high-resolution
NeRF learns to depict fine details of the 2D-branch images,
thus enabling high-quality image rendering. The 3D con-
sistency across different views can also be preserved thanks
to the intrinsic property of NeRF. Note that if the rendered
images try to faithfully reconstruct every detail of the 2D-
branch images across different views, it is likely to obtain
blurry results due to detail-level 3D inconsistency of the lat-
ter. To avoid this problem, we only let the images produced
by the two branches be perceptually similar (i.e. by LPIPS
loss [51]), and further enforce adversarial loss between the
rendered images from the high-resolution NeRF and real
images to maintain high-frequency details. In addition, we
only render small image patches to conduct the imitative

learning to reduce memory costs.

Apart from the above learning strategy, we introduce
3D-aware convolutions to the EG3D backbone to im-
prove tri-plane learning, motivated by a recent 3D diffu-
sion model [46]. The original EG3D generates tri-plane
features to model the low-resolution feature field via a
StyleGAN2-like generator. The generator is forced to learn
2D-unaligned features on the three orthogonal planes via
2D convolutions, which is inefficient. The 3D-aware convo-
lution considers associated features in 3D space when per-
forming 2D convolution, which improves feature commu-
nications and helps to produce more reasonable tri-planes.
Nevertheless, directly applying 3D-aware convolution in all
layers in the generator is unaffordable. As a result, we only
apply them after the output layers at each resolution in the
tri-plane generator. This helps us to further improve the
image generation quality with only a minor increase in the
total memory consumption.

With the above strategies, our generator is able to syn-
thesize 3D-consistent images of virtual subjects with high
image quality (Fig. 2). It reaches FID scores [13] of 5.4 and
4.3 on FFHQ [18] and AFHQ-v2 Cats [5], respectively, at
512 x 512 resolution, largely outperforming previous 3D-
aware GANs with direct 3D rendering and even surpassing
many leveraging 2D super-resolution (Fig. 1). A by-product
of our method is a more powerful 2D-branch generator,
which reaches an FID of 4.1 on FFHQ, exceeding previous
state-of-the-art EG3D. Though our method presented in this
paper is mostly based on EG3D backbone, its 3D-to-2D im-
itation strategy can be extended to learning other 3D-aware
GANSs as well. We believe this would largely close the qual-
ity gap between 3D-aware GANSs and traditional 2D GANS,
and pave a new way for realistic 3D generation.

2. Related Works

3D-aware GAN. 3D-aware GANs [12, 25, 37, 4, 26, 9,

, 0, 3, 43, 54] aim to generate multiview images of an
object category, given only in-the-wild 2D images as train-
ing data. The key is to represent the generated scenes via
a 3D representation and leverage corresponding rendering



techniques to synthesize images at different viewpoints for
image-level adversarial learning [8]. Initially, explicit rep-
resentations such as voxels [25, 12] and meshes [44] are
used to describe scenes. With the development of neural im-
plicit fields [32, 23, 42, 41, 24, 45, 27], implicit scene rep-
resentations, especially NeRF [24], gradually overtake ex-
plicit ones in 3D-aware GANs [4, 28, 3]. Nevertheless, one
great hurdle of NeRF-based GANSs is the high computation
cost, which restricts earlier works [37, 4, 7, 48, 31] from
synthesizing high-quality images. Consequently, a large
number of follow-up works [26, 9, 55, 50, 28, 3, 49] avoid
rendering NeRF at high resolution by conducting 2D super-
resolution from a low-resolution image or feature map ren-
dered by NeRF-like fields. This is only a stopgap as the
black-box 2D super-resolution module sacrifices the impor-
tant 3D consistency brought by NeRF. To keep the strict 3D
consistency, several works [0, 47, 38, 43, 54] turn to more
sparse 3D representations such as sparse voxel [38], radi-
ance manifolds [6], and multi-plane images [54] to allow di-
rect rendering at high resolution. Carefully designed train-
ing strategies such as two-stage training [47] or patch-wise
optimization [43] are also introduced to facilitate the learn-
ing process. However, their image generation quality still
lags behind those with 2D super-resolution. Our method
combines the advantages of both lines of works to achieve
high-quality image generation and strict 3D consistency at
once, by leveraging the proposed 3D-to-2D imitation.

3D generation by 3D-to-2D imitation. Recent stud-
ies [14, 39, 10] reveal that 2D generative models [2, 18]
have the ability to generate pseudo multiview images of a
subject. Based on this observation, several methods [29,

, 40, 30] propose to distill the knowledge from a pre-
trained 2D generative model for 3D generation by perform-
ing 3D reconstruction on the generated “multiview” im-
ages. A standard procedure is to render the 3D represen-
tation of an object from multiple views, and compare them
with the closest samples falling in the latent space of the
pre-trained 2D generator for iterative optimization. The 2D
generator ensures that the rendered results are photorealis-
tic from different views, meanwhile the intrinsic property of
the 3D representation guarantees reasonable 3D structure,
thus leading to high-quality 3D generation. Some recent
methods [33, 20] also combine this idea with text-to-image
diffusion models [35, 36] to achieve text-driven 3D cre-
ation. Our method shares a similar spirit, which distills the
knowledge from the generator’s 2D super-resolution branch
to its 3D rendering branch, thus achieving image generation
with both photorealism and strict 3D consistency.

3. Approach

Given a collection of 2D images, we aim to learn a 3D-
aware generator G for free-view image synthesis. The gen-

erator takes a random code z € R% and an explicit camera
pose 8 € R% as input, and generates a 2D image I:

G:(2,0) € R%: x R¥ — [ ¢ REXWx3, )

To enable high-quality image synthesis, we adopt EG3D [3]
as the backbone of the generator, which synthesizes low-
resolution feature fields via the tri-plane representation [3],
and leverages 2D super-resolution for high-resolution im-
age generation (Sec. 3.1). Based on EG3D, we propose a
3D-to-2D imitation strategy to synthesize high-resolution
NeRF for 3D-consistent image rendering. We leverage a
3D super-resolution branch to predict high-resolution tri-
planes from the low-resolution ones, and force the rendered
images from the former to mimic the images generated by
the 2D super-resolution branch (Sec. 3.2). In addition, we
introduce 3D-aware convolution [46] to the generator for
better tri-plane learning via cross-plane communications,
which helps to further improve the image generation qual-
ity (Sec. 3.3). The overview of our method is illustrated in
Fig. 3. We describe each part in detail below.

3.1. Preliminaries: EG3D

EG3D adopts a StyleGAN2-based [19] generator £ to ef-
ficiently synthesize the low-resolution feature field of a sub-
ject. The feature field is represented by the tri-plane repre-
sentation which consists of three orthogonal 2D planes pro-
duced by reshaping the output feature map of &, given the
latent code z as input. For a point & € R? in the 3D space,
its corresponding feature f can be obtained by projecting it-
self onto the three planes P,,, P, P, and summing the
retrieved features fy,, f,., f,,. A small MLP M then maps
this intermediate feature to volume density o € R and color
feature ¢ € R (the first three dimensions represent RGB
color), forming the low-resolution feature field:

M:feR" = (e,0) € RT x R. )

To generate high-resolution images, EG3D enforces volume
rendering [15, 24] to render the above feature field to a low-
resolution feature map C, where each pixel value C(r) cor-
responding to a viewing ray r can be obtained via

N i—1
C(r) = ZTi(l—exp(—aiéi))ci,Ti = exp(— ZU]'(SJ'). 3)
i=1 j=1

Here, ¢ is the index of points along ray = sorted from near
to far, and ¢ is the distance between adjacent points. Then,
the rendered feature map C' is sent to a 2D super-resolution
module S?P consisting of several StyleGAN2-modulated
convolutional layers to generate the final image I27.
Although EG3D can generate free-view images of high
quality, it cannot well maintain their 3D consistency across
different views. This is inevitable due to incorporat-
ing the black-box CNN-based 2D super-resolution mod-
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Figure 3. Overview of our framework. 3D-to-2D imitation strategy is enforced to let the generator’s 3D branch to mimic the results of its
2D branch, thus leading to image generation of high quality and strict 3D consistency. 3D-aware convolutions are also introduced to the
tri-plane generator to enhance 3D representation learning, which further improves the image generation quality.

ule, which breaks the physical rules of the volume render-
ing process. Despite that EG3D further proposes a dual-
discrimination [3] strategy to force the high-resolution im-
ages to be consistent with their low-resolution counterparts,
detail-level 3D inconsistency (i.e. texture flickering) still
cannot be eliminated. During continuous camera variation,
these artifacts can be easily captured by human eyes, dif-
fering the synthesized results from a real video sequence.
To maintain the 3D consistency meanwhile keep the high-
quality image generation to the maximum extent, we pro-
pose a 3D-to-2D imitation strategy described below.

3.2. 3D-to-2D Imitation

To keep the strict 3D consistency, a better way is to di-
rectly render the 3D representation instead of resorting to a
2D CNN for image synthesis. Noticing that the images gen-
erated by EG3D contain rich details, it is natural to use them
as guidance for images synthesized by direct 3D rendering.
If the directly-rendered images well mimic those fine de-
tails, their quality should get very close to that of EG3D.
Meanwhile, since they are rendered from a continuous 3D
representation, their 3D consistency across different views
should be trivially maintained. This motivates us to design
the 3D-to-2D imitation strategy, as depicted in Fig. 3.

Specifically, we introduce a 3D super-resolution module
S3P to generate residual tri-planes P” from the coarse tri-
planes P produced by the tri-plane generator &:

B P c c f 4 r r f
SJD . pP° c R-SXH XWExd N P ERJXH XW"xd ) (4)

The S3P adopts several StyleGAN2-modulated convolu-
tional layers conditioned on a latent code w mapped from
the random code z, similar to the 2D super-resolution mod-
ule S?P in EG3D. The difference is that S3” conducts
super-resolution on the triplane-based 3D representation in-
stead of the rendered 2D feature map. In this way, we can

generate a high-resolution 3D field for direct 3D rendering.
Given the coarse and residual tri-planes (i.e. P¢ and P7),
we obtain a more detailed intermediate feature f = f¢ 4 "
for a 3D point x, and further obtain the high-resolution fea-
ture field by sending the intermediate feature into the MLP-
based decoder M following Eq. (2). The first three feature
dimensions of the field derive the high-resolution NeRF for
rendering 3D-consistent fine image I°P via Eq. (3).

To ensure that I3 contains reasonable geometry struc-
ture with rich texture details, we let it to mimic the con-
tents of 12P generated by the 2D branch S?”. For a pair of
I3P and I?P synthesized with the same latent code z and
camera pose 6, we enforce imitation loss between them to
guarantee their perceptual similarity:

Eim,itation = LPIPS(IP’D’ Sg(IQD))v (5)

where LPIPS(-, -) is the perceptual loss defined in [51], and
sg denotes stopping gradient to avoid undesired influence
of I3P on the 2D branch. This process is very similar to a
standard multiview reconstruction process. During training,
I?P sharing the same code z are generated under different
camera views from a statistical aspect, forming the multi-
view supervision. The high-resolution NeRF from the 3D
branch renders 3P under the same camera views to com-
pare with the multiview data for 3D reconstruction. Consid-
ering that 2P are nearly 3D-consistent, they should help to
learn a reasonable NeRF for 3D-consistent image rendering.

Nevertheless, since 12 are not strictly 3D-consistent,

faithfully reconstructing their image contents leads to blurry
results where the texture details across different views are
averaged out. Therefore, we further introduce the non-
saturating GAN loss with R1 regularization [22] between
I3P and real images I to maintain the high-frequency de-



tails:
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I~preat
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where f(u) = log(1l + exp (u)) is the Softplus function,
G3P including {€, M, 83P} is the 3D rendering branch of
the generator, and D3P is the corresponding discriminator.

An advantage of the above imitation learning is that we
can render small patches (i.e. 64 x 64) to compute Eq. (5)
and Eq. (6), as shown in Fig. 3, with only minor influence
to the final image quality. This largely reduces the memory
cost during training and enables learning the 3D branch at
high resolution (e.g. 512 x 512). By contrast, solely apply-
ing adversarial loss at patch-level often leads to large quality
drops as shown in previous methods [37, 43] and Tab. 2.

Finally, we apply image-level adversarial loss to the 2D
branch following EG3D to ensure that 12, as the supervi-
sion for the 3D branch, are of high quality:

28, = Eanp 0 (D (G*P(2,0)))]

adv (7)
+ Erpyea [f(=D?P (1) + AIVD*P (D)%),

where G?P is the 2D branch generator consisting of

{€, M, 8?P}, and D?P is the corresponding discriminator.

The same dual discrimination is adopted as done in EG3D.
Overall, the training objective is

»Ctotal = ['imitation + ‘ngv + ﬁigu' (8)

In practice, we first learn the 2D branch via £2£) to obtain
reasonable synthesized images [ 2D then leverage Liotal
to simultaneously learn the 2D and 3D branches for high-
quality and 3D-consistent image synthesis.

3.3. 3D-Aware Tri-plane Generator

As depicted in Sec. 3.2, the tri-plane generator & is re-
sponsible for synthesizing the coarse tri-planes P¢ shared
by both the 2D and 3D branches, which is an important
component that would affect the final image generation
quality. However, in EG3D, & takes a StyleGAN2 architec-
ture originally designed for 2D generative tasks. As shown
in Fig. 4(a), the original tri-plane generator only contains
the main stream and the output stream. The tri-planes are
obtained from latent feature maps in the main stream via
2D convolutions (i.e. toRG B layers), and the latent feature
maps are also produced by a serials of 2D synthesis blocks.
Consequently, the latent feature maps are forced to learn 3D
unaligned features of the three orthogonal planes and the
latters also lack feature communications with each other.
Inspired by a recent 3D diffusion model [46], we introduce
3D-aware convolutions into our tri-plane generator £ to en-
hance feature communications between 3D-associated posi-
tions across different planes, for better tri-plane generation.

z,0
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Figure 4. (a) Structure of our 3D-aware tri-plane generator. (b)
Operations of the 3D-aware block on zy plane.

Specifically, as illustrated in Fig. 4(a), we add an ex-
tra 3D-aware stream upon the original output stream af-
ter each toRGB layer at different resolutions. At each
resolution level k, the corresponding tri-planes P; =
[Pk ay: Pr.yz, Pi 22], are summed with the tri-planes pro-
duced by the original output stream, and further sent into
a 3D-aware block to produce tri-plane features for the next
level. The 3D-aware block conducts similar operations on
each of the three planes. For brevity, we omit the subscript
k here and take P, as an example to illustrate the operation
process. As shown in Fig. 4(b), to align P, and P, to-
wards P, we first perform global pooling along z axis of
the former two to obtain z-squeezed feature vectors. These
vectors are then repeated along the z dimension to restore
the original spatial size, denoted as P, and P,,. In this
manner, the obtained P, and P, are aligned with P,
from a 3D perspective, i.e., a 2D position uv on P, is re-
sponsible for features in region uvz,z € [Zmin, Zmaz] N
the 3D space, meanwhile the same uv position on P, and
P,... also associate with the features in this 3D region. As
a result, we can simply concatenate them along the chan-
nel dimension as [P, Py, P,;], and perform modulated
2D convolution [19] on it. The 2D convolution aggregates
the 3D-associated features to produce next-level P, lead-
ing to better feature communications across the planes. P,
and P, can be processed similarly.

Note that in [46], the 3D-aware convolution is applied in
all layers in a U-Net structure. However, in our scenario,
leveraging 3D-aware convolution for all layers, especially
the main stream, introduces unaffordable memory cost dur-
ing training, as it would produce multiple auxiliary tensors
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Figure 5. Comparison between our method and EG3D on FFHQ at 512 X 512 resolution. Our method generates images with comparable
quality to those of EG3D, while producing 3D geometries with finer details and multiview sequences with better 3D-consistency.
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Figure 6. Comparison between our method and other 3D rendering baselines on FFHQ at 512 x 512 resolution. Best viewed with zoom-in.

and triples the channel dimension for each processed latent
feature map, as shown in Fig. 4(b). Comparing to the la-
tent feature maps in the main stream, the tri-planes after
each output layer contains much fewer channels thus more
memory-friendly to adopt the 3D-aware convolution. Em-
pirically, our proposed 3D-aware stream helps to learn more
reasonable tri-planes and improves the final image genera-
tion quality, with only a minor increase in the total memory
consumption (see Sec. 4.3).

4. Experiments

Implementation details. We train our method on two
real-world datasets: FFHQ [18] and AFHQ-v2 Cats [5],
which consists of 70K human face images of 10242 reso-
lution and 5.5K cat face images of 5122 resolution, respec-
tively. We follow the data pre-processing of EG3D [3] to
crop and resize the images to 2562 or 5122 resolution. Ex-
periments are conducted on 8 NVIDIA Tesla A100 GPUs
with 40GB memory, following the training configuration
of EG3D. For FFHQ, the training process takes around 8
days, where learning the 2D branch takes 5 days and jointly
training the whole framework takes additional 3 days. For
AFHQ-v2, we finetune the 2D branch initially trained on
FFHQ for 1 day, then jointly train the whole framework for
extra 3 days. Adaptive data augmentation [16] is applied to
AFHQ-v2 to facilitate training with limited data. See the
suppl. material for more details.

4.1. Visual Results

Figure 2 shows the multiview images generated by our
3D branch generator. It can produce high-quality images
with fine details at a resolution of 5122. Moreover, the
images are of strict 3D consistency across different views
via directly rendering the generated high-resolution NeRF.
More results are in Fig. 5, 6, and the suppl. material.

4.2. Comparison with Prior Arts

Baselines. We compare our method with existing 3D-
aware GANSs, including methods leveraging 2D super-
resolution: StyleSDF [28], VolumeGAN [49], StyleN-
eRF [9], and EG3D [3]; and methods with direct 3D ren-
dering: GRAM [6], GRAM-HD [47], GMPI [54], Epi-
GRAF [43], and VoxGRAF [38].

Qualitative comparison. Figure 5 shows the visual com-
parison between our method and EG3D. Our generated
images via direct rendering have comparable quality with
those generated by EG3D via 2D super-resolution. We
further visualize the 3D geometry and the spatiotemporal
texture images [47] of the two methods. The geometry is
extracted via Marching Cubes [21] on the density field at
5123 resolution. The spatiotemporal textures are obtained
by stacking the pixels of a fixed line segment under con-
tinuous camera change, very similar to the Epipolar Line
Images [1], where smoothly tilted strips indicate better 3D
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& SyleSDF 28] | 115 - N 11.2 - - - 791
~ VolumeGAN [49] | 9.10 336 0.926 - - - - -
Y StyleNeRF[9] | 8.00 31.9 0915 | 7.80 30.9 0.843 - -

= EG3D [3] 4.80 34.0 0928 | 4.70 324 0.861 3.88 2.77

Ours (2D branch) | 3.91 357 0938 | 414 333 0.891 341 2.72
GRAM [6] 13.8 38.0 0.966 - - - 13.4 -

& GRAM-HD [47] | 10.4 36.5 0.955 - - - - 7.67

2 GMPI [54] 11.4 39.8 0977 | 829 39.0 0.961 - 7.79
S EpiGRAF[43] | 9.71 - - 9.92 373 0.949 6.93 -
2 VoxGRAF[38] | 9.60 372 0.960 - - - 9.60 -

Ours (3D branch) | 5.14 39.3 0974 | 537 37.8 0.955 4.14 4.29

Table 1. Comparison on image generation quality and 3D consistency among different 3D-aware GANs.

consistency. As shown, our geometries contain finer de-
tails in that we directly learn the NeRF of a subject at high
resolution. Our spatiotemporal textures are also more rea-
sonable with fewer twisted patterns, thanks to the direct 3D
rendering for image synthesis instead of using a black-box
2D super-resolution module.

Figure 6 compares our method with other 3D baselines
on FFHQ at 5122 resolution. Visually inspected, our 3D
branch produces images of higher fidelity compared to ex-
isting methods leveraging direct 3D rendering. More anal-
ysis and video results can be found in the suppl. material.

Quantitative comparison. Table 1 and Fig. 1 show the
quantitative results of different methods in terms of image
generation quality and 3D consistency. For image gener-
ation quality, We calculate the Frechet Inception Distance
(FID) [13] between 50K generated images and all avail-
able real images in the training set. For 3D consistency,
we follow GRAM-HD [47] to generate multiview images
of 50 random subjects and train the multiview reconstruc-
tion method NeuS [45] on each of them. We report the av-
erage PSNR and SSIM scores between our generated multi-
view images and the re-rendered images of NeuS (denoted
as PSNR,,,, and SSIM,,,,,). Theoretically, better 3D con-
sistency facilitates the 3D reconstruction process of NeusS,
thus leading to higher PSNR and SSIM.

As shown, our 2D branch generator demonstrates bet-
ter results compared to EG3D in all metrics across differ-
ent datasets, thanks to our 3D-aware stream in the tri-plane
generator. Moreover, with the 3D-to-2D imitation strategy,
our 3D branch generator largely improves the image gen-
eration quality among methods using direct 3D rendering,
while maintaining competitive 3D consistency. Its image
quality even surpasses most of the methods with 2D super-
resolution and comes very close to that of EG3D.

4.3. Ablation Study

We conduct ablation studies to validate the efficacy of
our proposed 3D-to-2D imitation and the 3D-aware tri-

Label | Limitation S°P LD | FID (3D branch)
(A) 30.6
(B) v 29.9
©) v v 9.29
(D) v v 228
(E) v v v 5.14

Table 2. Ablation study on 3D-to-2D imitation strategy.

(&) © () ®

Figure 7. Generated images under different learning strategies.
The labels are consistent with Tab. 2.

plane generator. For efficiency, all experiments are con-
ducted on FFHQ dataset at 2562 resolution.

3D-to-2D imitation strategy. As shown in Tab. 2 and
Fig. 7, We start from a generator without using the 3D-
to-2D imitation and the 3D super-resolution module S3”
(setting A), by directly rendering the coarse tri-planes P¢
for image synthesis. The rendered images in this way are
blurry and lack fine details, leading to a high FID score of
30.6. Naively introducing the imitation loss (setting B) to
improve the rendered images of P¢ has minor influence,
as the capacity of the coarse tri-planes are limited. Fur-
ther incorporating the 3D super-resolution module (setting
C) effectively releases the potential of the imitation loss
and largely improves the image generation quality in terms
of FID. However, the rendered images still lack rich de-
tails limited by the 3D-inconsistent 2D branch supervisions.
Then, if the imitation loss is replaced with the adversarial
loss (setting D), the image quality decreases significantly.
This is due to that we only render small image patches to
compute the corresponding losses for memory considera-
tion. Under this circumstance, the adversarial loss is less



Method FID (2D) FID (3D) #Param Mem.

w/o 3D-aware 4.80 6.71 29.0M 2.3G
3D-aware latent OOM OOM 111.7M 11.6G
3D-aware tri-plane 4.14 - 32.6M 2.4G
3D-aware stream (Ours) | 3.91 5.14 32.6M 24G

Table 3. Ablation study on designs of 3D-aware tri-plane gener-
ator. The FID scores are from 2D or 3D branch; #Param only
considers the tri-plane generator £ and Mem. indicates the GPU
memory cost for generating the coarse tri-planes.

w/o 3D-aware

Ours

Figure 8. Generated tri-planes with or w/o 3D-aware convolutions.

stable compared to the imitation loss which is a perceptual-
level reconstruction loss. This reveals the advantage of
our imitation strategy, which could be extended to higher
resolution via patch-wise optimization while maintaining a
good image generation quality. Finally, leveraging all the
three components (setting E) yields the best result, where
the imitation loss keeps the overall structure reasonable and
the adversarial loss helps with fine details learning.

3D-aware tri-plane generator. Table 3 shows the abla-
tion study on the 3D-aware tri-plane generator. We com-
pare our design with two alternatives and one without 3D-
aware convolutions originally adopted by EG3D. We report
the parameter size of the tri-plane generators, the inference
memory cost to generate the coarse tri-planes, as well as
the final image generation quality in terms of FID. In the
first alternative, we remove our 3D-aware stream, and lever-
age 3D-aware convolutions for the latent feature maps in
the main stream, namely 3D-aware latent. Since the main
stream feature maps have relatively larger feature channels,
and the 3D-aware convolution requires to concatenate two
additional tensors with the same size as the input tensor, this

design increases the parameter size and memory consump-
tion significantly, and raises the out-of-memory issue dur-
ing training. In the second alternative, namely 3D-aware
tri-plane, we directly apply 3D-aware convolutions in the
output stream, by inserting them after the upsampling op-
erations at each resolution, instead of using the additional
3D-aware stream. This strategy leads to an improvement of
the image generation quality of the 2D branch, and largely
reduces the parameter size and memory cost compare to the
first design. Finally, our 3D-aware stream design further
improves the image generation quality without introducing
extra parameters and memory costs. Therefore, we adopt it
as our final 3D-aware tri-plane generator for 3D-to-2D im-
itation. It effectively lowers the FID score of both the 2D
and 3D branches compared to the original structure without
3D-aware convolutions, with only a minor increase of the
parameter size and memory cost.

Figure 8 further shows the synthesized tri-planes, where
we visualize the L2 norm of each spatial location on the
three orthogonal planes. Our method leveraging the 3D-
aware stream produces more informative tri-planes. The
generated planes of the side-views better depict the charac-
ters of different instances (e.g., see the difference of the pro-
files on the yz planes). Our frontal planes (i.e. xy planes)
also demonstrate more clear head silhouettes compared to
those without using the 3D-aware convolutions.

5. Conclusions

We presented a novel learning strategy for 3D-aware
GAN:Ss to achieve image synthesis of high-quality and strict
3D consistency. The core idea is to enforce the images syn-
thesized by the generator’s 3D rendering branch to mimic
those generated by its 2D super-resolution branch. We also
introduced 3D-aware convolutions to the generator to fur-
ther improve the image generation quality. With the above
strategies, our method largely improves the image quality
among methods using direct 3D rendering, which we be-
lieve enables a new way for more realistic 3D generation.

Limitation and future works. Our method has several
limitations. The image generation quality of its 3D branch
still lags behind that of the 2D branch. Certain generated
3D structures such as hairs and cat whiskers are stuck to
the geometry surfaces instead of correctly floating in the
volumetric space. The 3D-to-2D imitation strategy also in-
troduces extra training time and memory costs compared
to only learning the 2D branch. We expect more effective
learning strategies and more advanced 3D representations
to alleviate these problems.

Ethics consideration. The goal of this paper is to gener-
ate images of virtual subjects. It is not intended for creating
misleading or deceptive contents of real people and we do
not condone any such harmful behavior.
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A. More Implementation Details
A.1. Network Structure

Figure 12 illustrates our network designs, including the
3D super-resolution module S3P and the 3D-aware block
in the tri-plane generator .

For S3P (Fig. 12(a)), we use two modulated 2D convo-
lution blocks [19] to upsample the tri-planes.

For the 3D-aware block (Fig. 12(b)), we re-organize the
tri-planes according to Fig. 4 in the main text, and apply
modulated 2D convolutions for each of the three planes. We
use different affine layers to generate style codes for the
three modulated convolutions, respectively.

A.2. Training Details

We randomly sample latent code z from the normal dis-
tribution and camera pose @ from those of the training
datasets to synthesize fake images, following EG3D [3].
For each viewing ray, we sample 96 points to calculate the
volume rendering equation, including 48 points with strati-
fied sampling and 48 points with importance sampling. The
learning rates of the generator and the two discriminators
are set to 0.0025 and 0.002, respectively. We train the 2D
branch with 25M images in total, and then jointly train the
whole framework with additional 15M images. The batch
size during training is set as 32. Other training settings are
identical to those of EG3D [3].

A.3. Patch Scale

To reduce GPU memory costs and enable training at high
resolution, we render 642 patches for the 3D-to-2D imita-
tion. Thus, the patch scale is 1/4 or 1/8 of the whole image
for the 2562 or 5122 experiments, respectively. The patch
center is uniformly sampled from the whole image space.

A.4. The necessity of 2D super-resolution module

The function of the 2D super-resolution in the 2D branch
is to provide stable and high-quality guidance for the 3D
branch. Previous studies have attempted to directly learn
in 3D space without 2D super-resolution via the adversarial
loss. However, due to the restriction of modern GPU mem-
ory, they either adopted more efficient 3D representations
(e.g., radiance manifolds [6] or MPI [54]) or used patch-
wise loss (e.g., EpiGRAF [43]), yet these strategies often
lead to worse diversity and image quality due to the instabil-
ity of the GAN loss. By contrast, our imitation with the 2D
branch via LPIPS loss provides stable gradients for learning
the 3D representation, and thus supports patch-wise train-
ing without sacrificing the generation quality, which is the
key to our superior results. Furthermore, our strategy also
avoids troublesome training tricks (e.g., the annealed strat-
egy in EpiGRAF [43]) thus easier to be adapted to other
frameworks.

EG3D

Our 3D branch

Figure 9. Comparison with EG3D on ShapeNet-Cars.
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Figure 10. Comparison of 2D and 3D branches. (Zoom in for bet-
ter visualization.)

A.S. Training time/memory of 3D-to-2D imitation

Our method requires 31 GB memory at 256 resolution
with a batch size of 32 when trained on 8 GPUs, compared
to 27 GB memory without the 3D-to-2D imitation. Also,
our training time is 1.5 times longer than that of EG3D.

B. More Results and Comparisons
B.1. End-to-end 3D-to-2D imitation learning

Our initial motivation for the two-stage training is to
leverage the powerful prior of an existing 2D generator
(with 2D super-resolution) to guide our 3D branch. In fact,
the overall framework (including both 2D and 3D branches)
can be trained end-to-end from scratch. We conduct a sim-
ple experiment on FFHQ at 2562 with identical hyper pa-
rameters as described in the main paper and achieve an FID
of 5.03 for the 3D branch, which is comparable to the two-
stage training result.



Figure 11. Failure case.

B.2. More results on faces

Figures 13 and 14 illustrate more visual comparisons.
Compared to EG3D [3], we have more detailed geometry
and smoothly tilted strips in spatiotemporal texture images,
indicating better 3D consistency. Similar to ours, EpiGRAF
and GMPI also generate high-resolution images via direct
rendering. Yet, we have superior image quality as shown in
Fig. 14.

Figures 15 and 16 show more of our results on FFHQ
and AFHQ -v2 Cats datasets, respectively.

Referring to the supplemental video for animations.

B.3. Results on general objects.

Our method can handle general objects with wider range
of camera views. In Fig. 9, we compare our 3D branch with
EG3D on ShapeNet-Cars (1282) and achieve comparable
image generation quality.

B.4. Comparison of our 2D and 3D branches

Our 3D branch can generate fine details comparable to
the 2D branch. In Fig. 10 (red arrows), we show details
produced by the 3D branch that are not visible in the 2D
branch.

Our 3D branch clearly produces finer geometry details
compared to the alternatives with 2D super-resolution (see
Fig. 10). As shown, the finer geometry details are not ran-
dom noises but features of hair, teeth, wrinkles, etc (purple
arrows). Furthermore, we can generate diverse nose shapes
(yellow arrows), complex jaws with beards (green arrows),
and wrinkles (blue arrows) on the geometries.

C. Limitations and Future Works

We thoroughly discuss the limitations of our method and
possible future improvements.

First, our learned 3D branch still has inferior image qual-
ity in terms of FID compared to the 2D branch. This may
come from the current design of the 3D super-resolution
module and the learning strategy. Specifically, our 3D
super-resolution module adopts a similar structure to that
of the 2D branch in order for a fair comparison, which
may not be the optimal solution. More advanced struc-
tures, including leveraging 3D-aware convolutions could be

further explored for better 3D super-resolution. Besides,
the LPIPS loss during 3D-to-2D imitation leverages a pre-
trained VGG network which is trained on images of 2242
resolution. It may not well capture the perceptual informa-
tion of a small image patch. Leveraging more recent pre-
trained models [1 1, 34] or even multiple feature extractors
could be a possible choice. Exploring better discriminators
for the patch-level adversarial loss in the 3D branch could
also benefit the training process.

Second, our method can produce incorrect geometries
in certain cases. As shown in Fig. 11, a typical failure
case is geometry discontinuity, where the face region is not
smoothly connected with the head region, leading to ob-
vious artifacts at side views. These artifacts also occur in
the original EG3D. We believe this problem can be alle-
viated by introducing more profile images for training, as
currently the training data are mostly frontal images so that
the planes for depicting side-view features may not be well-
trained. In addition, certain generated geometry structures
such as hairs and cat whiskers are stuck to the surfaces in-
stead of correctly floating in the volumetric space, as shown
in Fig. 15 and 16. We conjecture this is due to that the ran-
dom sampling strategy with limited queries during volume
rendering is hard to model thin structures, as also indicated
by a previous method [6]. Therefore, a more advanced 3D
representation that could efficiently capture these complex
structures is worthy of ongoing exploration.

Finally, our training strategy also requires training the
2D branch in advance, which increases the overall train-
ing time compared to the original EG3D. A possible way
to reduce the training time is to jointly train the 2D and 3D
branches from scratch. We leave it for our future work.
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Figure 12. Network designs. (a) 3D super-resolution module S*7. (b) 3D-aware block.
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Figure 13. Comparison w/ EG3D [3]. Our method generates images with comparable quality to those of EG3D, while producing 3D
geometries with finer details and multiview sequences with better 3D-consistency. Referring to the supplemental video for animations.
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Figure 14. Comparison w/ EpiGRAF [43] and GMPI [54] . Referring to the supplemental video for animations.



Figure 15. Our results on FFHQ dataset. Referring to the supplemental video for animations.



Figure 16. Our results on AFHQ-v2 Cats. Referring to the supplemental video for animations.



