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Abstract

Despite the success of StyleGAN in image synthesis,

the images it synthesizes are not always perfect and the

well-known truncation trick has become a standard post-

processing technique for StyleGAN to synthesize high qual-

ity images. Although effective, it has long been noted that

the truncation trick tends to reduce the diversity of synthe-

sized images and unnecessarily sacrifices many distinct im-

age features. To address this issue, in this paper, we first

delve into the StyleGAN image synthesis mechanism and

discover an important phenomenon, namely Feature Pro-

liferation, which demonstrates how specific features repro-

duce with forward propagation. Then, we show how the

occurrence of Feature Proliferation results in StyleGAN im-

age artifacts. As an analogy, we refer to it as the “cancer”

in StyleGAN from its proliferating and malignant nature.

Finally, we propose a novel feature rescaling method that

identifies and modulates risky features to mitigate feature

proliferation. Thanks to our discovery of Feature Prolif-

eration, the proposed feature rescaling method is less de-

structive and retains more useful image features than the

truncation trick, as it is more fine-grained and works in

a lower-level feature space rather than a high-level la-

tent space. Experimental results justify the validity of our

claims and the effectiveness of the proposed feature rescal-

ing method. Our code is available at https://github.com/

songc42/Feature-proliferation.

1. Introduction

Deep learning has entered the era of large models. For

instance, the GPT-3 [7] developed by OpenAI has 175 bil-

lion parameters and can easily cost around 15 million dol-

lars to train for a single run, let alone the GPT-3.5 under-

pinning the recently hyped ChatGPT1; Stability.ai trained

their Stable-diffusion-v1-42 using 256 Nvidia A100 GPUs

for 150,000 GPU hours; Nvidia spent 92 GPU years and

*Corresponding author: Yipeng Qin
1https://openai.com/blog/chatgpt
2https://huggingface.co/CompVis/stable-diffusion-v1-4

225 MWh of electricity with an in-house cluster of NVIDIA

V100 GPUs to develop StyleGAN3 [15] and 4 weeks on 64

NVIDIA A100s for a “constrained” training of their recent

StyleGAN-T [27]. As a result, although the performance

of large models is impressive, their high costs have become

a critical concern, e.g., OpenAI admitted that there was a

bug in their GPT-3 model but cannot afford to retrain it due

to the high cost [7]. This motivates us to do our best to

avoid retraining large neural network models. In this work,

we focus on the StyleGAN family [16, 17, 15, 27] as they

are inherently more efficient (i.e., generating images with

a single pass), allow for excellent semantic interpolation

in their latent spaces, and are comparable to the quality of

diffusion models [27]. For the StyleGAN series, although

there were no obvious bugs in the training, the synthesized

images are not always perfect. While instead of attempt-

ing to solve this problem by improving the model design

which requires multiple retraining, StyleGAN follows the

“no retraining” philosophy and resorts to a post-processing

technique called truncation trick [20, 6]. In short, the trun-

cation trick improves the quality of StyleGAN synthesized

images by normalizing their corresponding latent codes to-

wards their mean in the latent space. However, despite its

popularity, it has long been noted that the truncation trick

tends to reduce the diversity of synthesized images and un-

necessarily sacrifices many distinct image features [16].

In this paper, we address the low-quality images syn-

thesized by StyleGAN from a different perspective, i.e., its

mechanism for image synthesis in the feature space. Specif-

ically, we delved into the architectural details of the Style-

GAN generator and discovered an important phenomenon,

namely Feature Proliferation, which demonstrates how spe-

cific features reproduce with forward propagation. In short,

Feature Proliferation denotes the phenomenon where the

ratio of the occurrence of a certain type of feature (those

with abnormally large values) in a layer increases with for-

ward propagation. Our analysis points out that such a phe-

nomenon is a by-product of the weight modulation and de-

modulation techniques used in StyleGAN2/3 [17, 15] and

the latest StyleGAN-T [27]. Interestingly, we observed

that Feature Proliferation usually leads to artifacts in Style-



Figure 1. Top: StyleGAN synthesized images with artifacts. Bottom: images “cured” by our method.

GAN synthesized images and these artifacts can be easily

removed by a simple feature rescaling method. To minimize

the unnecessary interference with useful image features, we

propose a novel method to identify the risky features prone

to proliferation in the earliest layers, thereby removing the

least amount of them. As a result, our method significantly

outperforms the truncation trick in terms of retaining useful

image features while improving the quality of StyleGAN

synthesized images. Experimental results justify the valid-

ity of our claims and the effectiveness of the proposed fea-

ture rescaling method. Our contributions include:

• We discover an important phenomenon, namely Fea-

ture Proliferation, which shows how specific features

reproduce with forward propagation. We also show

that it is a by-product of the weight modulation and

demodulation techniques used in modern StyleGANs.

• We discover a strong causal relationship between the

occurrence of Feature Proliferation and StyleGAN im-

age artifacts.

• We propose a novel feature rescaling method that iden-

tifies and modulates risky features to mitigate feature

proliferation, thereby achieving a better trade-off be-

tween quality and diversity of StyleGAN synthesized

images than the popular truncation trick.

2. Related work

Since the seminal work of Goodfellow et al. [10], Gen-

erative Adversarial Networks (GANs) have become one of

the most promising deep generative models that have nu-

merous applications in computer vision and graphics. Nev-

ertheless, GANs are known to be notoriously difficult to

train and a variety of techniques have been proposed to

stabilize their training from different perspectives, includ-

ing architectures [25, 11], loss functions [4, 19], regular-

ization [22, 23], and the interactions between them [24].

Thanks to the massive efforts from the community, the

StyleGAN series [16, 17, 15, 27] have become one of the

most influential models in the GAN family, as it can gener-

ate high-resolution and realistic images that are almost in-

distinguishable from real photos by human inspectors. Ex-

amples of its applications include GAN inversion and edit-

ing [1, 2, 29, 3], image-to-image translation [26], super-

resolution [21], 3D shape generation [32], etc. We refer

interested audiences to [5] for a survey on StyleGAN and

its applications. Nevertheless, despite its success, the qual-

ity of images synthesized by StyleGAN varies, and a post-

processing method known as the truncation trick [20, 6] has

widely been adopted to obtain higher quality images. How-

ever, the truncation trick has long been noted as “destruc-

tive” as it unnecessarily sacrifices useful image features and

tends to reduce the diversity of synthesized images. In this

paper, we address this issue by investigating the StyleGAN

image synthesis mechanism and propose a feature rescaling

method that can precisely identify the risky features causing

image artifacts, thereby improving image quality by modu-

lating these features at the minimal cost.

3. Feature Proliferation in StyleGAN

In this section, we first introduce two new phenomena

that we discovered in the forward propagation of deep neu-

ral networks, i.e. feature domination and proliferation. We

then show that they are by-products of the weight modu-

lation and demodulation techniques used in modern Style-

GANs. Finally, we show how they affect StyleGAN and

lead to artifacts in synthesized images.



Figure 2. Illustration of feature domination. y is dominated by xj
and its perturbations xi ≈ xj .

3.1. Feature Domination and Proliferation

Throughout the history of machine learning, the weighted

sum method has been built to last from the classical linear

regression, to the theoretically elegant support vector ma-

chines and the deep neural networks that are now taking

both academia and industry by storm. For deep neural net-

works, we usually refer to the output of neurons as features

that are the elements to be weighted and summed. How-

ever, due to the differences among weights and input fea-

tures, the output of a neuron can occasionally be dominated

by one or a small amount of input features, which leads to a

phenomenon we call Feature Domination.

Definition 3.1 (Feature Domination) Let y = wTx + b
be the output of a neuron, x and w are the input and weight

vectors respectively, b denotes the bias, we define Feature

Domination as the case where y ≈ (
∑

i wi)xj + b is dom-

inated by feature xj and its perturbations xi ≈ xj , where i
indicates the i-th element in w and x.

In a nutshell, the proposed Feature Domination describes

the phenomenon that one or a small number of similar in-

put features may dominate the weighted sum if their prod-

ucts with associated weights significantly outweigh others

(Fig. 2), making y similar to xi/xj . In practice, we observed

that the dominant features are highly likely to be those that

deviate significantly from the mean of their distributions:

Observation 3.1 (Feature Domination in StyleGAN)

Let t be an empirically obtained threshold, and xl,j be the

feature map of channel j of layer l of the generator. xl,j

is highly likely to be dominant if
|mean(xl,j)−µxl,j

|

σxl,j

> t,

where mean(xl,j) is the mean value of all elements in xl,j ,

µxl,j
and σxl,j

are the mean and standard deviation of the

distribution of xl,j over the training dataset.

In practice, we use Observation 3.1 to identify dominant

features in StyleGANs. Furthermore, Feature Proliferation

happens when the same type of Feature Domination prolif-

erates during the forward propagation.

(a) Mean of inputs (b) Standard deviation of inputs

Figure 3. Histograms of mean and standard deviation of the input

feature maps from 10,000 StyleGAN2 synthesized images.

Definition 3.2 (Feature Proliferation) Following Defini-

tion 3.1, let Yd(xj) be the set consisting of all outputs y
dominated by feature xj in a single neural network layer,

we define Feature Proliferation as the increase of η(xj) =
|Yd(xj)|/|Y| during forward propagation, where Y is the

set of all outputs in a single neural network layer and | · |
denotes the cardinality of a set.

When Feature Proliferation happens, one or a small

number of features will dominate the output of the entire

network, leading to artifacts in StyleGAN synthesized im-

ages. As an analogy, we refer to it as the “cancer” in Style-

GAN from its proliferating and malignant nature.

Remark. For simplicity, Definitions 3.1 and 3.2 are intro-

duced with fully-connected layers. However, both defini-

tions can be easily extended to other types of neural net-

works, e.g., convolutional neural networks (CNNs) [30], as

the weighted sum operation is widely used in almost all

deep neural networks due to its benefits in parallelization.

3.2. Root Causes of Feature Proliferation

We ascribe feature proliferation to the strong statistical

assumption used in the weight modulation and demodula-

tion of StyleGAN2/3/T [17, 15, 27], i.e., “the input acti-

vations are i.i.d. random variables with unit standard de-

viation”, rather than the statistics (i.e., mean and standard

deviation) of the actual feature maps used in the AdaIN of

StyleGAN1 [16].

Specifically, weight demodulation assumes that all input

activations (modulated feature maps) are already normal-

ized to be of unit standard deviation, thereby eliminating the

step of feature map normalization
xi−µ(xi)

σ(xi)
used in AdaIN.

Since the standard deviations of output feature maps are

determined by the products of those of their input feature

maps (assumed to be unit ones as mentioned above) and

convolutional weights, the abovementioned assumption en-

sures the unit standard deviations of output feature maps by

only “demodulating” the convolutional weights to be of unit

standard deviations [17]:

w′′
ijk = w′

ijk/

√

∑

i

w′2
ijk + ϵ, w′

ijk = si · wijk (1)



Figure 4. Left: (’Cancer’ Proliferation) the Feature Proliferation phenomenon leads to image artifacts; (Curing) setting the visually iden-

tified proliferating feature map in Layer 3 to zero (blue arrow) mitigates feature proliferation. Right: (Normal Generation) a proper

StyleGAN image synthesis process; (Inserted ’Cancer’ Proliferation) inserting the “cancer” features identified in the left part results in

feature proliferation and similar image artifacts (red arrow). The yellow boxes in feature maps highlight the feature proliferation process.

η in red: the ratio of dominated features in a layer.

where si is the scaling parameter corresponding to the i-
th input feature map, j and k enumerate the output feature

maps and spatial footprint of the convolution, respectively.

While in practice, the assumption of the unit standard de-

viation of input activations does not hold (Fig. 3). As a

result, weight demodulation cannot ensure the unit standard

deviations of output feature maps. Instead, the standard de-

viations of output feature maps are determined by those of

input ones, causing feature domination and proliferation.

Remark. AdaIN explicitly normalizes each feature map

according to its mean and standard deviation so the mean

and standard deviation of its output are solely determined

by the style parameters y = (ys,yb) but not those of its

input feature map xi [16]:

AdaIN (xi,y) = ys,i

xi − µ (xi)

σ (xi)
+ yb,i (2)

This breaks the chain of feature proliferation in forward

propagation and we did not observe significant proliferation

in our experiments. However, as shown in [17], AdaIN has

its own problems (i.e., the “characteristic artifacts”, which

is why weight demodulation is used in StyleGAN2/3) and

may not be a good solution to feature proliferation.

3.3. Impact of Feature Proliferation on StyleGAN

As Fig. 4 shows, the synthesized images suffer from ob-

vious artifacts when Feature Proliferation happens and we

observed a strong spatial correlation between the prolifer-

ated feature maps and the artifacts in synthesized images.

To justify the causality between them, we show that i) the

artifacts can be “cured” by removing corresponding features

before their proliferation in Fig. 4 (left) and ii) the artifacts

can be added to high-quality images by inducing feature

proliferation in Fig. 4 (right).

4. Curing the “Cancer” in StyleGAN

In this section, we first introduce how to identify the

risky features for feature proliferation and then introduce

a simple but effective feature rescaling method to adjust the

identified features and mitigate the feature proliferation.

4.1. Feature Proliferation (“Cancer”) Identification

Naively, one of the most straightforward methods for

feature proliferation identification is to extract all similar

pairs of feature maps in the successive layers of a neural

network. However, let k be the number of successive pairs

of layers and n be the number of neurons per layer, the time

complexity of this strategy is O(kn2) per image, which is

inefficient and makes it infeasible for frequent use.

Addressing this issue, we employ a heuristic stemming

from Observation 3.1 that the dominant features are likely

to be those that deviate significantly from the mean of their

distributions. Specifically, we estimate the mean µl,j and

standard deviation σl,j with a large number (e.g., 3,000) of

randomly sampled images and identify xl,j as a high risk

feature for proliferation if:

rl,j =
|mean(xl,j)− µl,j |

max(σl,j , c)
> t (3)

where mean(xl,j) is the mean value of all elements in xl,j ,

rl,j denotes the amount of risk of feature proliferation, t is

a user-defined threshold obtained empirically, c = 0.1 is

a small constant introduced to avoid the mis-identification

when σl,j is small.

4.2. Curing the “Cancer” by Feature Rescaling

Since the risky features identified by Eq. 3 proliferate

with forward propagation, we propose a simple yet effective

feature scaling method to address the proliferation in the



(a) StyleGAN2 pretrained with FFHQ dataset (b) StyleGAN2 pretrained with AFHQ-Cat dataset

(c) StyleGAN3 pretrained on FFHQ dataset (d) StyleGAN3 pretrained on AFHQ dataset

Figure 5. Curated StyleGAN2/3 [17, 15] synthesized images, those processed by the truncation trick (ψ=0.7), and our method.

earliest layers, thereby removing the least amount of them

and minimizing the unnecessary interference with useful

image features. Let xc be a “cancer” feature map with risk

r (Eq. 3), we have

xmc =
xc
p · r

(4)

where xmc denotes the modified feature map, p is the scaling

hyper-parameter. By rescaling xc, we reduce the values of

its elements and thus prevent it from Feature Domination

(Definition 3.1) and Proliferation (Definition 3.2), thereby

improving the quality of StyleGAN synthesized images.

5. Experiments

Please see the supplement for more experiments.

5.1. Experimental Setup

The proposed method does not require network training.

We run the proposed method with pretrained deep gener-

ative models on a workstation with an Intel(R) Core(TM)

i7-10875H CPU and a GeForce RTX 3080 GPU. The pre-

trained StyleGAN2 [17] models (using FFHQ [16], Met-

Face [14] and AFHQ-Cat [8] datasets) used in all our exper-

iments are publicly-released on Github3. Unless specified,

we use hyperparameters t = 2 and p = 2 for our method,

and ψ = 0.7 for the truncation trick that has been suggested

for the best trade-off between quality and diversity of syn-

thesized images [16, 6].

5.2. Qualitative Evaluation

As Fig. 5 shows, we compare the performance of our

method against the truncation trick [20, 6] on StyleGAN2

and StyleGAN3 models pretrained on FFHQ, MetFace and

AFHQ-Cat datasets. In Fig. 5(a), it can be observed that: i)

all the StyleGAN2 synthesized images in the top row, ex-

cept the third one, contain obvious artifacts; ii) for the third

column (high-quality image), our method retains useful im-

age features better than the truncation trick; iii) for the other

columns, our method not only removes the artifacts but also

retains useful image features in a better way, e.g., the trun-

cation trick eliminates the eyeglasses in column 1 while our

method retains them and other fine facial details like the

beard. Similar results can be observed in Fig. 5(b), which

demonstrates the versatility of our method across datasets.

3StyleGAN2: https://github.com/NVlabs/stylegan2



Figure 6. Comparison of precision and recall [18] between the

truncation trick [20, 6] and our method on StyleGAN2. p and t

are hyperparameters of our method and ψ is the hyperparameter

for the truncation trick. “StyleGAN2” (bottom-right corner): pre-

cision and recall of the original StyleGAN2; Blue (ψ = 0.7): best

ψ recommended by StyleGAN2 [17]; Cyan (p = 2, t = 2): best

p and t of our method; Red: the upper bound of StyleGAN “cor-

rection” methods where every error is corrected (precision=1.0)

without sacrificing diversity (recall remains constant); Orange: the

closer to the dashed line, the less sacrifice of diversity; Gray: re-

gion of uninterest where too much diversity has been sacrificed.

Ours is closer to the dashed line in the region of interest, indicat-

ing that it strikes a better balance between precision and recall.

Table 1. Comparison with Truncation Trick (TT) [6] using PSNR,

SSIM [33], LPIPS [31], ID (identity preservation using the Arc-

Face [9]) and FID [12] computed with 10K images on StyleGAN2.

Dataset AFHQ-Cat MetFace FFHQ

Method TT Ours TT Ours TT Ours

PSNR↑ 3.66 4.11 5.33 10.45 3.80 4.28

SSIM↑ 0.79 0.81 0.81 0.87 0.74 0.68

LPIPS↓ 0.15 0.14 0.22 0.14 0.31 0.24

ID↑ 0.74 0.84 0.77 0.87 0.71 0.77

FID↓ 7.43 4.47 23.02 17.51 12.56 11.91

Figs. 5(c) and 5(d) show synthesized results of the trun-

cation trick and our method on StyleGAN3 [15] models pre-

trained on FFHQ and AFHQ datasets4. It can be observed

that our claims still hold on StyleGAN3, which further jus-

tifies the superiority of our method.

5.3. Quantitative Evaluation

Precision and Recall. Fig. 6 shows the comparison of pre-

cision and recall [18] between the truncation trick [20, 6]

and our method on StyleGAN2. It can be observed that our

method strikes a better balance between precision and re-

call (p = 2, t = 2) in the region of interest (right side, white

region) while the truncation trick sacrifices too much diver-

sity to achieve the same level of precision. Recognizing that

4https://github.com/NVlabs/stylegan3

Figure 7. Comparison of difference maps of truncation trick [20, 6]

and our method. The numbers at the bottom right corner of the

difference images are PSNR scores.

Table 2. Comparison with Truncation Trick (TT) [6] using PSNR,

SSIM [33], LPIPS [31] and FID [12] computed with 10K images

on StyleGAN3.

Dataset FFHQ AFHQ-Cat

Method TT Ours TT Ours

PSNR↑ 16.23 18.07 16.03 17.72

SSIM↑ 0.70 0.78 0.70 0.76

LPIPS↓ 0.33 0.22 0.16 0.13

FID↓ 22.45 14.31 24.02 17.36

the aims of StyleGAN correction methods are to maximize

image quality (i.e., precision) without sacrificing diversity

(i.e., recall), our method has made a concrete step towards

the ultimate solution (red point in Fig. 6).

Image Similarity Metrics. Although less effective in as-

sessing the trade-off between quality and diversity, for the

sake of completeness, we also quantitatively compare the

extent to which image features are retained by our method

and the truncation trick [20, 6]. As Table 1 shows, for Style-

GAN2, it can be observed that i) for PSNR, SSIM [33] and

LPIPS [31], our method outperforms the truncation trick in

most cases, which demonstrates that our method better re-

tains the useful features in the original image. However, the

SSIM of our method is slightly worse than that of the trun-

cation trick for the FFHQ dataset. We ascribe this to the su-

perior power of our method in removing structural artifacts

that are common in StyleGAN pretrained with the FFHQ

dataset. ii) For ID, we used the ArcFace [9] to compute

the identity similarity scores between the original and the

processed images. Interestingly, we observe that although



Figure 8. Choice of hyper-parameters. Top row: images generated with truncation trick with ψ = 0.55 to 0.95. Rows 2-4: images

generated with our method with t = 0.0 to 4.0, p = 1 to 3. Our method removes the artifacts while retaining almost all important features

of the original image, indicating that it achieves a better trade-off between image quality and diversity than the truncation trick.

trained on human face datasets, ArcFace [9] generalizes

to AFHQ-Cat [8] and MetFace [14] images and provides

meaningful scores. iii) For FID [12], our method outper-

forms the truncation trick in all three datasets, which again

demonstrates that our method better retains the useful fea-

tures in the original image. We also show the difference

maps in Fig. 7 to facilitate intuitive understanding. The re-

sults on StyleGAN3 [15] are shown in Table 2. It can be

observed that our claims still hold on StyleGAN3, which

further justifies the superiority of our method.

5.4. Choice of Hyper­parameters

Similar to ψ in the truncation trick [20, 6], we use two

hyperparameters t and p for the trade-off between quality

and diversity in our method. Between them, t determines

how many feature maps are identified as risky ones for

feature proliferation, and p adjusts the extent to which we

rescale such feature maps. In general, the more risky fea-

ture maps identified, the stronger rescaling, and the higher

quality but less diversity of synthesized images.

Qualitative Justification. As Fig. 8 shows, we visualize the

results generated with the truncation trick with ψ = 0.6 to

1.0 and our method with t = 0.0 to 4.0 and p = 1.0 to 3.0,

and identify the best choice (p = 2, t = 2) through visual

inspection. In general, the smaller the t, the more features

are identified as risky (Eq. 3) for rescaling; the larger the

p, the stronger the rescaling. In this way, t and p work to-

gether to modify only the problematic features, thus achiev-

ing a better trade-off between quality and diversity than the

truncation trick.

Figure 9. Choice of Hyper-parameters (Quantitative). It can be

observed that p = 2, t = 2 (cyan) achieves the best trade-off

between precision and recall, which is consistent with the visual

inspection results in Fig. 8.

Quantitative Justification. We quantitatively justify the

choice of hyper-parameters p and t by comparing their pre-

cision and recall. As Fig. 9 shows, p = 2, t = 2 achieves the

best trade-off between precision and recall, which is consis-

tent with the qualitative results in Fig. 8.

5.5. Ablation Study

To justify the effectiveness of our channel-wise feature

identification and rescaling strategy (Sec. 4), we demon-

strate its superiority over its layer-wise and pixel-wise vari-

ants as follows.

Layer-wise “Cancer” Curing. As in Sec. 4, let xl,j be a

“cancer” feature map identified using Eq. 3, we compute the



Figure 10. Successful cases of the layer-wise variant of our method

(threshold t′ ranges from 0.3 to 0.9). It can be observed that this

variant is effective in removing artifacts of background intrusion.

mean absolute “cancer” feature map for layer l as:

x̂l = meanj(|xl,j |) (5)

where we take the absolute value |xl,j | to capture their

magnitude and avoid them canceling each other out when

added together. In order to make the same choice of hyper-

parameters applicable to all layers, we normalize x̂l to x̄l
with mean µ = 0 and σ = 1:

x̄l =
x̂l − µ(x̂l)

σ(x̂l)
(6)

Then we measure the “correlation” between each |xl,j | and

its corresponding x̄l as:

cl,j =
|xl,j | ∗ x̄l

∑

element |xl,j |
(7)

where
∑

element |xl,j | is the sum for all elements in |xl,j |.
Let t′ be a threshold hyper-parameter, if cl,j > t′, we mark

xl,j as a layer-wise “cancer” feature map and perform the

same feature rescaling on it to remove image artifacts. As

Fig. 10 shows, this layer-wise variant of our method is also

effective for certain types of image artifacts (e.g., back-

ground intrusion). While for some other types of artifacts

(e.g., alien objects), it becomes less effective (Fig. 11).

Pixel-wise “Cancer” Curing. We follow ProGAN [13] and

apply its pixel-wise feature vector normalization technique,

which was originally proposed to stabilize GAN training by

resolving the potentially exploding magnitudes in the gen-

erator and discriminator, to pre-trained StyleGAN2. How-

ever, we observed that even the normally synthesized im-

ages become unrealistic (Fig. 12), indicating that it is not

applicable to our problem.

5.6. Time Complexity

Table 3 shows the time costs of generating a single im-

age for StyleGAN2, ours implemented in serial, and ours

implemented in parallel on an Nvidia V100 GPU. It can

Figure 11. Failure cases of the layer-wise variant of our method

(threshold t′ = 0.5). It can be observed that this variant is inef-

fective in removing artifacts of alien objects (e.g., color blocks on

faces) while our method can remove them effectively. Top row:

low-quality images synthesized by StyleGAN2; Middle row: re-

sults of the layer-wise variant of our method; Bottom row: results

of our method.

Figure 12. Effects of pixel-wise feature vector normalization on

StyleGAN2 pre-trained on FFHQ dataset. Top row: normal im-

ages synthesized by StyleGAN2. Bottom row: images after ap-

plying pixel-wise feature vector normalization, which become un-

realistic.

Table 3. Time costs of generating a single image for StyleGAN2,

Ours (Serial) and Ours (Parallel) on an Nvidia V100 GPU. The

time is averaged over 100 runs.

Dataset FFHQ AFHQ

SG2 0.075s 0.031s

Ours (Serial) 0.972s 0.721s

Ours (Parallel) 0.409s 0.189s

be observed that the parallel implementation of our method

significantly reduces the time costs from a factor of approx-

imately 15-20 (Serial) to approximately 5 times those of the

original StyleGAN2 (SG2). We leave further acceleration

of our method to future work.

5.7. Applications in Interpolation and Editing

Fig. 13 shows that our method can remove image arti-

facts while retaining smooth StyleGAN interpolations, and



Figure 13. Our method is compatible with StyleGAN interpolations. StyleGAN2: interpolation between defective images synthesized by

StyleGAN2; Ours: images “corrected” by our feature rescaling method.

Figure 14. Our method is compatible with StyleGAN image editing [28]. StyleGAN2: interpolation between defective images synthesized

by StyleGAN2; Ours: images “corrected” by our feature rescaling method.

Fig. 14 shows similar observations for StyleGAN image

editing. These suggest that our method preserves StyleGAN

latent semantics and is thus compatible with various Style-

GAN latent space operations.

6. Conclusion

In this paper, we propose a novel feature identification

and rescaling method to address the artifacts in StyleGAN

synthesized images. The rationale of the proposed feature

rescaling method stems from the Feature Proliferation phe-

nomenon we discovered that has a strong causal relationship

with StyleGAN image artifacts. Specifically, we observed

that the features that deviate significantly from the mean of

their distribution are highly likely to dominate the output of

a neuron and proliferate in the forward propagation. As a

result, the output of the entire network will be dominated

by a small number of features. We ascribe this to the strong

statistical assumption used in the weight modulation and de-

modulation used by the StyleGAN family. Intuitively, we

name Feature Proliferation as the “cancer” in StyleGANs

from its proliferating and malignant nature. Experimental

results demonstrate that our method achieves a better trade-

off between quality and diversity of StyleGAN synthesized

images than the popular truncation trick.

Limitation and Future Work. Although effective and

significantly better than the truncation trick, the proposed

method is not perfect as it can still remove some useful im-

age features and make minor changes to high-quality Style-

GAN synthesized images. We plan to design more precise

methods to identify and process proliferating features in fu-

ture work. In addition, we believe that Feature Proliferation

is not a problem exclusive to StyleGAN and may occur in

other works as long as weight modulation and demodulation

techniques are used (Sec. 3.2). Thus, we plan to investigate

in future work whether feature proliferation is a common

phenomenon in various network architectures and its con-

sequences in different tasks.

Potential Negative Social Impact. Although our method

works as a post-hoc “cure” for StyleGAN synthesized im-

ages and can save millions of dollars in training costs and

energy consumption, it may also lead to potentially nega-

tive social impacts. For example, it can further improve the

quality of StyleGAN synthesized images, which may facil-

itate the creation of fake portrait photos/videos for fake so-

cial media accounts and fake news. Nevertheless, we still

believe that our work will make a positive contribution to

the field and provide new insights into the mechanisms of

generative models that may help identify such fake content.
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