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Abstract

3D-aware image synthesis encompasses a variety of

tasks, such as scene generation and novel view synthesis
from images. Despite numerous task-specific methods, de-
veloping a comprehensive model remains challenging. In
this paper, we present SSDNeRF, a unified approach that
employs an expressive diffusion model to learn a generaliz-
able prior of neural radiance fields (NeRF) from multi-view
images of diverse objects. Previous studies have used two-
stage approaches that rely on pretrained NeRF's as real data
to train diffusion models. In contrast, we propose a new
single-stage training paradigm with an end-to-end objective
that jointly optimizes a NeRF auto-decoder and a latent dif-
fusion model, enabling simultaneous 3D reconstruction and
prior learning, even from sparsely available views. At test
time, we can directly sample the diffusion prior for uncon-
ditional generation, or combine it with arbitrary observa-
tions of unseen objects for NeRF reconstruction. SSDNeRF
demonstrates robust results comparable to or better than
leading task-specific methods in unconditional generation
and single/sparse-view 3D reconstruction.®

*Work done during a remote internship with UCSD.
SProject page: https://lakonik.github.io/ssdnerf

Figure 1. During training, SSDNeRF jointly learns triplane features of individual scenes, a shared NeRF decoder, and a triplane diffusion
prior. During testing, it can perform (a) unconditional generation, (b) single-view reconstruction, as well as multi-view reconstruction.

1. Introduction

Synthesizing 3D visual contents has gained significant
attention in computer vision and graphics, thanks to ad-
vances in neural rendering and generative models. Al-
though numerous methods have emerged to handle individ-
ual tasks, such as single-/multi-view 3D reconstruction and
3D content generation, it remains a major challenge to de-
velop a comprehensive framework that bridges the state of
the art of multiple tasks. For instance, neural radiance fields
(NeRF) [31] have shown impressive results in novel view
synthesis by solving the inverse rendering problem via per-
scene fitting, which is suitable for dense-view inputs but dif-
ficult to generalize to sparse observations. In contrast, many
sparse-view 3D reconstruction methods [59, 8, 28] rely on
feed-forward image-to-3D encoders, but they are unable to
handle ambiguity in the occluded region and generate crisp
images. Regarding unconditional generation, 3D-aware
generative adversarial networks (GAN) [34, 5, 18, 14] are
partially limited in their usage of single-image discrimina-
tors, which cannot reason cross-view relationships to effec-
tively learn from multi-view data.

In this paper, we propose a unified approach to various
3D tasks (Fig. 1) by developing a holistic model that learns
generalizable 3D priors from multi-view images. Inspired
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by the success of 2D diffusion models [22, 50, 30, 41, 29],
we present the Single-Stage Diffusion NeRF (SSDNeRF),
which models the generative prior of scene latent codes with
a 3D latent diffusion model (LDM).

While similar LDMs have been applied in 2D and 3D
generation in previous work [54, 41, 13, 2, 47, 32], they
typically require two-stage training, where the first stage
pretrains the variational auto-encoders (VAE) [26] or auto-
decoders [35] without diffusion models. In the case of dif-
fusion NeRFs, however, we argue that two-stage training
induces noisy patterns and artifacts in the latent code due to
the uncertain nature of inverse rendering, particularly when
training from sparse-view data, which prevents the diffusion
model from learning a clean latent manifold effectively. To
address this issue, we introduce a novel single-stage training
paradigm that enables end-to-end learning of diffusion and
NeRF weights (§ 4.1). This approach blends the generative
and the rendering biases coherently for improved perfor-
mance overall and allows for training on sparse-view data.
Additionally, we show that the learned 3D priors of uncon-
ditional diffusion models can be exploited for flexible test-
time scene sampling from arbitrary observations (§ 4.2).

We evaluate SSDNeRF on multiple datasets of categori-
cal single-object scenes, demonstrating strong performance
overall. Our approach represents a significant step towards
a unified framework for various 3D tasks.

To summarize, our main contributions are as follows:

* We introduce SSDNeRF, a unified approach to all-
round performance in unconditional 3D generation and
image-based reconstruction;

* We propose a novel single-stage training paradigm
that jointly learns NeRF reconstruction and diffusion
model from multi-view images of a large number of
objects. Notably, this enables training on as sparse as
three views per scene, which is previously infeasible;

* A guidance-finetuning sampling scheme is developed
to exploit the learned diffusion priors for 3D recon-
struction from arbitrary number of views at test time.

2. Related Work

3D GANs The generative adversarial framework [ 6] has
been successfully adapted for 3D generation by integrating
projection-based rendering into the generator. A variety of
3D representations have been explored previously, includ-
ing point clouds, cuboids, spheres [27] and voxels [33] in
early works, the more recent radiance fields [4, 44, 12, 45,

] and feature fields [34, 18, 5] with volume renderer, and
differentiable surface [14] with mesh renderer. The above
methods are all trained with 2D image discriminators that
are unable to reason cross-view relationships, making them
heavily dependent on model bias for 3D consistency. As
a result, multi-view data cannot be effectively exploited to

learn complex and diverse geometries. 3D GANSs are mostly
applied in unconditional generation. Although 3D comple-
tion from images is possible through GAN inversion [12],
faithfulness is not guaranteed due to limited latent expres-
siveness, as shown in [32, 1].

View-Conditioned Regression and Generation Sparse-
view 3D reconstruction can be tackled by regressing novel
views from input images. Various architectures [8, 59, 28,

] have been proposed to encode images into volume fea-
tures, which can be projected to supervised target views
through volume rendering. However, they cannot reason
ambiguity and generate diverse and meaningful contents,
which often leads to blurry results. In contrast, image-
conditioned generative models are better at synthesizing
distinct contents. 3DiM [57] proposes to generate novel
views from a view-conditioned image diffusion model, but
the model lacks 3D consistency bias. [62, 11, 19] distill pri-
ors of image-conditioned 2D diffusion models into NeRFs
to enforce 3D constraints. These methods are parallel to our
track as they model cross-view relationships in the image
space, while our model is inherently 3D.

Auto-Decoders and Diffusion NeRF NeRF’s per-scene
fitting scheme can be generalized to multi-scene fitting by
sharing part of the parameters across all scenes, leaving the
rest as individual scene codes [7]. Therefore, multi-scene
NeRFs can be trained as auto-decoders [35], where the code
bank and shared decoder weights are jointly learned. With
proper architectures, scene codes can be treated as latents
with Gaussian priors, allowing 3D completion and even
generation [24, 48, 38]. However, like 3D GANSs, the la-
tents are not expressive enough for faithful reconstruction
of detailed objects. [2, 13, 55] improve upon vanilla auto-
decoders with latent diffusion priors. DiffRF [32] leverages
the diffusion prior to perform 3D completion. These meth-
ods train the auto-decoders and diffusion models in two sep-
arate stages, which is subject to the limitations in § 3.2.

3. Background
3.1. NeRF as an Auto-Decoder

Given a set of 2D images of a scene and their camera pa-
rameters, one can fit a scene model to reconstruct the light
field in 3D space, expressed by a plenoptic function y,, (),
where r parameterizes the endpoint and direction of a ray
in the world space, 1 denotes the scene model parameters,
and y € R3+ represents the received light in RGB format.
NeRF [31] represents the light field as integrated radiance
along rays through the 3D volume. It models the scene ge-
ometry and appearance as functions of the position p € R3
and view direction d € R3 of a point in the world space, ex-
pressed as py (p) and ¢y (p, d) respectively, where p € R
is the density output and ¢ € Ri is the RGB color output.
Differentiable volume rendering is applied to compose the



received light y from multiple point samples along a ray r.

NeRF can also generalize to multi-scene settings by shar-
ing part of the model parameters across all scenes [7]. Given
observations of multiples scenes {yf; , rf} , Where yf;; , rf;
is the j-th pair of pixel RGB and ray of the i-th scene, one
can optimize the per-scene codes {x;} and shared parame-

ters ¥ by minimizing the L2 rendering loss:
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With this objective, the model is trained as an auto-

decoder [35], where the scene codes {x;} can be interpreted

as the latent codes, and the plenoptic function can be re-

garded as a decoder in the form of py ({y;}|z,{r;}) =

[1; NV (yjlyy (2, 75), I), assuming independent Gaussians.

Challenges in Bridging Generation and Reconstruction
An auto-decoder with trained weights 1) can perform uncon-
ditional generation by decoding latent codes drawn from a
Gaussian prior [38]. However, to ensure continuity in gen-
eration, a low-dimensional latent space and a complex de-
coder is required, which adds to the difficulty in optimizing
the latent code to faithfully reconstruct any given views.

3.2. Latent Diffusion Models

Latent diffusion models (LDM) learn a prior distribution
Py () in the latent space with parameters ¢, which enables
the usage of more expressive latent representations, such
as 2D grids for images [54, 41]. For neural field genera-
tion, previous work [2, 32, 13, 47] adopts a two-stage train-
ing scheme, where the auto-decoder is trained first to ob-
tain the per-scene latent x;, which is then treated as real
data to train the LDM. The LDM injects Gaussian pertur-
bation € ~ N(0, I) into the code z;, yielding a noisy code
zEEt) = a z; 4+ o at diffusion time step ¢, under empiri-
cal noise schedule functions ), o). A denoising network
with trainable weights ¢ is then tasked with removing the
noise from xl(t) to predict a denoised code ;. The network
is typically trained with a simplified L2 denoising loss:

o (20.1) — 2], )

where ¢ ~ U(0,T), w® is an empirical time dependent
()
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weighting function, and Z4(x
conditioned denoising network.

,t) formulates the time-

Unconditional/Guided Sampling With trained weights
¢, one can sample from the diffusion prior py () using a
variety of solvers (e.g., DDIM [50]) that recursively denoise
x(®) starting from random Gaussian noise (7, until reach-
ing the denoised state 2(°). Moreover, the sampling process
can be guided by the gradients of the rendering loss against
known observations, allowing 3D reconstruction from im-
ages at test time [32].

Two-stage w/o TV Two-stage w/ TV

Single-stage
50-view

training 0

3-view §
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Figure 2. Visualization of the scene code xxyz at XZ plane. Left
column: Two-stage training without TV regularization induces
noise and fails in 3-view reconstruction. Mid column: TV reg-
ularization imposes smoothing prior at the cost of textural details
(top), yet still struggles to cope with sparse views (bottom). Right
column: Our single-stage training encourages smooth yet detailed
latents and allows for training with sparse views.

Limitations of Two-Stage Training for 3D Tasks While
LDMs with 2D image VAEs are typically trained in two
stages [54, 41], training LDMs with NeRF auto-decoders
poses an unprecedented challenge. An expressive latent
code is underdetermined when obtained via rendering-
based optimization, leading to noisy patterns that distract
denoising networks (top-left of Fig. 2). Additionally, re-
constructing NeRFs from sparse views without a learned
prior is exceptionally difficult (bottom-left of Fig. 2), limit-
ing training to dense-views settings.

4. Proposed Method

To build a holistic model that unifies 3D generation and
reconstruction, we propose SSDNeRF, a framework that
conjoins the expressive triplane NeRF auto-decoder with a
triplane latent diffusion model. Fig. 3 provides an overview
of the model. In the following subsections, we elaborate on
how training and testing are performed in detail.

4.1. Single-Stage Diffusion NeRF Training

An auto-decoder can be regarded as a type of VAE that
uses a lookup table encoder instead of the typical neural
network encoder. As such, the training objective can be
derived in a similar way as for VAEs. With NeRF de-
coder py,({y; }|z, {r;}) and diffusion latent prior p, (z), the
training objective is to minimize variational upper bound
on the negative log-likelihood (NLL) of observed data
{yzgjt , rzgjt } [26, 39, 54]. In this paper, a simplified training
loss is derived by ignoring the uncertainty (variance) in la-
tent codes:

£ =E [~ logpu({y;j s {r§ DI+E [~ log po(@i)], 3)

rendering loss Lyend prior term

where the scene codes {x;}, prior parameters ¢, and de-
coder parameters 1) are jointly optimized in a single training
stage. This loss function consists of the rendering 1oss L, enq
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Figure 3. An overview of SSDNeRF framework with a triplane NeRF representation. During training, we feed a batch of observations in

the format of RGB values y5; , and rays ré. -

The corresponding scene code x; is randomly initialized and optimized by minimizing the

rendering loss Lrend and the diffusion loss Laifr, and model parameters ¢, ¢ are also updated along the way.

in Eq. (1) and a diffusion prior term in the form of NLL. Fol-
lowing [54, 58, 51], we replace the diffusion NLL with its
approximate upper bound Lgig in Eq. (2). This technique
is also called score distillation in [36]. Adding empirical
weighting factors, we finalize our training objective as:

L = AendLrend({2i}, V) + Aaig Laig ({xi}, ). ()

Single-stage training constrains scene codes {x;} with
both terms in the loss function, allowing the learned prior
to complete the parts unseen to rendering. This is particu-
larly beneficial to training on sparse-view data, where the
expressive triplane codes are severely underdetermined.

Balancing Rendering and Prior Weights The render-to-
prior weight ratio Arend/Adist is crucial to single-stage train-
ing. To make hyperparameters more generalizable to dif-
ferent settings, we design an empirical weighting mecha-
nism, in which the diffusion loss is normalized by the expo-
nential moving average (EMA) of the scene codes’ Frobe-
nius norms, expressed as Adig == cair/ EMA(||z;]|%) with
a constant scale cq;¢, and the rendering weight is deter-
mined by the number of views available N,, expressed as
Arend = Crend(1—e~%1¥v) /N, with a constant scale cyong.
Intuitively, NV, -based weighting is a calibration to the ray in-
dependence assumption in the decoder py, ({y; }|z, {r;}) ==
[T; N (y;lyy (x,7;), I), preventing the rendering loss from
scaling linearly with the number of rays.

Comparison to Two-Stage Generative Neural Fields
Previous two-stage methods [2, 13, 32, 47] ignore the prior
term A\gip Lqig during the first stage of training the auto-
decoders. This can be seen as setting the render-to-prior
weight ratio Arend/Adig to infinity, resulting in biased and
noisy scene codes x;. Shue et al. [47] partially mitigate
this issue by imposing total variation (TV) regularization
on triplane scene codes to enforce a smoothing prior, which
resembles the LDM constraints on the latent space (mid col-
umn of Fig. 2). Control3Diff [17] proposes to learn a condi-
tional diffusion model on data generated by a 3D GAN pre-

trained on single-view images. In contrast, our single-stage
training aims to directly incorporate the diffusion prior to
promote end-to-end coherence.

4.2. Image-Guided Sampling and Finetuning

To achieve generalizable test-time NeRF reconstruction
that covers a wide spectrum from single-view to dense ob-
servations, we propose performing image-guided sampling
and then finetuning the sampled codes considering both the
diffusion prior and rendering likelihood.

Following the reconstruction-guided sampling method
by Ho et al. [23], we compute the approximated rendering
gradients ¢ w.r.t. a noisy code x(*), defined as:

2

g (—vx(t))\rendz (O'(t)) Hyj — Yy (.’13¢( (t)7 t), T?t) H )

)

where (o) /o) * s an additional weighting factor based

on signal-to-noise ratio (SNR), with hyperparameter w cho-

sen to be 0.5 or 0.25 in our work. The guidance gradients

g are then combined with unconditional score prediction,
expressed as a correction to the denoising output z:

o2
dmg (6)

with guidance scale \gq. We adopt the predictor-corrector
sampler [52] to solve z(?) by alternating between a DDIM
step [50] and multiple Langevin correction steps.

We observe that the reconstruction guidance alone can-
not strictly enforce rendering constraints towards faithful
reconstruction. To address this issue, we reuse the train-
ing objective in Eq. (4) to finetune the sampled scene code
x, while freezing the diffusion and decoder parameters:

rr;in )\rendﬁrend (-T) + )\:jiff'cdiff (LL'), (7)

T2 — A

where A, is the test-time prior weight, which we find
should be lower than the training weight Ag;g for best re-
sults, as the prior learned from the training dataset is less



reliable when transferred to a different testing dataset. We
use Adam [25] to optimize the code x for finetuning.

Comparison to Previous NeRF Finetuning Approaches
While finetuning with rendering loss is common in view-
conditioned NeRF regression methods [8, 61], our finetun-
ing approach differs in the use of diffusion prior loss on the
3D scene code, which significantly enhances generalization
to novel views, as demonstrated in § 5.3.

4.3. Implementation Details

This subsection briefly describes some important techni-
cal details. More details can be found in the supplementary.

Prior Gradient Caching Triplane NeRF reconstruction
requires at least hundreds of optimization iterations on each
scene code x;. A problem with the single-stage training
loss in Eq. (4) is that the diffusion loss L4;¢ requires much
longer time to evaluate than the native NeRF rendering loss
Lend, reducing overall efficiency. To accelerate reconstruc-
tion in both training and test-time finetuning, we introduce
a technique called prior gradient caching, which caches the
back-propagated prior gradients V, Agig Lqig for re-use in
multiple Adam steps, while refreshing the rendering gradi-
ents Vi ArendLrena in €ach of the steps, which allows for
fewer diffusion passes than rendering. A training pseudo-
code is given in Algorithm 1.

Denoising Parameterization and Weighting The de-
noising model &, (x(*), t) is implemented as a U-Net [42] as
in DDPM [22], with a total of 122M parameters. Its input
and output are noisy and denoised triplane features, respec-
tively, with channels of all three planes stacked together.
For the prediction format, we adopt the v-parameterization
0p(x®,t) in [43], such that # = a®z® — oM. Re-
garding the weighting function w® in the diffusion loss
in Eq. (2), LSGM [54] employs two different mechanisms
for optimizing latents z; and diffusion weights ¢, respec-
tively, which we find unstable with NeRF auto-decoders.
Instead, we observe that the SNR-based weighting w(®) =

(a(t)/o(t))% used in Eq. (5) works well with our models.

5. Experiments
5.1. Datasets

We conduct experiments on the ShapeNet SRN [6, 48]
and Amazon Berkeley Objects (ABO) Tables [9] datasets
for benchmarking with previous work. The SRN dataset
provides single-object scenes in two categories, i.e., Cars
and Chairs, with a train/test split of 2458/703 for Cars and
4612/1317 for Chairs. Each train scene has 50 random
views from a sphere and each test scene has 251 spiral
views from the upper hemisphere. The ABO Tables dataset
provides a train/test split of 1520/156 table scenes, where
each scene has 91 views from the upper hemisphere. For

Algorithm 1: Single-stage diffusion NeRF training

Input: {yfjt, rfjt}

1 Initialize {z;}, ¢, ¢
2 for kout =1+ Koug do  // outer loop of K, iterations

3 Sample a batch of scenes ¢ € By
4 9o ggiﬂ — v@{m}ssc Adif Ldif // diffusion grad
5 ¢ < ¢ — Adam(gy)
6 for k;, .= 1--- Kj, do //inner loop of K, iterations
7 Sample a batch of rays j € B,y
8 g;end — V{Ii}BSC ArendLrend  // rendering grad
9 G g;end + ggiﬂ /I add cached prior grad
10 {zi}p.. < {z:i}B.. — Adam(gz)
11 if k;, = K, then // 1ast inner iteration
12 gy Vq/;)\rend['rend
13 Y < — Adam(gy)
Cars Tables
Method Type
FID, KIDno=| FID] KIDro]
Functa [13] LDM 80.3 - - -
m-GAN [4] GAN 36.7F - 41.67§ 13.82§
EG3D [5] GAN 10.46+ 4.90+ 31.18§ 11.67§

DiffRF [32] LDM - - 27.06 10.03

Ours (2-stage) LDM 16.33:093 6.38:041 - -
Ours (1-stage) LDM 11.08:1.11 3.47:023 14.27+066 4.08:033

Table 1. Unconditional generation results on SRN Cars and ABO
Tables. T denotes results reported by Functa [13]. § denotes results
reported by DiffRF [32]. * denotes results reproduced by us using
the official public code with a bugfix/ We show +2¢ intervals.

both datasets, we use the provided renderings (resized to
128%128) with ground truth poses for training and testing.

5.2. Unconditional Generation

In this section, we conduct evaluations for unconditional
generation using the SRN Cars and ABO Tables dataset.
The Cars dataset poses a challenge in generating sharp and
intricate textures, whereas the Tables dataset comprises of
diverse geometries with realistic materials. Models are
trained on all images of the training set for 1M iterations.

Evaluation Protocol and Metrics For SRN Cars, follow-
ing Functa [13], we sample 704 scenes from the diffusion
model, and render each scene using the fixed 251 cam-
era poses from the test set. For ABO Tables, following
DiffRF [32], we sample 1000 scenes and render each scene
with 10 random cameras. We adopt standard generation
metrics including Fréchet Inception Distance (FID) [20]
and Kernel Inception Distance (KID) [3]. The metrics’ ref-
erence sets are all images in the test set for SRN Cars and all

Thttps://github.com/nvlabs/eg3d/issues/67
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Figure 4. Qualitative comparison between unconditional generative models trained on ABO Tables and SRN Cars.

Method Cars 1-view Cars 2-view Chairs 1-view Chairs 2-view
etho

PSNRTSSIMTLPIPS| FID| PSNRTSSIMTLPIPS| FID| PSNRTSSIMTLPIPS| FID| PSNRtSSIMTLPIPS| FID|
3DiM [57] 21.01 0.57 - 8.99 - - - 17.05 0.53 - 6.57 - - - -

PixelNeRF [59]
SRN [48]

CodeNeRF [24]
VisionNeRF [28] 22.88 0.91 0.084 21.31% - -

23.17 090 0.146% 59.241 25.66 0.94
22258 0.89§ 0.129% 41.211 24.84§ 0.92§

- 2372 091 0.128% 38.491 26.20 0.94 - -
- 22.898 0.89§ 0.104% 26.51F 24.48§ 0.92§ - -

23.80 091 0.118% 5634+ 25.71 093 0.108+ 56.13% 23.66 0.90 0.106x 31.65% 25.63 091 0.097+ 29.90x

- 2448 0.93 0.077 10.05% - - -

Ours (1-stage)

2352 091 0.078 1639 2649 094 0.054 10.66 2435 0.93 0.067 10.13 2694 095 0.055 10.85

Table 2. Single-view and two-view reconstruction results on SRN Cars and Chairs. For consistency with prior work, we use view #64 of
the test scene as single-view input and view #64 and #104 as two-view input. T denotes results reported by 3DiM [57]. % denotes results
reported by VisionNeRF [28], § denotes results reported by PixeINeRF [24], % denotes results reproduced by us using the official code.

- indicates results are unavailable.

images in the entire dataset for ABO Tables, respectively.

Comparison to the State of the Art As shown in Table 1,
on SRN Cars, SSDNeRF (1-stage) outperforms EG3D in
KID (a more suitable measure for small datasets) by a
clear margin. Meanwhile, its FID is drastically better than
Functa, which uses an LDM but with low dimensional la-
tent codes. On ABO Tables, SSDNeRF shows significantly
better performance than EG3D and DiffRF.

Single- vs. Two-stage On SRN Cars, we compare the pro-
posed single-stage training against two-stage training with
tuned TV regularization using the same model architec-
ture. The results in Table | indicate substantial advantage
of single-stage training (KID/107 3.47 vs. 6.38).

Qualitative Results As shown in Fig. 4, SSDNeRF gen-
erates more regular geometries than the slightly skewed and
distorted shapes by EG3D [5]. Compared to DiffRF [32],
our method produces sharp details and reflective materials,

thanks to our more expressive model with latents of higher
spatial resolution and view-dependent NeRF decoder.

5.3. Sparse-View NeRF Reconstruction

This section presents experiments on 3D reconstruction
from sparse-view images of unseen objects in SRN Cars
and Chairs test sets. The Cars dataset presents the challenge
of recovering distinct textures, while the Chairs dataset re-
quires accurate reconstruction of diverse shapes. Models
are trained on all images of the training set for 80K itera-
tions, as we find that longer schedule leads to decaying per-
formance in reconstructing unseen objects. This behaviour
is in accordance with the interpolation results in § 5.5.

Evaluation Protocol and Metrics We use the evaluation
protocol and metrics in PixeINeRF [59]. Given input im-
ages sampled from each test scene, we obtain the triplane
scene code via guidance-finetuning and evaluate novel
view synthesis quality with respect to the unseen images.
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Figure 5. Qualitative comparison of single-view reconstruction methods on unseen test objects in SRN Cars and Chairs.

The image quality metrics include average peak signal-to-
noise-ratio (PSNR), structural similarity (SSIM) [56], and
Learned Perceptual Image Patch Similarity (LPIPS) [60].
In addition, we evaluate the FID between all synthesized
images and ground truth images as in 3DiM [57].

Comparison to the State of the Art Table 2 com-
pares SSDNeRF against previous approaches in single-view
and two-view reconstruction settings. Overall, SSDNeRF
reaches the best LPIPS of all tasks, indicating the best per-
ceptual fidelity. In contrast, 3DiM generates high qual-
ity images (best FID) but with the lowest fidelity to the
ground truth (lowest PSNR); CodeNeRF reports the best
PSNR on single-view Cars, but its limited expressiveness
leads to blurry outputs (Fig. 5) and less competitive LPIPS
and FID; VisionNeRF achieves a balanced performance on
all single-view metrics, but may struggle to generate textu-
ral details on the unseen side of cars (e.g., the other side of
the ambulance in Fig. 5). Moreover, SSDNeRF exhibits a
clear advantage in two-view reconstruction, achieving the
best performance on all relevant metrics.

Single- vs. Two-stage As demonstrated in Table 3, the
model trained in a single stage (AQO) outperforms the same
architecture trained in two stages with TV regularization
(A1) in all metrics of single-view reconstruction.

Ablation Studies on Test-Time Finetuning As shown in
Table 3, we evaluate the effectiveness of test-time finetun-
ing and the contribution of the learned diffusion prior with
two ablation experiments: (A2) removing the diffusion loss
during finetuning and using only the rendering loss, and
(A3) omitting the finetuning process entirely. The results
indicate that finetuning with single-view rendering loss pro-
vides only marginal improvements over guided sampling
(A2 vs. A3), while the learned diffusion prior significantly

ID Training Finetuning PSNRT SSIM{t LPIPS| FID|

AO 1-stage Rend+Diff 23.52 0913 0.078 16.39
Al 2-stage Rend+Diff 22.83 0.906 0.090 20.97
A2 1-stage Rend 23.13 0907 0.088 27.93
A3 1-stage None 23.07 0905 0.092 30.95

Table 3. Ablation results on single-view reconstruction of SRN
Cars.

0.20
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0.00 : r " |
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Figure 6. LPIPS scores (lower is better) of novel view synthesis

from sparse-to-dense inputs, evaluated on SRN Cars test set. The
triplane baselines adopt mean initialization for better performance.

boosts the LPIPS and FID scores (AO vs. A2), highlight-
ing its importance in recovering sharp and distinct contents.
Moreover, the qualitative results in Fig. 5 reveal that views
with higher overlap to the input view benefit the most from
finetuning, meeting our expectation that finetuning helps
faithfully reconstruct the exact observations.

Sparse-to-Dense Reconstruction To validate that SSD-
NeRF seamlessly bridges sparse- and dense-view NeRF re-
construction, we evaluate its novel view synthesis perfor-
mance with the number of input views varying from 1 to
32. We compare our model to the triplane NeRF baseline
trained as an auto-decoder with optional TV regularization
instead of diffusion prior. Meanwhile, we also evaluate Co-
deNeRF [24], an auto-decoder with 256-d latent codes. The
results in Fig. 6 show that SSDNeRF excels in all settings,



especially in 1 to 4 views. In contrast, CodeNeRF is outper-
formed by vanilla triplane NeRF with more views.

5.4. Training SSDNeRF on Sparse-View Dataset

In this section, we train SSDNeRF on a sparse-view sub-
set of the full SRN Cars training set, in which a fixed set
of only three views are randomly picked from each scene.
Note that a reasonable decline in performance compared
to dense-view training is expected as the whole training
dataset has been reduced to 6% of its original size.

Unconditional Generation We adopt a training trick
that resets the triplane codes to their mean value halfway
through training. This helps to prevent the model from get-
ting stuck in a local minimum that overfits geometric arti-
facts. We also double the length of the training schedule
accordingly. The model achieves a decent FID of 19.04+1.10
and a KIDr10™ of 8.28+0.60. Results are visualized in Fig. 7.

Single-View Reconstruction We adopt the same training
strategy as in § 5.3. With our guidance-finetuning approach,
the model achieves an LPIPS score of 0.106, even outper-
forming most of the previous methods in Table 2 that use
the full training set.

Comparison to TV Regularization Fig. 8 (b) shows the
RGB images and geometries represented by the scene latent
codes learned from three views during training. By compar-
ison, vanilla triplane auto-decoder with TV regularization
(Fig. 8 (a)) often fails to reconstruct a scene from sparse
views, leading to severe geometric artifacts. As a result,
previously it has been infeasible to train two-stage models
with expressive latents on sparse-view data.

5.5. NeRF Interpolation

Following DDIM [50], we can sample two initial val-
ues z(7) ~ N(0, I), interpolate them using spherical linear
interpolation [46], and then use the deterministic solver to
obtain interpolated samples. However, as noted by [37, 40],
standard Gaussian diffusion models often result in non-
smooth interpolation. In SSDNeRF (with results shown
in Fig. 9), we find that the model (a) trained with early
stopping for sparse-view reconstruction produces reason-
ably smooth transitions between samples, while the model
(b) trained with a longer schedule for unconditional genera-
tion produces distinct yet discontinuous samples. This sug-
gests that early stopping preserves a smoother prior, leading
to better generalization for sparse-view reconstruction.

6. Conclusion

In this paper, we propose SSDNeRF, which combines the
diffusion model and NeRF representation through a novel
single-stage training paradigm with an end-to-end justifi-
able loss. Notably, it overcomes the limitations in previous
work where implicit neural fields must be obtained from

Figure 7. Images generated by SSDNeRF trained on a 3-view sub-
set of SRN Cars training set.
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Figure 8. Qualitative comparison between scene codes learned
from 3 views by (a) triplane auto-decoder with TV regularization
vs. (b) single-stage diffusion NeRF.
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Figure 9. Interpolation between the leftmost and rightmost sam-
ples using DDIM [50].

dense observations first, before training the diffusion mod-
els to learn their manifold. With strong performance on
multiple benchmarks, SSDNeRF demonstrates a significant
advancement towards a unified framework for general 3D
content manipulation.

Limitations and Future Work Currently, our method re-
lies on ground truth camera parameters during both training
and testing. Future work may explore transform-invariant
models. Additionally, the diffusion prior can become dis-
continuous with prolonged training, which affects general-
ization. Although early stopping is temporarily used, a bet-
ter network design or a larger training dataset may be able
to address this problem fundamentally.
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A. Details on Batch-Wise Rendering Loss

During single-stage training and test-time reconstruc-
tion, we randomly sample a batch of rays B,,, from all
available observations for each rendering pass. The actual
rendering loss needs to be rescaled to account for the batch
size | Bray|.

For single-stage training and test-time finetuning based
on Adam [25], we rescale the rendering loss to keep its over-
all magnitude invariant to the batch size | Byay|:

1
> L -

j€Bray

yo (i)

®)
where Ny, is the total number of observed rays of the i-th
scene.

For test-time gradient guidance, however, we treat the
sampled batch B,y as if it constitutes the full observation
set. Thus, the gradients originally defined in Eq. (5) are
actually calculated by:
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in which the balanced rendering weight )\re“n"‘(yi = Crena(l —

Bra
e—0-1Ny y) /Nf ™ is determined by the batch-effective

number of views Nf " instead of the number of all avail-
able views N, with their relationship defined as:

L

P = LSUN,
ray

(10)

where V., is the total number of observed rays of a test
scene.

B. Implementation and Hyperparameters
B.1. Implementation Details

We implement our models using PyTorch and MMGen-
eration toolkit [10]. Our NeRF renderer is based on a pub-
lic codebase torch-ngp [53], which employs a density-based
grid pruning strategy for efficient real-time rendering.

B.2. Hyperparameters

Table 4 presents the complete list of architec-
ture/training/testing hyperparameters used in our experi-
ments. It is worth noting that we adopt step decay policy
for both the learning rate and number of inner loop itera-
tions K, during training.

The major difference between unconditional- and
reconstruction-purposed models is the training schedule,
where reconstruction-purposed training stops early at 80K
iterations, as mentioned in the main paper. Other differ-
ences lie in the U-Net dropout rate and latent learning rate,

11

which may have marginal effects on the reconstruction per-
formance.

Regarding the Langevin correction step in the form of
2@+ 2® — 1560 ¢ + /50 with step size § and in-
dependent noise € ~ AN(0, ), we observe that this tech-
nique is more effective in reconstructing Chairs than Cars.
Therefore, to reduce inference time, Langevin correction is
not used for SRN Cars dataset. Our intuition is that Chairs
dataset exhibits higher variety in geometry, and Langevin
correction helps better explore the latent space by injecting
random noising during sampling.

B.3. Training and Inference Time

We train all our models using two RTX 3090 GPUs,
each processing a batch of 8 scenes. On average, a single
outer training step takes around 0.5 sec, 80K iterations take
around 11 hours, and 1M iterations cost around 6 days.

Under the unconditional generation setting (50 DDIM
steps), sampling a batch of 8 scenes takes 4.63 sec on a sin-
gle RTX 3090 GPU. Under the reconstruction setting with
the same batch size, a single guided DDIM step or Langevin
step takes 0.21 sec, and a single outer finetuning step takes
0.28 sec (when K, = 4). This sums up to around 23 sec for
reconstructing a batch of 8 Cars (single-view), and 102 sec
for reconstructing a batch of 8 Chairs (single-view) with ad-
ditional Langevin steps. Once the triplane latent codes are
sampled, neural rendering can be performed in real time to
synthesize the output images.

C. Additional Model Details

In the interest of reproducibility, this section provides ad-
ditional details about the models used in our experiments.
These techniques were not discussed in the main paper, be-
cause they are not essential components of the proposed
method, and they seem to have negligible effect on the over-
all results (Table 5). Nevertheless, we have included them
in our implementation to maintain consistency with an ear-
lier version of our codebase where they were found to be
useful at one stage.

C.1. Bounding the Latents via Tanh Mapping

In an earlier version of our implementation of the diffu-
sion model, we use the € prediction format as in DDPM [22]
instead of the current ¢ format proposed by [43]. To sta-
bilize denoising-based sampling process, the € format re-
quires clipping the denoised prediction Z at each step, which
is suitable for bounded data. This motivated us to bound the
latent code z; element-wise via an additional Tanh layer.

Specifically, let ; := s - tanh 2;*" be the bounded la-
tent code within the interval (—s, s), where 2} denotes
a raw, unbounded parameterization of the code. During
single-stage training and test-time finetuning, we perform



Unconditional

Reconstruction

Cars (full) Cars (3-view) Tables (full) Cars (full) Cars (3-view) Chairs (full)
x shape 3x6x128x128
Latent dimensionality dim (X)) 294912
U-Net base channels 128
U-Net channel multiplier 1,2,2,4,4
U-Net depth 2
U-Net attention resolutions 32,16, 8
U-Net attention heads 4
U-Net dropout 0.0 0.0 0.0 0.1 0.1 0.1
Diffusion steps 1000
Noise schedule Linear
Scene batch size | By| 16
Ray batch size | Byay| 4096
Rendering weight constant ¢,end 40 x 2714
Diffusion weight constant cg;g 4
SNR power w 0.5 0.5 0.5 0.5 0.5 0.25
Outer loop iterations Koyt 1M M M 80K 80K 80K
16, Kou < 2K, ) 16, Kout < 2K, )
Inner loop iterations K, 4, 2K < kout < 100K, {16' Four < 2K, 2K < kot < 100K, {16‘ Fous 2K, [16, kou < 2K, [16, kou < 2K,
9 ko > SOOK. kout > 2K. ke > SO0K. 4, kou > 2K. kout > 2K. kout > 2K.
Latent base learning rate 0.005 0.005 0.003 0.01 0.01 0.01
Decoder base learning rate 0.001 0.001 0.0006 0.001 0.001 0.001
Diffusion base learning rate 0.0001 0.0001 0.00006 0.0001 0.0001 0.0001
1, hou < 500K,
Learning rate multiplier {1‘_ Kour < 500K, 0.5, 500K < koue < 1M, {1 Fout < 500K, 1 | |
0.5, Kou > SO00K. L, IM < koy < 1.5M, 0.5, kouy > SO0K.
0.5, kous > 1.5M.
Ray batch size |Biay| 16384
DDIM steps 50 50 50 75 75 75
Langevin inner iterations 0 0 0 0 0 5
Langevin step size § 0.4
Guidance scale Agq - - - 3.2 x2M1 0.8 x 21 0.4 x 214
Rendering weight constant c;enq 40 x 2714
FT Diffusion weight constant ¢j; 1
FT SNR power w 0.5 0.5 0.5 0.5 0.5 0.25
FT outer loop iterations Koy 0 0 0 Table 6 Table 6 Table 6
FT inner loop iterations Kj;, Table 6
FT latent base learning rate Table 6

FT learning rate multiplier

0.998Fout Kin+kin

Table 4. Architecture/training/testing hyperparameters. kout, kin correspond to the outer and inner loop iteration indices in Algorithm 1.

2' is the number of pixels per view.

Method PSNRT SSIMt LPIPS| FID]
SSDNeRF (standard) 23.52 0.913 0.078  16.39
W/o Tanh 23.59 0.913 0.077 1634
W/o L2 regularization =~ 23.48 0.913 0.077  16.62

Table 5. Single-view reconstruction results on SRN Cars, showing
that Tanh and L2 regularization are likely to be redundant.

nent of SSDNeREF, as indicated in Table 5.

C.2. Additional L2 Regularization

optimization on the leaf variable z;*¥ in the unbounded
space. During test-time sampling, the denoised prediction
Z is thus hard-clipped to [—s, s] as well. We set the scale
hyperparameter s to 2 in all our experiments.

Because our final models have switched to the © predic-
tion format, Tanh mapping may not be an essential compo-

12

L2 latent regularization in auto-decoder training origi-
nates from the assumed Gaussian latent prior [35]. In two-
stage diffusion NeRF [32] or occupancy field [47] models,
L2 regularization helps control the norm of the latent codes
and discourage outlying values with respect to the clipping
during sampling. During single-stage training and test-time
finetuning, we also keep this regularization term in the ac-



Ny View indices Kot Kin LR  PSNR{T SSIM{T LPIPS| FID|
1 64 25 4 0.005  23.52 0.913 0.078 16.39
2 64, 104 50 4 0.01 26.49 0.944 0.054 10.66
4 0, 83, 167, 250 100 4 0.02 28.29 0.955 0.049 11.09
8 0, 36,71, 107, 143, 179, 214, 250 160 5 0.04 31.26 0.973 0.035 8.54

16 0, 17,33, 50, 67, 83, 100, 117, 133, 150, 167, 183, 200, 217, 233, 250 200 8 0.08 34.31 0.986 0.018 3.09

32 0.8, 16,24, 32, 40, 48, 56, 65, 73, 81, 89, 97, 105, 113, 121, 200 8 0.08 35.66 0.989 0.015 235

129, 137, 145, 153, 161, 169, 177, 185, 194, 202, 210, 218, 226, 234, 242, 250

Table 6. Details on sparse-to-dense reconstruction on SRN Cars dataset, including the number of input views [V, and their indices, number
of finetuning outer loop iterations Kous, number of finetuning inner loop iterations Kiy, finetuning learning rate of the latent code, and

novel view synthesis evaluation results.
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(a) Aga = 0.4 x 214

(b) Aga = 0.1 x 21

(€) Aga = 0.05 x 2*

Figure 10. Failure case (a) and (b) in single-view NeRF reconstruction from real images. Sample (c) resolves this issue by reducing the

guidance scale Agq.

tual loss function:
L= )\rend»crend({xi}v w) + )\diff»cdiﬁ'({wi}a ¢)

Are
o E (i),

* dim (X

1D
where dim (X) is the latent dimensionality, and the regular-
ization weight A, is set to 0.003. However, as suggested in
Table 5, L2 regularization also has negligible impact under
the single-stage training framework.

D. Experiment Details and Additional Results
D.1. Details on Sparse-to-Dense Reconstruction

Table 5 presents more details on the experiment settings,
testing hyperparameters, and evaluation results of sparse-
to-dense reconstruction on SRN Cars dataset.

Overall, we find that more iterations and higher learning
rate are required when finetuning on more input views, but
the learning rate should not exceed the upper bound of 0.08
for stability, and a maximum of 200 outer loop iterations
(totaling 1600 inner loop iterations) are sufficient for dense-
view settings.

D.2. Single-View Reconstruction from Real Images

In this subsection, we provide addition experiments on
single-view NeRF reconstruction from real images, using
the model trained on the synthetic SRN Cars dataset. This
demonstrates the generalization capability of SSDNeRF un-
der substantial domain gap.

Data Preparation We extract images of vehicles from the
KITTI 3D object detection dataset [ | 5], which provides an-
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notated 3D bounding boxes of objects in the camera view.
We use the provided ground truth bounding box dimensions
and poses to align the objects in the same world coordinate
system as in SRN Cars dataset. In addition, we leverage
the segmentation masks annotated by Heylen et al. [21] to
remove the background. All images are cropped and re-
sized to 128x128. In real applications, one could also use a
monocular 3D object detector and an instance segmentation
model to obtain these inputs.

Testing Hyperparameters We enable Langevin correc-
tion (5 iterations) to better handle out-of-distribution
scenes, and we adopt a different setting of guidance scale
Agd = 0.4 x 2% and finetuning diffusion weight constant
g =4

Qualitative Results and Failure Case We present qual-
itative examples of novel views and extracted meshes in
Figure 11. Apart from that, we have also noticed a fail-
ure case where a large portion of the geometry is missing
(Figure 10 (a)). Nevertheless, this issue can be resolved by
reducing the guidance scale \gq (Figure 10 (c)). Overall,
we observed that a guidance scale that is too large can re-
sult in an unstable sampling process, ultimately leading to
corrupted geometries.

D.3. Addition Qualitative Examples

We show randomly sampled scenes generated by SSD-
NeRF in Figure 12, Figure 13, and Figure 14. For single-
view reconstruction, we compare the novel views predicted
by SSDNeRF to those predicted by CodeNeRF [24] and Vi-
sionNeRF [28] in Figure 15 and Figure 16.
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Figure 14. Uncurated samples generated by SSDNeRF trained on a 3-view subset of SRN Cars. Note that the failure case (right column,
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due to a data preprocessing issue in SRN Cars [48].
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