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Abstract

Referring video object segmentation (RVOS), as a su-
pervised learning task, relies on sufficient annotated data
for a given scene. However, in more realistic scenarios,
only minimal annotations are available for a new scene,
which poses significant challenges to existing RVOS meth-
ods. With this in mind, we propose a simple yet effective
model with a newly designed cross-modal affinity (CMA)
module based on a Transformer architecture. The CMA
module builds multimodal affinity with a few samples, thus
quickly learning new semantic information, and enabling
the model to adapt to different scenarios. Since the pro-
posed method targets limited samples for new scenes, we
generalize the problem as - few-shot referring video object
segmentation (FS-RVOS). To foster research in this direc-
tion, we build up a new FS-RVOS benchmark based on cur-
rently available datasets. The benchmark covers a wide
range and includes multiple situations, which can maxi-
mally simulate real-world scenarios. Extensive experiments
show that our model adapts well to different scenarios with
only a few samples, reaching state-of-the-art performance
on the benchmark. On Mini-Ref-YouTube-VOS, our model
achieves an average performance of 53.1 J and 54.8 F ,
which are 10% better than the baselines. Furthermore, we
show impressive results of 77.7 J and 74.8 F on Mini-Ref-
SAIL-VOS, which are significantly better than the baselines.
Code is publicly available at https://github.com/
hengliusky/Few_shot_RVOS.

1. Introduction
Referring video object segmentation (RVOS) aims to

segment target objects described in natural language in
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Figure 1: Comparison of Few-shot RVOS and RVOS and
the setting of Few-shot RVOS. (a) The training and testing
sets overlap in the RVOS. (b) Disjoint training and testing
sets in the Few-shot RVOS. Different shapes represent dif-
ferent classes. (c) Few-shot RVOS segments the referred
object of the same class as the support set in the video.

videos. In real-world scenarios, it has a wide range of ap-
plications, such as video editing [9] and human-computer
interaction, so RVOS has attracted much attention from the
research community. Unlike traditional semi-supervised
video object segmentation [10], RVOS is more challeng-
ing because it not only lacks the ground-truth mask of the
first frame of the video but also needs to interact with mul-
timodal information of vision and language.

The great success of various tasks based on deep learn-
ing benefits from sufficient labeled data. Detailed annotated
masks and language descriptions in real-world RVOS tasks
are relatively scarce. The researchers have to annotate each
frame in the video in detail and provide a referring expres-
sion for the segmentation object. Therefore, obtaining high-
quality labeled data requires a high cost. With the popular-
ity of movies, YouTube videos, TikTok streaming videos,

ar
X

iv
:2

30
9.

02
04

1v
1 

 [
cs

.C
V

] 
 5

 S
ep

 2
02

3

https://github.com/hengliusky/Few_shot_RVOS
https://github.com/hengliusky/Few_shot_RVOS


etc., video data in various fields has shown explosive growth
in this media age. The demand for processing diverse data
has brought significant challenges. In order to handle di-
verse data, existing RVOS methods must rely on massive
and diverse labeled data for training. But due to fixed and
limited training classes, existing RVOS methods [1, 33] are
essentially constrained to adapt to the highly dynamic and
highly diverse data in the real world. On the other hand, if
ones fine-tune existing RVOS methods on a few samples to
adapt to real-world data, high-quality results are hard to be
achieved because the labelled data is insufficient to support
the model for learning the new semantics. Therefore, how
to make the RVOS methods applicable to real-world diverse
data with a lower cost is an urgent problem.

To address this problem, we propose the cross-modal
affinity (CMA) module to build multimodal relationships
in a few samples and learn new semantic information for di-
versified data. Specifically, given only a few annotated sam-
ples (language expressions and the referred object masks),
we hierarchically fuse visual and text features in a cross-
attention manner to obtain robust feature representations for
a specific category. In this way, the model can handle enor-
mous data in the same category more efficiently.

Essentially, the proposed method targets limited sam-
ples. Therefore, we generalize the problem as Few-Shot Re-
ferring Video Object Segmentation (FS-RVOS). We show
the setting of FS-RVOS and the difference from existing
RVOS in Figure 1. Unlike RVOS, the training and testing
sets’ categories disjoint in the FS-RVOS. Given a few sup-
port video clips together with corresponding language de-
scriptions and object masks, FS-RVOS aims at segmenting
videos in the query set, as shown in Figure 1(c).

The key to FS-RVOS lies in the support set utilization
and understanding of vision-language information. To bet-
ter leverage the information in the support set, two meth-
ods have been proposed based on the prototype and atten-
tion mechanisms. The prototype-based [21, 35] methods
compress the features belonging to different classes to ob-
tain prototypes. However, noise is easily generated during
the process. In addition, the spatial structures are ignored,
resulting in different degree of information loss. Another
methods [37, 38, 39] employ the attention mechanism to en-
code foreground pixels from support features and aggregate
them with query features. Although these methods achieve
high-quality results in image and video domains, they are
still under-explored in vision-language tasks.

To better utilize vision-language inputs, we propose the
cross-modal affinity module to build the multimodal rela-
tionships between samples in the support and query sets.
Specifically, multimodal features within the support set and
query set are first fused separately. The information among
them is then aggregated, which effectively prevents query
features from being biased by irrelevant features.

Since this is the first work exploring Few-shot RVOS,
the existing datasets are not directly applicable. Therefore,
we build up a new FS-RVOS benchmark based on Ref-
YouTube-VOS [22], named Mini-Ref-YouTube-VOS. The
new benchmark covers a wide range with a balanced num-
ber of high-quality videos in each category. To measure
the model’s generalization ability, we also build a dataset
different from natural scenes based on a synthetic dataset
SAIL-VOS [13], named Mini-Ref-SAIL-VOS. Since only
videos and detailed annotated masks exist in the SAIL-VOS
dataset, we add natural language descriptions correspond-
ing to the segmentation targets for the dataset.

The main contributions of this work are as follows.

• For real-world limited samples, we propose a Cross-
Modal Affinity (CMA) for building multimodal informa-
tion affinity for referring video object segmentation.

• We explore a novel Few-shot RVOS problem, which
learns new semantic information with limited samples
and can adapt to diverse scenarios.

• We build up the first FS-RVOS benchmark, where we
conduct comprehensive comparisons with existing meth-
ods, showing the superiority of the proposed model.

2. Related Work

Few-Shot Semantic Segmentation. Few-shot semantic
segmentation, first proposed by Shaban et al. [23], aims to
learn how to segment new categories of images through a
few samples. Recent advances in few-shot semantic seg-
mentation originate from the application of metric learn-
ing. Based on PrototypicalNet, Dong et al. [7] first employ
the metric learning technique and apply cosine similarity
between pixels and prototypes for prediction. In addition,
PANet et al. [31] introduce prototype alignment regulariza-
tion to simplify the framework. PFENet et al. [28] use prior
knowledge from the pretrained backbone to find the regions
of interest and the different designs of feature pyramid mod-
ules, and previous leverage mappings to achieve better seg-
mentation performance.

However, the effectiveness of these few-shot segmenta-
tion methods depends mainly on the quality of the proto-
types obtained from the support set. Fan et al. [8] ad-
dress the critical intra-class appearance differences inherent
in the few-shot segmentation problem by performing self-
support matching with query features. Their strategy effec-
tively captures the consistent underlying features of query
objects to match query features. Tian et al. [27] propose
a novel context-aware prototype learning method that lever-
ages prior knowledge from support samples and dynami-
cally enriches contextual information by using adaptive fea-
tures. Motivated by the idea that using the base learner to
identify confusing regions in the query image and further



refining the predictions of the meta-learner, BAM [15] es-
tablishes a new method for few-shot segmentation that does
not focus on feature extraction or visual correspondence.

Compared to image-based few-shot segmentation, few-
shot video object segmentation works are relatively rare and
remain in the early stage. The initial work [25], [3] mainly
solves this problem through the attention mechanism. How-
ever, these methods do not consider temporal information.
Thus, based on temporal transductive, the recent work [24]
applies reasoning mechanisms and has achieved good re-
sults in cross-domain scenarios. In a word, all the above-
mentioned few-shot segmentation methods are only for a
single modality - image or video, and cannot handle seg-
mentation under multimodal conditions (i.e., with linguistic
referring expressions).

Referring Video Object Segmentation. Gavrilyuk et
al. [11] first introduce the RVOS task. They generate con-
volutional dynamic filters from textual representations and
convolve them with visual features of different resolutions
to obtain segmentation masks. To overcome the limitations
of traditional dynamic convolution, Wang et al. [30] pro-
pose a context-modulated dynamic convolution operation
for RVOS, where the kernel is generated from language
sentences and surrounding contextual features. However,
since the focus is only on video actors and actions, their
approach only applies to a few object classes and action-
oriented descriptions. Weak-Shot Semantic Segmentation
(WSSS) [4, 42] focuses on the overall scene in the image,
treating masks and text as the support set and text as the
query set. However, in WSSS, the text is limited to sin-
gle words or phrases indicating class names and directly
mapped to labels for pixel-level classification.

Khoreva et al. [14] propose a two-stage approach that
first performs referring expressions grounding and then uti-
lizes the predicted bounding boxes to guide pixel-wise seg-
mentation. Seo et al. [22] also present a framework called
URVOS, which first predicts the initial mask based on the
image and then utilizes the predicted mask of the previous
frame for RVOS by memorizing the attention module.

Most recent RVOS works employ cross-attention to in-
teract visual images with linguistic information. LBDT [6]
uses language as an intermediate bridge to connect temporal
and spatial information and leverages cross-modal attention
operations to aggregate language-related motion and ap-
pearance. MMVT [40] calculates the optical flow between
frames and fuses it as motion information with text fea-
tures and visual features. However, these frame-based spa-
tial granularity multimodal fusion methods have limitations
and tend to lead to mismatches between visual and linguis-
tic information. Therefore, a recent piece of work [32, 40]
explores a novel multi-level representation learning method
and introduces dynamic semantic alignment to adaptively
fuse the two modal information.

Transformer [29] has been widely applied and achieved
great success in many computer vision tasks, such as ob-
ject detection [2, 43] and image segmentation [41, 5]. Since
DETR [2] introduces a new query-based paradigm, the lat-
est works [1, 33, 16] prefer to apply the DETR’s framework
for RVOS task. Specifically, they utilize Transformer struc-
tures to interact visual images with linguistic data. Because
Transformer has a remarkable ability to mine non-local cor-
relation, they are able to attain SOTA performance in ac-
curacy and efficiency. Despite the relative effectiveness of
current RVOS techniques, they are primarily restricted to
regular supervised learning settings, which would not be
able to deal with unseen scenes with few shots.

3. Methods
3.1. Overview

In the setting of FS-RVOS, we have training and test-
ing datasets Dtrain and Dtest with disjoint category sets
Ctrain and Ctest, i.e., Ctrain ∩ Ctest = ∅. Similar to few-
shot learning tasks [26], episode training is adopted in this
work, where Dtrain and Dtest consist of several episodes.
Each episode contains a support set S and a query set Q,
where the text-referred objects (target objects) from both
sets belong to the same class. The support set has K image-
mask pairs S = {xk,mk}Kk=1 and the corresponding refer-
ring expression with L words Ts = {ti}Li=1, where mk is
the ground-truth mask of the video frame xk. The query
set Q = {xq

i }
N
i=1 is a selection of consecutive frames from

a video and the corresponding natural language description
with M words Tq = {ti}Mi=1, N is the number of frames.
With the setting above, FS-RVOS encourages models to
segment objects with the unseen class in a query set based
on a few samples in the support set.

As shown in Figure 2, our framework mainly consists of
a Feature Extraction module, a Cross-modal Affinity mod-
ule (CMA), and a Mask Generation module. With the sup-
port and query data as input, the framework predicts object
masks for the query data, under the guidance of the corre-
sponding language expressions. Specifically, the vision and
text encoders extract features for visual and textual inputs,
respectively. Then, CMA fuses visual and textual features
hierarchically. The fused features are used to build the re-
lationship between the support set and the query set. The
output features are finally fed to the Mask Generation mod-
ule to get the final segmentation results.

3.2. Feature Extraction

We use a shared-weight visual encoder to extract multi-
scale features from each frame in the support set and query
set, resulting in visual feature sequences Fvs = {fvs}Kvs=1

and Fvq = {fvq}Nvq=1. For linguistic information, we use a
Transformer-based text encoder [19] to extract text features
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Figure 2: The overall pipeline of our framework. The fea-
ture encoder extracts visual and textual information from
the support and query sets. Then, the Cross-modal Affinity
module calculates the multimodal information affinity be-
tween the support set and the query set. Finally, the final
segmentation result is obtained through Mask Generation.

Fts = {fts}Lts=1 and Ftq = {ftq}Mtq=1 from the natural
language descriptions Ts and Tq that correspond to the input
support data and the query data.

3.3. Cross-modal Affinity Construction

With a few samples in the support set, the goal of FS-
RVOS is to efficiently leverage the given information and
quickly adapt to relevant scenarios. Compared with conven-
tional few-shot tasks, FS-RVOS not only builds the affin-
ity between the support and query sets but also involves
multimodal relationships between videos and referring ex-
pressions. Therefore, FS-RVOS is more challenging and
requires specialized solutions for high-quality results.

We propose the Cross-Modal Affinity (CMA) module to
achieve this, as shown in Figure 3. We first perform cross-
attention fusion between the visual and textual features of
support and query data, to obtain pixel-augmented multi-
modal features. Then, in order to aggregate beneficial infor-
mation in support features, we build an affinity relationship
between the support set and the query set.

Due to the diversity of referred objects and the drastic
changes between video frames, it is a challenge to achieve
the accurate location of the target only by visual informa-
tion. Therefore, to obtain the accurate positioning of the
segmentation target, we use language information as a sup-
plement, which contains a specific description of the re-
ferred objects. To interact and align the visual features and
text features, multi-head cross-attention (MCA) is proposed
to fuse multimodal information, achieving two multi-scale

feature maps F
′

vs = {f ′

s}Ks=1 and F
′

vq = {f ′

q}Nq=1:

f
′

vs = MCA(fvs, fts), f
′

vq = MCA(fvq, ftq), (1)

where fvs, fvq represent the visual features of support and
query, fts, ftq are their corresponding textual features. Here
we calculate an affinity between textual features and visual
features to filter out irrelevant visual information. Com-
pared with concatenation, MCA suits our framework better
since it can leverage the similarities between multimodal
features for information complementation.

The affinity between the support set and query set indi-
cates the multimodal feature correlation among them, pro-
viding valuable clues for the segmentation of the query data.
Although the objects to segment in the support and query
sets belong to the same category, their visual properties usu-
ally have significant differences, such as appearance, pose,
and scene. This means only a tiny part of the information in
the support data is conducive to segmenting the query data,
while other information will cause bad results. Therefore,
we urgently need to solve the problem of computing the cor-
rect affinity relationship between multimodal information in
the support and query sets.

To achieve this, we propose a self-affinity block to en-
code the query features and a cross-affinity block to enable
the query features to focus on beneficial pixels in the sup-
port features. In particular, given the input query features,
we utilize a convolution operation to map them as query qq ,
key kq , and value vq . We perform the same operation for the
support features to map them to key ks and value vs. The
input of the self-affinity block does not include the support
features and mainly aggregates the context information of
the query features for better segmentation.

First, we calculate the affinity map AQ =
qq·(kq)

T
√
dhead

, where
dhead is the hidden dimension of the input sequences, and
we assume all sequences have the same dimension 256 by
default. Therefore, the query features after the self-affinity
block are represented as:

qs = Softmax(AQ)vq. (2)

We then feed the obtained query features to the cross-
affinity block. The purpose of the cross-affinity block is to
construct the cross-affinity relationship between the support
features and the query features and aggregate the useful in-
formation. Our cross-affinity block can be formulated as:

queryfeat = Softmax(
qs · (ks)T
√
dhead

)vs, (3)

where qs is the output of the self-affinity block. Through
these two modules, query features enhance features by mod-
eling contextual information and computing the correlation
between support and query features, effectively avoiding the
attention bias caused by irrelevant features.
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Figure 3: The architecture of the Cross-modal Affinity
(CMA) module. We use multi-head cross-attention to fuse
visual and text features to get more robust features. Self-
affinity for modeling contextual information on query fea-
tures and cross-affinity for aggregating beneficial informa-
tion from support features.

3.4. Mask Generation

The goal of the Mask Generation module is to find the
most relevant objects and decode the features step by step.
To achieve this goal, the structure of Deformable-DETR
[43] and feature pyramid [17] has been used in our work.
We add the corresponding positional encoding to the fea-
ture sequence that aggregates beneficial information, which
is then sent to the Transformer encoder. In the decoder part
of Transformer, we introduce N learnable anchor boxes as
queries to represent the instances of each frame. These
queries are replicated as decoder input for all frames and
finally converted into instance embeddings by the decoder,
resulting in Nq = T ×N predictions.

In the feature pyramid network, in order to gradually fuse
multimodal features from different layers, the output of the
Transformer encoder and the features from the vision en-
coder are stacked to form hierarchical features. We use f l

v

to represent visual features at each level. First, we down-
sample the multi-scale visual features, and the time dimen-
sion remains unchanged. Then interact with visual and lin-
guistic features in a cross-attention manner to enhance ob-
ject pixel features, thereby facilitating mask prediction. The
fused features are upsampled to restore the previous shape:

Cross(f l
v, ftq) = Softmax(

f l
v · (ftq)T
√
dhead

)ftq, (4)

where ftq represents the text features corresponding to the
query set. Finally, we pass the features of the last layer
through a 3 × 3 convolutional layer to get the final feature
maps Fseg =

{
f t
seg

}T

t=1
, where f t

seg ∈ RH
4 ×W

4 ×C .
Furthermore, we construct a set of auxiliary heads to ob-

tain the final object mask across frames. The class head
is used to calculate the confidence score st. The score indi-

cates whether the instance corresponds to the referred object
and whether the object is visible in the current frame. The
kernel head is implemented by three consecutive linear lay-
ers, which generate the parameters W = {wt}

Nq

t=1 of the Nq

dynamic kernels. We use them as convolution filters on the
feature maps, generating a series of segmentation masks.

3.5. Loss Function

In Mask Generation, we use N learnable anchor boxes
as queries and generate a set of Nq = T ×N prediction se-
quences. We denote the predicted sequence as ŷ = {ŷi}

Nq

i=1

and the prediction for the ith instance is expressed as:

ŷi =
{
ŝti, m̂

t
i

}T

t=1
, (5)

where ŝti ∈ R1 is a fractional score indicating whether the
instance corresponds to the referred object. m̂t

i ∈ RH
4 ×W

4

is the predicted binary segmentation mask. Similar to the
previous methods [1, 33], we use dynamic convolution to
generate the object mask. We get the final feature maps f t

seg

through the feature pyramid network, and the mask predic-
tion can be calculated by m̂t =

{
wt ∗ f t

seg

}
.

The sequence of ground-truth instances is denoted as
y = {st,mt}Tt=1, and st is an one-hot value and equals 1
when the ground-truth instance is visible in the frame, and
0 otherwise. Our loss function is defined as:

L(y, ŷi) = λclsLcls(y, ŷi) + λkernelLkernel(y, ŷi),
(6)

where λcls, λkernel are hyperparameters to balance the loss.
We use focal loss [18] (denoted as Lcls) to supervise the
prediction of instance sequence reference results. Lkernel

is a combination of DICE loss [20] and the binary mask
focal loss.

3.6. Inference

In the inference phase, we treat all input video frames as
a whole and predict the mask trajectory for the entire video
using only one forward pass. Given an input video and the
corresponding linguistic expression, our model generates a
sequence of N instances. For each frame, we select the
instance sequence with the highest confidence score as the
final prediction, and its index can be expressed as:

s = argmax
i∈{1,2,...,N}

si. (7)

The final prediction m = {st}Tt=1 for each frame is ob-
tained from the mask candidate set m̂t with index s.

4. Benchmark
Since the existing RVOS datasets [22, 14, 34, 11] only

target specific scenarios, the model cannot handle the di-
verse scenarios in the real world. Likewise, these datasets
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Figure 4: Annotation examples of the Mini-Ref-SAIL-VOS dataset.

are not suitable for the few-shot RVOS problem. This is
because the train/test/validation sets of these datasets have
class repetition and cannot be used to evaluate the generality
of unseen classes.

Mini-Ref-YouTube-VOS. To match the FS-RVOS setting,
we build up a new dataset called Mini-Ref-YouTube-VOS
based on the Ref-YouTube-VOS dataset [22]. The data
that can be directly obtained from the Ref-YouTube-VOS
dataset contains 3,471 videos, 12,913 referring expressions,
and annotated instances covering more than 60 categories.
However, some videos in this dataset consist of multiple cat-
egory instances. When preparing data for the few-shot set-
ting, we cleaned up the dataset, i.e., removing such videos
and keeping only those containing only one category in-
stance, a total of 2387 videos were obtained.

The video data in the dataset should be class-balanced,
and the number of samples in each class should not vary
too much to avoid overfitting any class. Therefore, we deal
with the categories whose number of videos does not meet
the requirements to ensure the class balance of the dataset.
After the above screening, 1,668 videos were obtained, in-
cluding 48 classes. To better show the model results, we
adopt the cross-validation method to divide the dataset into
four folds on average. Each fold contains 36 training and
12 test classes with disjoint categories.

Mini-Ref-SAIL-VOS. Most Mini-Ref-YouTube-VOS data
involve natural scenes of a relatively homogeneous type
and therefore do not represent the diversity of data in
the real world. To better demonstrate the generalization
of our model, we collect videos from SAIL-VOS [13] to

construct a new dataset Mini-Ref-SAIL-VOS. The SAIL-
VOS dataset is a synthetic dataset collected from a video
game GTA-V, aiming to foster semantic amodal segmenta-
tion research. In SAIL-VOS, each frame is accompanied
by densely annotated, pixel-wise and amodal segmentation
masks with semantic labels. Since the data is collected from
the game, phenomena such as shot transition, segmenta-
tion target cross-frame, and target occlusion are inevitable,
which brings challenges to the segmentation task.

We reorganize the SAIL-VOS dataset to pick out sam-
ples suitable for the FS-RVOS setting. First, for videos with
few frames for segmentation targets, we directly discard
them. For the case where the segmentation target appears
across frames, we manually delete the frames where the tar-
get does not appear in the middle to maintain the temporal
continuity of the segmentation target. For phenomena such
as object occlusion, we characterize it as a challenge and do
not deliberately delete video frames with object occlusion.
Following the above settings, we collected a dataset with 68
videos and 3 semantic categories.

It is worth noting that although there are accurate mask
annotations in the SAIL-VOS dataset, natural language de-
scription corresponding to the segmentation target is not
available. Thus, to adapt it to FS-RVOS, we employed ex-
pert annotators to provide referring expressions after data
collection. Given a pair of videos for each annotator, the
video frames are superimposed with corresponding masks
to indicate the objects to be segmented. The annotators
were then asked to provide a distinguishing statement with a
word limit of 20 words. To ensure the quality of natural lan-
guage annotations, all annotations are verified and cleaned



Method Fold-1 Fold-2 Fold-3 Fold-4 Mean

J DANet [3] 47 33.5 38.5 44 40.8
Ours 59.5 45.3 50.4 57.3 53.1

F DANet [3] 49.3 38.2 41.4 45.8 43.7
Ours 60.8 48.9 51.3 58.1 54.8

Table 1: Quantitative results on Mini-Ref-YouTube-VOS.
We added visual language fusion modules to DANet.

Method Fold-1 Fold-2 Fold-3 Fold-4 Mean

J DANet [3] 54.3 47.6 30.9 30.6 40.9
Ours 80.9 80.8 80.1 68.9 77.7

F DANet [3] 54.1 48.4 35.2 36 43.4
Ours 77.1 77 77.3 67.8 74.8

Table 2: Quantitative results on Mini-Ref-SAIL-VOS.

up after the initial annotation. The target will not be used if
the natural language description cannot clearly describe the
target. As shown in Figure 4, we show the selected videos
along with referring expressions.

5. Experiments
5.1. Implementation Details

We adopt ResNet-50 [12] and RoBERTa-Base [19] as
our vision and text encoders, respectively. During the train-
ing stage, the parameters of both encoders are frozen. In
our experiments, we adopt a 5-shot setting. Specifically, we
extract 5 consecutive frames and the corresponding refer-
ring expressions from a certain video of a class as a support
set. The query set is composed of consecutive frames and
corresponding referring expressions extracted from other
videos belonging to the same class. We test each fold 5
times and report the average confidence of the results. Our
model utilizes AdamW for optimization. The weight decay
is 5 × 10−4 and the initial learning rate is 1 × 10−4. To
balance GPU memory efficiency, we downsample all video
frames, with the shortest video frame size being 360 and the
longest 640. The parameters of the loss function are set as
λcls = 2, λkernel = 5. All methods for conducting experi-
ments will be pre-processed and fine-tuned in the same way,
i.e., pre-trained on Ref-COCO [36] dataset.

Following the settings of previous RVOS works, we use
the region similarity (J ) and the contour accuracy (F) to
measure the model performance.

5.2. Results

As a novel problem, no relevant works can be directly
used for comparisons. Therefore, we choose DANet [3] as
the baseline given we both focus on few-shot video seg-
mentation. For a fair comparison, we add a visual-language
fusion module to the Few-Shot VOS model.

Method J F J&F
LBDT [6] 27.5 / 42.4 36.2 / 37.3 31.6 / 39.6

ReferFormer [33] 65.1 / 74.1 62.8 / 64.9 64.0 / 69.5
MTTR [1] 66.5 / 69.7 64.9 / 68.1 65.7 / 68.9

Ours 80.9 77.1 79

Table 3: Comparison with state-of-the-art methods from
RVOS on the Mini-Ref-SAIL-VOS dataset to measure the
model’s generalization. Underlined scores are achieved af-
ter fine-tuning.

Self-affinity Cross-affinity J&F
- - 57.9
✓ - 59.2
✓ ✓ 60.2

Table 4: Ablation studies that validate the effectiveness of
each component in our CMA. The first result is obtained
with our baseline.

Mini-Ref-YouTube-VOS. We present the experimental re-
sults of our model on the Mini-Ref-YouTube-VOS dataset
in Table 1. It can be observed that our method significantly
outperforms DANet. Compared with previous methods, our
method achieves a substantial increase in average perfor-
mance, with an average improvement of more than 10%.
The excellent performance demonstrates the superiority and
robustness of our proposed method.

Mini-Ref-SAIL-VOS. To evaluate the generalization of our
model, we make further experiments and comparisons on
the Mini-Ref-SAIL-VOS dataset. We do not perform new
training on the Mini-Ref-SAIL-VOS dataset but directly test
with the model trained on Mini-Ref-YouTube-VOS. Note
that the videos in the Mini-Ref-SAIL-VOS dataset are from
Game scenes, and they hold a noticeable domain different
from the data in the Mini-Ref-YouTube-VOS dataset. In
addition, the objects in some videos are occluded and these
phenomena make this dataset somewhat challenging. We
show the experimental results in Table 2. According to the
Table, it is clear that our method achieves a significant im-
provement over the baseline.

Moreover, we also make further comparisons with some
state-of-the-art RVOS methods [6, 33, 1]. Here, we only
show the results under Fold-1. To measure the RVOS
model’s generalization, we first directly test the trained
RVOS models on the Mini-Ref-SAIL-VOS dataset. Since
our few-shot learning task needs a few samples as support
data, for a fair comparison, these RVOS models will be fine-
tuned with a few samples. The corresponding results are
shown in Table 3. From the table, it can be seen that al-
though the fine-tuning of the existing models can lead to
performance gains, there is still a big gap compared to our



a zebra to the left of another zebra                                                           a zebra on the right side of the screen, eating grass

a bear walking towards another bear                                        a beer on the right hand side of another walking in their area

a whale swimming on the left of another whale    a whale, swimming deeper into the ocean, on the right side of the screen

A man in a red dress and a hat standing on the left is talking to someone

A black car parked on the side of the road

(a)

(b)

Figure 5: Qualitative results on (a) Mini-Ref-YouTube-VOS and (b) Mini-Ref-SAIL-VOS.

proposed approach. This is because our model effectively
constructs the multimodal relationship between the support
set and the query set so that it can quickly adapt to new
scenarios by only using a few samples.

5.3. Ablation Study

In this section, we perform an ablation study on the Mini-
Ref-YouTube-VOS dataset to evaluate the design and the
robustness of the model. Unless otherwise stated, we only
show results under Fold-1. Denoting J&F as the average
of J and F , we can use the indicator to show the perfor-
mance of the model.

Cross-modal Affinty. We perform ablation studies on the
components of the CMA in Table 4. The results of the base-
line are shown in the first line. As mentioned before, the
baseline refers to directly concatenating the support features
and query features into the Mask Generation to obtain the
segmentation mask.

First, we only utilize the self-affinity block to establish
contextual information between pixels to enhance query

features. At this time, support features are concatenated
with the enhanced query features and then fed to the Mask
Generation module. It can be seen that good results are
achieved, indicating that the Transformer does work for
modeling features and extracting contextual information.
By adding the proposed cross-affinity block, the perfor-
mance can be further improved by 1%. Such comparisons
show that the cross-affinity block properly constructs the
multimodal relationship between the support set and the
query set, effectively avoiding the bias of the query features.

5.4. Qualitative Results

The qualitative results of our model are presented in Fig-
ure 5. From the figure, It can be seen that the proposed
model can segment the referred objects accurately in a va-
riety of challenging situations. Furthermore, we also show
the qualitative results on the Mini-Ref-SAIL-VOS dataset.
In general, our model always achieves high-quality results
even in the face of samples from different scenes.



6. Conclusion
In this work, we propose CMA to learn multimodal affin-

ity in a few samples to segment diverse data. Further, we
generalize it as a few-shot RVOS problem. We validate
our model on the newly constructed datasets - Mini-Ref-
YouTube-VOS and Mini-Ref-SAIL-VOS and obtain state-
of-the-art performance. We hope this work can cast a light
on future FS-RVOS research.
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