
Learning Human-Human Interactions in Images from Weak Textual Supervision

Morris Alper and Hadar Averbuch-Elor
Tel Aviv University

Abstract

Interactions between humans are diverse and context-
dependent, but previous works have treated them as cate-
gorical, disregarding the heavy tail of possible interactions.
We propose a new paradigm of learning human-human in-
teractions as free text from a single still image, allowing for
flexibility in modeling the unlimited space of situations and
relationships between people. To overcome the absence of
data labelled specifically for this task, we use knowledge
distillation applied to synthetic caption data produced by a
large language model without explicit supervision. We show
that the pseudo-labels produced by this procedure can be
used to train a captioning model to effectively understand
human-human interactions in images, as measured by a va-
riety of metrics that measure textual and semantic faith-
fulness and factual groundedness of our predictions. We
further show that our approach outperforms SOTA image
captioning and situation recognition models on this task.
We will release1 our code and pseudo-labels along with
Waldo and Wenda, a manually-curated test set for still im-
age human-human interaction understanding.

1. Introduction
“No man is an island entire of itself.” -John Donne

Humans are social beings. As such, interactions among
people are ubiquitous and diverse, affected by various fac-
tors including social context and cultural norms. Reason-
ing about these interactions is crucial for gaining a holistic
understanding of visual scenes depicting people. However,
in spite of significant progress in analyzing isolated human
actions [31, 78, 85] and relationships between entities and
objects [29, 90], far less attention has been devoted towards
an automatic understanding of human-human interactions
(HHI). This is despite the importance of this task for appli-
cations such as interactive robotics, social behaviour under-
standing, and captioning systems for the visually impaired.

There are a number of factors that make the analysis of

1via our project page https://learning-interactions.
github.io

Figure 1. How would you describe the interactions depicted in
these images? There are unlimited possible interactions between
people which cannot be easily described by a fixed set of cate-
gories or actions. Context plays a crucial role, as in the left image
where the clothing and cake in the background help to interpret the
depicted interaction. Moreover, interactions may involve partici-
pants at a physical distance as in the image on the right. To model
the heavy tail of possible interactions, we propose to learn HHI as
free text (see below2 for predictions using our method).

HHI difficult. The space of possible interactions between
people is vast and requires understanding social context and
physically non-local relationships, as illustrated in Figure 1.
In addition, images depicting HHI may have multiple inter-
pretations, some of which may be simultaneously correct.
For example, the image on the left might depict “celebrat-
ing a wedding” as well as “dancing”. Contextual cues such
as the cake in the background of the image provide addi-
tional information that hints at the depicted HHI.

Prior works targeting HHI understanding focus on a
small fixed number of interactions; representative works in-
clude [67, 69, 46, 32], all of whose models are trained to
recognize no more than ten interaction classes. In this work,
we are interested in modeling the heavy tail of possible HHI
to better understand the rich variety of ways in which people
interact. To this aim, we propose to model HHI understand-
ing as free text generation; since HHI are not confined to a
fixed set of categories or even to a syntactic class such as
verbs, HHI as free text enables the expression of an infinite
variety of possible interactions. Furthermore, in contrast to
previous works that frequently rely on extra context such
as video data [64], we use a single image with no addi-
tional information (during inference), making our method
more widely applicable. We focus on what Stergiou and

2A model fine-tuned on our pseudo-labels yields “dancing” and “hav-
ing a picnic”.
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Poppe [64] term dyadic interactions—pairwise interactions
between two people. Our goal is to identify the most salient
dyadic interaction given an image of two or more people
interacting.

One of the primary challenges to modeling HHI is a
scarcity of labelled data for this particular task. There are
only a handful of relatively small datasets specific to HHI,
and larger video datasets for action recognition are lack-
ing in coverage of interactions (see Table 1). To better
model the heavy tail of possible HHI, we leverage the abun-
dance of high-quality images of people and associated tex-
tual captions available on the Internet. In particular, we use
the Who’s Waldo dataset [14] that contains 270K image-
caption pairs from Wikimedia Commons depicting people
captured in a broad range of situations. Unlike many other
image captioning datasets, Who’s Waldo focuses on human-
centric situations which are described using real-world cap-
tioned Internet data, and thus is more relevant to HHI un-
derstanding. However, it is extremely challenging to learn
HHI from raw Internet captions directly, due to significant
noise introduced by clutter and irrelevant details. To over-
come this, we infer interactions from the original captions
by applying knowledge distillation to synthetic data gener-
ated by a large language model, without explicit supervi-
sion. This approach allows for creating accurate pseudo-
labels that provide textual descriptions of the HHI depicted
in the images. We will release these pseudo-labels along
with a manually annotated test set containing 1K image-
interaction pairs from diverse Internet images which we
name Waldo and Wenda, a new benchmark for our paradigm
of HHI understanding as free text on still images, capturing
the heavy tail of human-human interactions.

We demonstrate the utility of these pseudo-labels for
learning HHI from images by training captioning models
and using them as targets for a language modelling objec-
tive. We provide qualitative and quantitative analysis on
the Waldo and Wenda test set; in addition, we evaluate this
method on a larger scale by applying it to verb prediction
on the imSitu situation recognition dataset [80], which we
filter to select for images relevant to HHI.

Because we predict HHI as free text rather than categor-
ically as in previous works, we propose a set of evaluation
metrics chosen to measure important aspects of predicted
HHI quality, namely textual similarity, factual grounded-
ness, and verb similarity. Our evaluation shows that our
HHI pseudo-labels allow for generating meaningful HHI
free text descriptions from images, as measured by these
metrics. We also show that learning on these pseudo-labels
captures HHI substantially more effectively than either us-
ing existing SOTA image captioning models as-is or than
training on interactions extracted with naive syntactic pars-
ing. Explicitly stated, our key contributions are:

• A new paradigm and benchmark for HHI understand-

ing from images—i.e., predicting interactions as free
text—allowing to better understand the vast variety of
ways in which people interact.

• A method for isolating HHI from noisy Internet cap-
tions using knowledge distillation applied to a large
language model, and a set of pseudo-labels generated
by this method.

• An evaluation framework with metrics that capture
HHI understanding, and results demonstrating that
training image captioning models on these pseudo-
labels can allow for modeling the heavy tail of possible
HHI across various situations and configurations more
effectively than SOTA image captioning and situation
recognition models.

2. Related Work

Human action recognition. Human actions span a range
from simple to complex. These include simple actions
(“running”), human-object interactions (“dribbling a ball”),
human-human interactions (“shaking hands”), and group
actions (“gathering”). Because of the dynamic nature of
actions, a large portion of work on action recognition uses
video data [66, 68, 7, 89, 72]. Other approaches use other
modalities such as depth or skeleton data [81, 51, 78].
Among video-based approaches, some use shallow ap-
proaches separating feature representation of action videos
and classification of these features, while others use end-
to-end trainable networks (see [31, 85] for detailed sur-
veys). Works on human-object interactions (HOI) may
use separate modules such as human and object detectors
and relation modules [9, 21, 17], pose and gaze estima-
tion [38, 70, 76], or graph neural networks applied to scene
graphs [53, 77, 88, 39]. One line of recent work on HOI
uses end-to-end models, frequently with transformer archi-
tectures [65, 90, 11, 29, 10]. In our work, we aim to predict
the most salient interaction between the pictured individuals
in an end-to-end manner from still image data alone.

HHIs are a subset of human actions which pose particu-
lar challenges to automatic recognition, due to non-locality,
context dependency, and ambiguity. A number of works
have explicitly tackled HHI recognition, as surveyed by
Stergiou and Poppe [64]. As with general action recogni-
tion, these approaches most commonly use video data as
input [46, 20, 71, 62, 36]. However, a few works have tack-
led the more challenging task of HHI recognition in still im-
ages. Some of these use classical computer vision methods
to estimate human locations and poses in photos for pre-
dicting HHI [79, 8, 1]. Xiong et al. [75] use a CNN archi-
tecture with human, face, and object detection features for
event recognition. These works all treat HHI as categorical,
predicting them from a small set of predefined interaction
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classes. In contrast, we use free text to describe HHIs al-
lowing for more flexibility than categorical recognition.

HHI datasets. Most existing datasets of HHI or with sub-
sets representing HHI classes only include a small num-
ber of interaction categories. The majority consist of
video data, either curated [58, 83, 20, 23] or YouTube-
based [63, 45, 87].

There are few image datasets dedicated to human ac-
tions, of which HHI are a subset. Ronchi and Perona [57]
introduce the Visual Verbnet dataset consisting of images
with dense verb annotations. Yatskar et al. [80] introduce
the imSitu dataset for image situation recognition, involving
recognizing the action portrayed in a still image (often with
a human participant or participants) as well as predicting se-
mantic roles for observed entities. In both cases the labels
are selected from a fixed set of categories—single verbs in
the case of imSitu, verbs or phrases containing verbs (e.g.
“shake hands”) for Visual Verbnet. Other image datasets
such as Visual Genome [33] contain labeled entities, objects
and their relationships, but focus more on general objects
rather people and their interactions.

See Table 1 for a comparison of the most related datasets
with our proposed HHI dataset. Unlike prior datasets, ours
represents HHI as free text and not as fixed categories.

In-context learning with large language models (LLMs).
The recent explosive growth in size and NLP benchmark
performance of LLMs has led to their use as foundation
models for use on downstream tasks [4]. Models such
as GPT-3 show an emergent in-context learning property,
whereby they may solve new tasks when prompted with
only a few examples of a new task, or even just with a task
description, without any parameter updates [6, 15]. The out-
put of such models may then be used as supervised train-
ing data for conventional model fine-tuning. The idea of
training on data generated using in-context learning to cre-
ate a large training data set has been successfully applied
to achieve state-of-the-art results on the SuperGLUE NLP
benchmark by Wang et al. [73]. In our case, we use this data
to perform sequence-level knowledge distillation – transfer-
ring the knowledge exhibited by such a large model into a
smaller model by training on its output sequences [30, 22].

The use of LLM-generated synthetic data for multimodal
learning has been explored by Brooks et al. [5], who use
caption pairs generated by GPT-3 as auxiliary data for train-
ing a conditional diffusion model to perform image editing.
Their method uses hundreds of manually labelled pairs of
texts as training data; however, our pseudo-labelling method
uses no explicit supervision, instead using syntactic parsing
to generate automatic seeds for our synthetic data genera-
tion pipeline.

Dataset #Seq #HHI Classes

Curated videos
UT-Interaction [58] 60 6
TV Human Interaction [48] 300 4
Hollywood2 [42] 3669 4
ShakeFive2 [20] 153 5
SBU Kinect [83] 300 8
AVA [23] ∼57.6k 13
NTU RGB+D (120) [60, 40] ∼114k 26

YouTube-based videos
Kinetics [28, 63] ∼500k 11
Moments in Time [45] ∼800k 32
HACS [87] ∼50k 23

Still images
imSitu [80] 126k 50∗

Visual Verbnet [57] 10k 52∗

Who’s Waldo [14] (w/ our labels) 127k ∞∗ (free text)
∗The number of HHI classes for Visual Verbnet includes verbs in the
communication, contact and social categories, which sometimes mark
solo actions or human-object interactions. The imSitu dataset contains a
total of 504 verbs. We estimate the number of HHI interactions using an
automatic methodology detailed in Section 5. Our free text pseudo-labels
are limited to the types of interactions available in Who’s Waldo.

Table 1. Comparison of HHI datasets. Prior datasets usually cap-
ture video data and target a small number of interaction classes.
Several datasets focus on human actions, some of which include
HHI. We denote the number of video/image samples with #Seq,
and the number of HHI classes with #HHI Classes (values are
taken from Stergiou and Poppe [64] where relevant). In our work,
we devise a technique for generating HHI pseudo-labels for Who’s
Waldo [14], a dataset containing real-world image–caption pairs,
allowing for modeling the heavy tail of HHI.

3. LLM-Based HHI Inference from Captions
To model the heavy tail of possible HHI using free text,

leverage weak supervision in the form of image captions.
We turn to Who’s Waldo [14], a dataset containing image–
caption pairs depicting human-centric scenes scraped from
Wikimedia Commons (with names masked using their sug-
gested [NAME] token). As illustrated in Figure 2, the men-
tions of the depicted HHI are embedded in detailed textual
captions, and do not directly correspond to syntactic struc-
tures such as verbs in the text. For instance, the first de-
picted caption is long and the only relevant detail is the
phrase “gets at [sic] high five”; the last depicted caption
contains no verb (while the noun phrase “Ski Tour” hints
at the relevant interaction). These captions are thus inade-
quate for training an HHI understanding model directly, as
a captioning model fine-tuned on them mainly learns to at-
tend to details that are irrelevant for our task (as shown in
Section 5.3). We therefore present a large language model
(LLM)-based abstractive text summarization technique that
produces clean interaction texts from the original Internet
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Parsing-based:[*] getting five from [*]
Final: [*] getting a high five from [*]

[*] and [*] playing
[*] playing doublebass with [*]

∅[NAME]
[*] skiing with [*]

Figure 2. HHI distilled from raw Internet captions alongside their corresponding images. On top we show several images and
captions from the Who’s Waldo dataset [14], with [*] denoting masked named person entities. Our syntactic parsing approach allows
for extracting an initial partial set of interactions (first row). We refine and enlarge this initial set using our abstractive summarization
model which yields our final HHI pseudo-labels (second row). While the original captions possibly contain many additional details or no
verb-based interaction at all (for example, see the rightmost image), our abstractive HHI pseudo-labels succeed in describing HHI visible
in the associated images.

captions, without explicit supervision.
Our unsupervised pseudo-labelling approach operates in

three stages, illustrated in Figure 3: (1) We extract syntac-
tic parsing-based interactions from captions from the Who’s
Waldo dataset, as well as constructing new synthetic inter-
action texts. (2) We prompt an LLM using the interaction–
caption pairs from Who’s Waldo along with the new inter-
actions. The output synthetic captions are filtered using a
pretrained natural language inference (NLI) model and var-
ious textual heuristics, to select for those that correspond to
the new interactions. (3) We train an abstractive summariza-
tion model on these synthetic caption–interaction pairs; this
model learns to output HHI from noisy Internet captions.
As seen in Figure 2, these interaction pseudo-labels accu-
rately describe the HHI visible in their associated images.
Below, we provide more details for each stage (Sections
3.1–3.3). We then present Waldo and Wenda, our manually-
curated HHI test set, in addition to statistics and an ethical
discussion (Section 3.4).

3.1. Constructing interaction texts

We first define a rule-based approach for extracting in-
teractions via syntactic parsing. Specifically, we extract the
first verb in the caption with a [NAME] subject along with
its direct objects and the heads of its prepositional argu-
ments. This roughly corresponds to an interaction, although
it may sound unnatural. This is also limited to captions con-
taining verb phrases. We apply this procedure to captions
from Who’s Waldo to obtain corresponding parsing-based
interactions.

We also construct new synthetic interactions by first ap-
plying this parsing procedure to scraped texts of news arti-
cles from the CC-News dataset [24] (from Common Crawl,
containing text without image data), and then using the out-
put interaction texts to prompt the large (1.3B-parameter)
language model GPT-Neo [3, 18], which produces a set of
diverse and more natural-sounding interactions.

3.2. Synthetic caption data generation

Using the caption–interaction pairs from Who’s Waldo
and the new synthetic interactions as seeds, we generate
synthetic caption–interaction pairs using in-context learn-
ing with GPT-Neo. This allows us to create a larger and
more diverse set of caption–interaction pairs than by us-
ing caption–interaction pairs directly from Who’s Waldo.
These pairs serve as the teacher model outputs used for
knowledge distillation in the following section.

At each step, the language model is shown a prompt
beginning with multiple randomly-selected examples of
caption–interaction pairs from Who’s Waldo. This pro-
vides context for the model to understand the task at hand–
associating interactions with captions that contain them. We
use ten examples in each prompt to balance between the
providing sufficient context with computational considera-
tions. The prompt ends with a new desired interaction, and
the language model proceeds to generate a caption corre-
sponding to this interaction. We filter these results using
a pretrained NLI model and various textual heuristics de-
tailed further in the supplementary material, ensuring that
the output caption logically is properly formatted and logi-
cally entails the corresponding interaction.

3.3. Knowledge distillation for summarization

Using the synthetic data generated in the previous stage,
we fine-tune a smaller (220M-parameter) student T5 model,
a sequence-to-sequence transformer network whose pre-
training tasks include text summarization [56]. We use the
synthetic captions (with the task prefix “summarize:”) as
input and the synthetic interactions of the target text for
fine-tuning. Empirically, we find that our fine-tuned stu-
dent model is able to summarize captions and output valid
interactions even when the caption does not contain a verb
or has a syntactic structure that the syntactic parsing-based
method could not process.

We apply this model to the captions in the Who’s Waldo
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Synthetic caption generation with teacher LM and NLI filtering Fine-tuning student LM Pseudo-label inference

Figure 3. LLM-Based HHI Extraction from Captions. We generate synthetic interaction-caption pairs via in-context learning (left), use
them to fine-tune a summarization model (center), and then use this model to producing HHI pseudo-labels for captions in Who’s Waldo
(right), as detailed in Section 3. Captions are shown in red boxes, interaction texts in blue, and synthetic texts in italic letters. LMT and
LMS indicate teacher and student language models respectively.

dataset to create pseudo-labels representing interactions as
free text. See Figure 2 for examples of such pseudo-labels.

3.4. Our HHI dataset

Using our learned abstractive summarization model, we
may generate interaction pseudo-labels from Who’s Waldo
captions. Out of the ∼270k samples in Who’s Waldo, we
use only those ∼130k containing at least two human face
detections, using the detections provided by Cui et al. [14].
We filter out duplicate and near-duplicate images, those
with high similarity to test set images, and samples with
pseudo-labels that do not pass a few simple text-based fil-
tering rules, including enforcing the format of [NAME], fol-
lowed by a present continuous verb (“-ing”), and including
another [NAME] token. We are left with ∼126k images
with pseudo-labels in total, which we hereby refer to as
pHHI.

The Waldo and Wenda Benchmark. We also create Waldo
and Wenda3, an HHI test set containing 1K manually cu-
rated image–interaction text pairs. In order to test general-
ization to HHI understanding across a wide variety of natu-
ral images, we include data from three sources: (1) 300 im-
ages from Who’s Waldo, (2) 300 images from COCO Cap-
tions [12], (3) 400 images from Conceptual Captions [61].
The images are selected from the validation and test splits
of the relevant datasets. As the distribution of HHI in natu-
ral photographs is highly imbalanced—for instance, images
in captioning datasets often display people standing side by
side and posing for photographs—we curate this test set to
represent a wide variety of interactions and to reflect per-
formance on the long tail of uncommon HHI. Examples of
images from Waldo and Wenda can be seen in Figures 1, 2,
and 4.

Dataset Statistics. Overall, our pHHI training dataset con-
tains 126,696 pairs of images and pseudo-labels. These la-
bels contain 1,263 unique verbs and 16,136 unique interac-
tions. The majority of the images (59.3%) only contain two

3Wenda appears in the Where’s Waldo? book series as Waldo’s girl-
friend.

detected people, with less than 5% of the images containing
more than six detected people. The Waldo and Wenda test
set contains 1,000 images along with their manually written
ground truth HHI labels. These include 238 unique verbs
and 575 unique interaction labels.

Ethical considerations. Our dataset inherits a diverse rep-
resentation of people (ages, ethnicities, geographic etc.)
from the Who’s Waldo dataset [14]. Furthermore, we use
their provided name masking to mitigate biases (e.g., gender
biases). We verify that all manually-curated test samples are
neutral in nature and do not contain lurid or negative mate-
rial. We perform similar verification on external test data, as
described in Section 5, to avoid exposure to harmful or of-
fensive behaviors. Furthermore, our pseudo-labels and test
set will only be made available for academic purposes.

4. Learning HHI from Still Images
In the previous section, we demonstrated how we can ob-

tain free text HHI pseudo-labels from the Internet captions
of the Who’s Waldo dataset [14]. We proceed to show how
we use these to supervise learning HHI from still images via
the paradigm of image captioning.

4.1. Models considered

After obtaining a set of images and pseudo-labels, we
consider the task of HHI in the framework of image cap-
tioning. Given (image, pseudo-label) pair (I, L), we train
an encoder-decoder network M to maximize the predicted
conditional likelihood of L using a cross-entropy loss. Dur-
ing inference, we use autoregressive beam search decoding
to generate text token by token, given I as input.

In order to evaluate the utility of transfer learning from
general image captioning to our HHI understanding setting,
we evaluate two choices for the model M :

(1) Vanilla encoder-decoder (EncDec). In this setting, we
fine-tune a simple encoder-decoder model. We use the im-
age encoder of pretrained CLIP-ViT [54], with its pooled
embedding output followed by a single linear projection
layer to match the hidden dimension of the decoder. For
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CLIPCap
(CC)

EncDec
(pHHI)

GT

person, left, and person,
right, receive a standing
ovation for their service.

[*] administering the oath
to [*]

[*] swearing in [*]

friday night rivals was for
high school vs game!

[*] coaching [*]

[*] huddling with [*]

wallpaper with a concert
and a well dressed person
entitled pop artist.

[*] performing with [*]

[*] dancing with [*]

person, left, shakes hands with
person, daughter of person,
during a ribbon cutting ceremony.

[*] cutting the ribbon with [*]

[*] cutting a ribbon with [*]

Figure 4. Results on the Waldo and Wenda test set. We compare results obtained by a baseline, our vanilla encoder-decoder technique
(trained on our pHHI data), and the ground truth labels in Waldo and Wenda, with [*] denoting [NAME] tokens that represent person
entities. As illustrated above, our method generates text describing the HHI depicted in the image, without attending to other irrelevant
details. In comparison, the SOTA captioning model CLIPCap used as-is may not output an interaction at all (middle two images). We also
observe that our model predicts HHI that may require both a verb and other arguments to adequately understand (leftmost and rightmost
images).

the decoder we use pretrained GPT-2 [55] with a causal
language modelling head and cross-attention over the en-
coder output. Consistent with previous works on fine-tuning
vision-and-language models [41, 44, 84], we freeze the
weights of the image encoder as we fine-tune it on our pHHI
data. By considering this model that was not previously
trained on image captioning, we aim to evaluate the extent
to which our pHHI aid in learning to understand the seman-
tics of HHI in images (rather than simply cueing a caption-
ing model to the correct surface form of HHI labels).

(2) Fine-tuned captioner. The second approach we con-
sider is to apply transfer learning to a SOTA captioning
model by fine-tuning it on our pHHI data. Because the
Conceptual Captions (CC) dataset is more people-centric
than COCO and thus closer to our use case, we pick CLIP-
Cap [44] pretrained on CC as the base model for fine-tuning.
Consistent with CLIPCap’s training method, we freeze its
image encoder and fine-tune the model on our pHHI data.

4.2. Training and Decoding

For all models, we use cross-entropy loss and consistent
hyperparameter settings. For each model, we decode using
beam search with 32 beams. We report metric values for the
top 1, 5, and 8 beams.

5. Evaluation
5.1. Test Datasets

We evaluate our models on the following datasets:

Waldo and Wenda. As detailed in Section 3.4, this consists
of 1,000 images with manually-written ground truth labels.

Examples of ground truth labels along with model predic-
tions can be seen in Figure 4. We report metric values aver-
aged over the three data sources (Who’s Waldo, Conceptual
Captions, COCO) of Waldo and Wenda in Table 2. We also
show a breakdown of data source in Table 3.

imSitu-HHI. We use an 8,021-sample subset of the im-
Situ [80] situation recognition benchmark, which we refer
to as imSitu-HHI, to perform a large-scale evaluation of our
models. Although imSitu does not contain free text HHI
labels, it does contain categorical verb labels which can be
used for comparison. Additionally, as the majority of im-
ages in imSitu do not depict HHI, we first filter for rele-
vant samples as follows: We use person detections from
YoloV5 [16] to select for images containing at least two hu-
mans. We further filter to select only samples with semantic
frames containing at least two human participants. Finally,
due to the noisy nature of this filtering, we only use verbs
supported by at least 100 images in this filtered subset, as
these verbs are most likely to describe HHI. We use these
verb labels as the ground truth and evaluate predictions with
the verb similarity metric as described below.

5.2. Baseline comparisons

We compare our approach to two types of SOTA model
of that do not use our pHHI data as baselines:

(1) Pretrained captioner. The first baseline approach
that we test is the use of a SOTA model that has already been
pretrained for image captioning. We test the recent cap-
tioning models ExpansionNet v2 (ENv2) [27] and CLIP-
Cap [44]. We use these captioners as-is and evaluate our
metrics on their outputs with beam search decoding. CLIP-
Cap is avilable with pretrained weights for both COCO [12]
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and Conceptual Captions (CC) [61], and thus we test both
models. ENv2 only uses COCO weights.

(2) Pretrained situation recognition model. We pro-
vide a comparison to the results of the CoFormer model [13]
for grounded situation recognition with pretrained weights.
Unlike weakly-supervised models trained on our pseudo-
labels, which were generated from natural captions, Co-
Former is supervised by training on the manually-labelled
SWiG dataset [50], an extension of imSitu which includes
grounding information for arguments that are visible in the
accompanying images, and the model predicts the relevant
verb, arguments, and grounding information given an im-
age. We evaluate CoFormer by using its predicted verb,
discarding semantic frame and grounding predictions since
these semantic arguments do not directly map to the text of
a human-human interaction string. See the supplementary
material for details on how we insert its verb predictions
into text prompts for metric calculations.

5.3. Ablations

In order to ablate the effect of our pseudo-labelling, we
also report results of a captioning model fine-tuned on the
entire text of the captions provided in Who’s Waldo (listed
in 2 and 4 under training data as “WW”). In the supplemen-
tary material we also provide a detailed comparison with re-
sults when training directly on the syntactic parsing-based
seeds described in Section 3.1.

5.4. Metrics

A number of metrics have been proposed for natural lan-
guage generation tasks, measuring various aspects of text
quality [25, 19]. As no prior works (to the best of our
knowledge) predict HHI as free text, we propose a set of
metrics that evaluate various relevant aspects of generated
text:

Textual similarity. We use the BLEURT [59] metric to
measure similarity to the ground truth interaction. This is
a learned metric for text generation which measures simi-
larity between the text output by a model and the reference
text. Because our test set is relatively small and the ref-
erence texts are short, this better reflects textual similarity
than ngram-based metrics such as BLEU [47] which have
high variance and must be averaged over large datasets, as
is shown in detail in the supplementary material.

Factual groundedness. A key property of generated text
is whether it is consistent or contradictory with respect to
the ground truth (such as a source document in the case of
summarization, or a reference caption in the case of im-
age captioning) [34]. This may be quantified by using the
scores output by a natural language inference (NLI) model,
in order to measure the degree of factual groundedness or
hallucination in generated text [43, 35]. For example, given

Method Train Data BL ↑ pe ↑ pc ↓ sim ↑
Results@1
CoFormer SWiG 0.41∗ 0.33∗ 0.28∗ 0.35
ENv2 COCO 0.27 0.25 0.33 0.41
CLIPCap COCO 0.28 0.34 0.37 0.42
CLIPCap CC 0.27 0.18 0.38 0.35
CLIPCap CC+WW 0.26 0.16 0.40 0.17
EncDec pHHI 0.38 0.30 0.37 0.41
CLIPCap CC+pHHI 0.42 0.41 0.32 0.46

Results@5
ENv2 COCO 0.31 0.39 0.19 0.46
CLIPCap COCO 0.31 0.47 0.24 0.46
CLIPCap CC 0.33 0.32 0.20 0.47
CLIPCap CC+WW 0.33 0.29 0.24 0.27
EncDec pHHI 0.51 0.61 0.09 0.59
CLIPCap CC+pHHI 0.57 0.71 0.07 0.65

Results@8
ENv2 COCO 0.32 0.43 0.17 0.48
CLIPCap COCO 0.32 0.50 0.21 0.46
CLIPCap CC 0.35 0.36 0.16 0.49
CLIPCap CC+WW 0.35 0.33 0.21 0.31
EncDec pHHI 0.54 0.65 0.19 0.65
CLIPCap CC+pHHI 0.59 0.76 0.04 0.69

∗Evaluated by using the best of two prompt templates for each item, as
described in the supplementary material.

Table 2. Results on Waldo and Wenda. The listed metrics are
BLEURT (BL) and NLI scores (pe, pc) and verb embedding simi-
larity (sim). CC+WW/pHHI indicates models that were initialized
with pretrained CC weights and subsequently fine-tuned on Who’s
Waldo captions or on pHHI respectively. Best results are in bold,
and second best are underlined. Results are aggregated across the
three data sources of Waldo and Wenda. For models using beam
search, we report results for top 1, 5, and 8 beams.

an image with ground truth label [NAME] sitting next to
[NAME], the prediction [NAME] standing with [NAME]
logically contradicts the reference label and thus is a factual
hallucination. To measure this, we use scores (pe, pc) from a
pretrained NLI model to estimate the factual groundedness
of the predicted text, where pe is the probability of entail-
ment and pc is the probability of contradiction. We treat the
image caption from Waldo and Wenda as the premise and
the model’s prediction as the hypothesis for NLI inference.
For test items sourced from COCO Captions, in which im-
ages correspond to multiple reference captions, we use the
first reference as the premise for this calculation.

Verb similarity. We calculate the average cosine similarity
of the predicted and ground truth verbs in GloVe [49] em-
bedding space. The motivation for this metric is that a pre-
diction may be valid or nearly valid even if it is not identical
to the ground truth label as long as the semantic distance be-
tween the verbs is small (e.g. “hugging” vs. “embracing”).
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WW CC COCO
Method Train Data BL ↑ pe ↑ pc ↓ sim ↑ BL ↑ pe ↑ pc ↓ sim ↑ BL ↑ pe ↑ pc ↓ sim ↑
Results@1
CoFormer SWiG 0.40∗ 0.29∗ 0.35∗ 0.34 0.45∗ 0.40∗ 0.43∗ 0.38 0.37∗ 0.30∗ 0.33∗ 0.33
Env2 COCO 0.24 0.20 0.28 0.38 0.26 0.20 0.45 0.41 0.31 0.36 0.26 0.45
CLIPCap COCO 0.27 0.37 0.35 0.39 0.26 0.26 0.43 0.43 0.31 0.38 0.33 0.44
CLIPCap CC 0.30 0.24 0.42 0.36 0.25 0.18 0.38 0.40 0.26 0.11 0.34 0.30
CLIPCap CC+WW 0.28 0.12 0.59 0.27 0.26 0.21 0.34 0.15 0.23 0.15 0.28 0.10
EncDec pHHI 0.41 0.38 0.30 0.42 0.38 0.30 0.44 0.42 0.34 0.22 0.36 0.38
CLIPCap CC+pHHI 0.42 0.38 0.33 0.45 0.44 0.44 0.33 0.47 0.40 0.40 0.30 0.47

Results@5
Env2 COCO 0.28 0.30 0.17 0.42 0.30 0.32 0.28 0.46 0.35 0.55 0.12 0.51
CLIPCap COCO 0.31 0.50 0.21 0.42 0.29 0.38 0.28 0.46 0.34 0.52 0.23 0.49
CLIPCap CC 0.36 0.41 0.23 0.46 0.30 0.31 0.23 0.50 0.32 0.23 0.14 0.43
CLIPCap CC+WW 0.33 0.20 0.50 0.33 0.34 0.37 0.13 0.28 0.33 0.31 0.09 0.20
EncDec pHHI 0.55 0.61 0.11 0.63 0.51 0.65 0.10 0.59 0.46 0.56 0.07 0.56
CLIPCap CC+pHHI 0.57 0.64 0.10 0.64 0.60 0.75 0.06 0.68 0.53 0.74 0.05 0.63

Results@8
Env2 COCO 0.29 0.34 0.15 0.42 0.31 0.35 0.25 0.48 0.36 0.59 0.10 0.53
Env2 COCO 0.32 0.53 0.18 0.43 0.30 0.41 0.25 0.47 0.35 0.55 0.21 0.50
CLIPCap CC 0.38 0.47 0.17 0.48 0.32 0.35 0.19 0.53 0.34 0.26 0.11 0.45
CLIPCap CC+WW 0.34 0.22 0.48 0.35 0.36 0.42 0.10 0.33 0.35 0.34 0.06 0.25
EncDec pHHI 0.60 0.69 0.06 0.69 0.55 0.72 0.05 0.64 0.50 0.66 0.04 0.61
CLIPCap CC+pHHI 0.60 0.70 0.07 0.68 0.63 0.81 0.03 0.72 0.55 0.78 0.03 0.67

∗Evaluated by using the best of two prompt templates for each item, as described in the supplementary material.

Table 3. Results on Waldo and Wenda split by data source – Who’s Waldo (WW), Conceptual Captions (CC), and COCO Captions. For
models using beam search, we report results for top 1, 5, and 8 beams.

To evaluate this on free text predictions, we either select the
first non-[NAME] word in the output (for models trained
on pHHI) or extract its first verb using a syntactic parsing
model. If syntactic parsing does not yield a verb, the zero
vector is used as the given embedding.

5.5. Results and Discussion

For Waldo and Wenda, we report all of the metrics de-
scribed above. For imSitu-HHI, we only use the verb simi-
larity metric since the ground truth label is a single verb. We
report average similarity over all samples in imSitu-HHI as
well as displaying averages for the most-supported verbs.
See Tables 2–4 for quantitative results, and see Figure 4 for
a visual comparison on Waldo and Wenda. Note that we
do not include CoFormer in the table of imSitu-HHI results
since it was trained directly on some of these items; see
the supplementary material for analysis of CoFormer on in-
distribution and out-of-distribution images in imSitu-HHI.

Overall we see that training on our pseudo-labels im-
proves performance on our benchmarks. In Tables 2
and 3, showing results on Waldo and Wenda, the best-
performing model by all metrics is CLIPCap fine-tuned
with our pseudo-labels. This holds across data sources, as
seen in Table 3, showing that this improvement general-

izes to images beyond those originating in the Who’s Waldo
dataset. This model is also the best-performing on average
and across a majority of verb categories on imSitu-HHI as
seen in Table 4. Qualitative comparison shows that the cap-
tioning models used as-is output text that is far from the
ground truth HHI labels, containing many irrelevant details
and not necessarily describing an interaction. This can be
seen in Figure 4, where the CLIPCap (CC) captions contain
many hallucinated, non-factual details.

While transfer learning with pretrained CLIPCap yields
the best results, we also observe that the vanilla Encoder-
Decoder fine-tuned on our pseudo-labels also performs
well, achieving the second-best BLEURT score on Waldo
and Wenda and second-best verbal similarity metrics over-
all and across many verb categories on imSitu-HHI. We in-
fer that our pseudo-labels do impart semantic knowledge
of HHI beyond simply cueing existing captioning models
to the surface form of HHI labels. Nevertheless, CLIPCap
fine-tuned on pHHI does generalize better across the data
from all sources in Waldo and Wenda and to imSitu-HHI
which is entirely out-of-distribution for this model.

We also note that the metrics improve dramatically for
both datasets when considering 5 or 8 beams. This is consis-
tent with the fact that beam search using models fine-tuned
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Results@1
ENv2 COCO 0.22 0.19 0.07 0.22 0.21 0.28 0.19 0.25 0.26 0.11 0.45 0.38 0.29 0.44 0.28 0.28
CLIPCap COCO 0.23 0.18 0.07 0.26 0.24 0.29 0.17 0.26 0.24 0.10 0.44 0.36 0.25 0.46 0.30 0.63
CLIPCap CC 0.27 0.16 0.25 0.37 0.26 0.21 0.23 0.28 0.35 0.16 0.46 0.31 0.37 0.38 0.26 0.53
CLIPCap CC+WW 0.09 0.02 0.08 0.12 0.05 0.30 0.08 0.10 0.09 0.06 0.25 0.07 0.09 0.11 0.05 0.08
EncDec pHHI 0.28 0.19 0.21 0.34 0.27 0.23 0.24 0.35 0.38 0.17 0.60 0.36 0.34 0.46 0.76 0.64
CLIPCap CC+pHHI 0.32 0.21 0.25 0.56 0.33 0.27 0.30 0.43 0.44 0.19 0.66 0.38 0.44 0.46 0.65 0.70

Results@5
ENv2 COCO 0.26 0.21 0.10 0.26 0.23 0.30 0.21 0.27 0.31 0.13 0.49 0.45 0.35 0.49 0.33 0.31
CLIPCap COCO 0.25 0.19 0.09 0.29 0.26 0.31 0.20 0.27 0.26 0.12 0.47 0.41 0.29 0.48 0.32 0.66
CLIPCap CC 0.35 0.21 0.30 0.48 0.33 0.28 0.31 0.37 0.43 0.21 0.56 0.42 0.48 0.47 0.31 0.64
CLIPCap CC+WW 0.18 0.05 0.15 0.22 0.14 0.60 0.16 0.17 0.22 0.11 0.46 0.15 0.21 0.22 0.15 0.24
EncDec pHHI 0.40 0.30 0.35 0.49 0.41 0.39 0.33 0.51 0.51 0.23 0.79 0.47 0.49 0.57 0.92 0.86
CLIPCap CC+pHHI 0.44 0.29 0.35 0.85 0.44 0.41 0.40 0.56 0.56 0.27 0.88 0.48 0.56 0.58 0.86 0.92

Results@8
ENv2 COCO 0.28 0.22 0.12 0.27 0.24 0.30 0.21 0.28 0.32 0.13 0.51 0.47 0.37 0.50 0.35 0.34
CLIPCap COCO 0.26 0.20 0.10 0.31 0.27 0.31 0.21 0.28 0.26 0.12 0.48 0.43 0.31 0.49 0.32 0.67
CLIPCap CC 0.37 0.23 0.31 0.51 0.34 0.31 0.32 0.40 0.45 0.22 0.59 0.45 0.51 0.49 0.32 0.70
CLIPCap CC+WW 0.21 0.06 0.16 0.25 0.16 0.62 0.16 0.20 0.24 0.12 0.51 0.20 0.23 0.26 0.18 0.32
EncDec pHHI 0.44 0.33 0.38 0.55 0.44 0.42 0.34 0.54 0.56 0.25 0.85 0.49 0.56 0.59 0.94 0.91
CLIPCap CC+pHHI 0.47 0.33 0.37 0.90 0.46 0.41 0.43 0.60 0.59 0.29 0.92 0.50 0.59 0.61 0.91 0.96

Table 4. Results on imSitu-HHI. In addition to the average verb embedding similarity between predicted verbs and the ground truth verb,
we also present mean similarities for the most common 15 verbs in imSitu-HHI. Best results are in bold, and second best are underlined.
For models using beam search, we report results for top 1, 5, and 8 beams.

on pHHI outputs a list of diverse candidate interactions, al-
lowing a more directed search in the space of HHI descrip-
tors, while beam search applied to captioning models as-is
tends to produce many slight variations of the same long
caption.

6. Conclusion

We present a new framework for learning to understand
human-human interactions in still images using weak su-
pervision from textual captions. We demonstrate the use
of knowledge distillation applied to a large language model
without explicit supervision to produce pseudo-labels that
can serve as targets for predicting interactions as free text.
We show that training on these pseudo-labels enables HHI
understanding beyond that of SOTA captioning and situ-
ation recognition models, and we provide the Waldo and
Wenda as a new benchmark for this task.

There are various avenues for future research to extend
our work. One possible direction is the incorporation of
visual grounding into HHI understanding. We predict the
most salient interaction in an image, which we assume to

be the interaction the one that is described or suggested in
its accompanying caption. It remains to localize the partic-
ipants, including generalizing to group interactions where
more than two participants are visible. Another important
aspect that remains to be explored is the hierarchical nature
of interactions. For example, the generic HHI label “meet-
ing” is valid for almost every image, while “shaking hands”
is more specific and valid for a subset of those images. Fur-
ther research could extend our results to hierarchical predic-
tion of multiple HHI labels for a single image.

Finally, we note the importance of style-content disen-
tanglement in HHI prediction, which our work does not ex-
plicitly consider. Scene cues in images can be important
for correctly identifying HHI, as illustrated in Figure 1, but
also may be misleading. For instance, an image of soldiers
in uniform is more likely to depict “saluting”, but HHI is
only valid if the image actually contains a salute. Future
work on disentangling style and content shows promise for
improving the robustness of HHI understanding models.

Acknowledgements. We thank Ron Mokady for providing
helpful feedback. This work was supported by a research
gift from Meta and the Alon fellowship.
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Appendix
We refer readers to the interactive visualizations at our

project page that show results for all presented models on
the two test sets we examine (Waldo and Wenda and imSitu-
HHI). In this document, we describe additional experiments
and results (Section A) and provide additional details (Sec-
tion B).

A. Additional Results and Comparisons
A.1. CoFormer on imSitu-HHI

The CoFormer grounded situation recognition model,
whose results on Waldo and Wenda are reported in the main
paper, was trained on the SWiG dataset, which extends the
imSitu dataset with grounding information. [13, 50, 80]
Since imSitu-HHI also includes some of this data, Co-
Former’s performance on imSitu-HHI is not comparable
to the out-of-distribution performance of the other models
we consider. Nevertheless, we can use its performance on
imSitu-HHI as a rough upper bound for this task. We re-
port its performance on all of imSitu-HHI, which includes
some of its training data, as well as on the intersection of
imSitu-HHI with imSitu’s train, dev, and test sets alone.
See Table 5 for these metrics and a comparison to the Enc-
Dec model trained on our pseudo-labels. As expected, Co-
Former’s performance is much higher on its own training
data, and generally outperforms our model by this metric
on imSitu. However, CoFormer was trained using the verb
labels from imSitu, while our model, trained without su-
pervision from manually-labelled data, is being evaluated
out-of-distribution and without regard to the additional text
in its predictions besides the predicted verb.

A.2. Extended-imSitu-HHI results

In Section B.6, we described the construction of the
8,021-sample imSitu-HHI dataset, a subset of the full im-
Situ dataset. One of its design choices was the final filtering
of verbs by number of supported images, to use only those
verbs with at least 100 images after filtering for human de-
tections and semantic arguments. We now present results
on an extended version of this dataset where we lower the
threshold for the required number of images supporting a
verb and thus keep a larger subset of imSitu.

See Table 6 for quantitative results. We observe that de-
creasing the minimum required support of verbs increases
the number of unique verbs dramatically, but has a minimal
impact on the verb embedding similarity metric when low-
ered from 100 to 50. However, lower thresholds more sig-
nificantly impact the verb similarity scores. This comports
with the observation that verbs with higher support values
are more likely to represent HHI.

We include examples of verbs with support values at dif-
ferent levels to illustrate this intuition:

Model Data Eval split sim.

CoFormer SWiG all (8021) 0.63
EncDec pHHI all (8021) 0.28

CoFormer SWiG train (4906) 0.73
EncDec pHHI train (4906) 0.34

CoFormer SWiG dev (1549) 0.50
EncDec pHHI dev (1549) 0.27

CoFormer SWiG test (1566) 0.48
EncDec pHHI test (1566) 0.28

Table 5. CoFormer results on imSitu-HHI as described in Section
A.1, with Enc-Dec model for comparison. CoFormer was trained
with supervision from the imSitu train set, while our models did
not see any of these samples during training; therefore, we treat
the CoFormer model performance as an upper bound for achiev-
able verb similarity on this dataset in the out-of-distribution set-
ting. The “Data” column shows the model’s training data. The
“Eval split” column gives the evaluation data split used and its
size - either the entire 8,021-sample imSitu-HHI subset of imSitu,
or else its intersection with imSitu’s train, dev, or test sets. The
average verb embedding similarity is shown as “sim.”. Note that
SWiG here refers to the train set of imSitu along with grounding
data. Enc-Dec model results refer to top-1 predictions.

Verbs with support ≥ 180: socializing, distributing,
teaching, communicating, interviewing, lecturing, training,
providing, instructing, giving, pushing, helping, asking,
coaching, selling, talking, educating

Verbs with support ∈ [100, 120]: imitating, offering,
plunging, pitching, reassuring, autographing, clapping, ig-
noring, dousing, speaking, operating, wheeling, loading

Verbs with support ∈ [50, 55]: repairing, chasing,
drumming, applauding, breaking, eating, climbing, offici-
ating, carting, deflecting, building, measuring

Verbs with support ∈ [20, 25]: colliding, guarding,
submerging, twirling, rocking, miming, clearing, calm-
ing, sowing, massaging, nuzzling, butting, tasting, waxing,
clenching, knocking, scooping, stacking, vaulting, shopping

Verbs with support ∈ [1, 2]: curtsying, coughing, read-
ing, crawling, surfing, dialing, erasing, slipping, marching,
frying, dripping, phoning, mopping, bulldozing, sharpen-
ing, walking, landing, boating, circling, boarding, skipping,
shivering, signing, flapping, crouching, sneezing, raking,
launching, protesting, piloting, unplugging, ejecting, pray-
ing, typing, stitching, watering, queuing

A.3. Training on syntactic parsing-based seeds

To ablate the effect of our pseudo-labelling, we compare
to results when training directly on syntactic parsing-based
seeds. As described in the main paper, these can sometimes
be extracted from Who’s Waldo captions when they fit a
particular syntactic pattern, specifically containing an inter-
action verb with arguments representing the relevant partic-
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Support Verbs Samples sim@1 sim@5 sim@8

≥ 100 50 ∼8k 0.28 0.40 0.44
≥ 50 98 ∼11k 0.28 0.40 0.43
≥ 20 178 ∼14k 0.26 0.38 0.41
≥ 0 359 ∼15k 0.25 0.37 0.40

Table 6. Results of the EncDec model on extended-imSitu-HHI, as
described in Section A.2.

Waldo and Wenda imSitu-HHI

Method Data BL sim ni nv sim ni nv

EncDec pHHI 0.38 0.41 298 100 0.28 1468 245
CLIPCap CC+pHHI 0.42 0.46 158 86 0.32 325 133

EncDec SP 0.33 0.36 126 66 0.24 216 82
CLIPCap CC+SP 0.41 0.44 123 78 0.29 268 129

Table 7. Comparison of results when training on syntactic parsing-
based seeds (“SP”) versus our pseudo-labels (“pHHI”), as de-
scribed in Section A.3. “BL” refers to BLEURT and “sim” refers
to verb embedding similarity. On Waldo and Wenda, results are
aggregated across data sources.

ipants.

Out of the ∼126k images from Who’s Waldo that
we used, only ∼23k have captions that yield a syntactic
parsing-based seed (while pseudo-labels could be assigned
to all of them). Therefore in this ablation the models train
on < 20% the number of images used to train the models
with pseudo-labelling.

We compare results on Waldo and Wenda and imSitu-
HHI when training only on these seeds versus training on
our pseudo-labels in Table 7. In addition to the textual simi-
larity metrics, we include two simple measures of diversity:
the number of unique interaction texts in the predictions
(ni) and the number of unique predicted verbs (nv) across
all test items. Although diversity metrics are less mean-
ingful for comparisons to the output of captioning models
used as-is, since their outputs are highly detailed, they can
be used in this case since the models under comparison all
output predictions of roughly the same length and level of
detail. Models trained on pHHI show higher similarity to
the ground truth labels as seen in the reported textual sim-
ilarity metrics. In addition, we see a significant increase in
diversity relative to training on syntactic parsing seeds. This
suggests that the large increase in training data provided by
pseudo-labelling allows models to represent a larger space
of interactions, consistent with our goal in modelling the
heavy tail of possible HHI. This is also illustrated in Figure
5, which compares outputs of two models (both pretrained
on CC captions)—one trained with our pseudo-labels and
the other with the set of syntactic parsing-based seeds.

Method Data BL BE BA SC

ENv2 COCO 0.27 0.87 -6.25 0.24
CLIPCap COCO 0.28 0.87 -7.24 0.24
CLIPCap CC 0.27 0.86 -6.66 0.23
CLIPCap CC+WW 0.26 0.85 -5.90 0.22
EncDec pHHI 0.38 0.92 -3.53 0.22

CLIPCap CC+pHHI 0.42 0.93 -3.34 0.22

Table 8. Comparison of BLEURT and additional neural metrics on
captioning models, aggregated across data sources in Waldo and
Wenda, as described in Section A.4. Metrics shown are BLEURT
(BL), BERTScore (BE), BARTScore (BA), and SummaC (SC).

A.4. Additional neural metrics

In addition to BLEURT, we report metrics for additional
neural metrics for natural language generation. Fmor easur-
ing textual similarity between predictions and ground truth
HHI labels, we provide results for BERTScore [86] and
BARTScore [82]. We also measure factuality of predictions
relative to ground truth captions (similar to the NLI scores
reported in the main paper) using the model SummaC [35].
Table 8 for results on captioning models, aggregated over
data sources in Waldo and Wenda.

BERTScore uses the default pretrained checkpoint for
English provided by the Hugging Face evaluate li-
brary4, and we report the output F1 score. BARTScore
uses the model trained on ParaBank2 provied in the offi-
cial BARTScore repository5. SummaC scores use the de-
fault checkpoint and settings for SummaC-Conv provided
in its official repository6. For all of these models, we re-
place [NAME] with the text “person” as needed, just as we
do for calculating BLEURT scores (see Section B.9)

We see the textual similarity metrics (BERTScore,
BARTScore) pattern similarly to BLEURT in supporting
the use of our pHHI as training data. SummaC scores are
slightly higher for captioning models trained on COCO and
used as-is, possibly reflecting generic text that is closer to
ground truth captions though not necessarily effective at
capturing HHI.

A.5. Ngram-based metrics

In this section we discuss the use of BLEURT [59] as our
main textual metric rather than ngram-based metrics such as
BLEU [47]. Ngram-based metrics are common in text gen-
eration tasks such as machine translation, comparing pre-
dicted texts to a ground truth reference (or multiple refer-
ences). They have the advantage of being simple and fast
to calculate, but focus on surface forms of text rather than
underlying semantics.

4https://huggingface.co/spaces/evaluate-metric/
bertscore

5https://github.com/neulab/BARTScore
6https://github.com/tingofurro/summac
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CLIPCap
(CC+pHHI)

CLIPCap
(CC+SP)

[*] being interviewed by
[*]

[*] talking with [*]

[*] coaching [*]

[*] talking with [*]

[*] playing basketball
with [*]

[*] playing with [*]

[*] wrestling with [*]

[*] playing with [*]

Figure 5. Examples of diverse predictions on Waldo and Wenda from a model trained with our pseudo-labels, compared to predictions
when trained on syntactic-parsing based seeds (“SP”). See Section A.3 for details.

We provide a comparison of BLEU and BLEURT scores
in Table 9, aggregated across data sources in Waldo and
Wenda. We provide scores for a captioning model (CLIP-
Cap trained on Conceptual Captions) and a model fine-
tuned on our pseudo-labels. Although the latter has a higher
BLEU score, its extremely low value (0.06) is due to the
fact that only 72 out of 1,000 predictions achieve a nonzero
BLEU score relative to the ground truth labels. Because
BLEU measures ngram precision and the ground truth la-
bels are short, it returns zero unless the prediction is a near-
perfect textual match. This effectively ignores the vast ma-
jority of predictions, unlike BLEURT which [59] show to
have a robust correlation with human judgements of seman-
tic similarity at the sentence level.

We additionally provide scores for the METEOR met-
ric [2], which uses unigram alignment statistics and incor-
porates both precision and recall. It also uses stemming
and synonym matching to provide some robustness rela-
tive to changes in the surface forms of semantically simi-
lar texts. Although METEOR does not ignore most predic-
tions as does BLEU, we find that it underperforms BLEURT
in capturing semantic similarity in our setting. The base-
lines in Table 9 are calculated by (1) using the constant
text “[NAME] meeting with [NAME]”, and (2) random-
izing the order of the predictions of the model fine-tuned
on our pseudo-labels. Both baselines achieve a relatively
high METEOR score, while BLEURT decreases signifi-
cantly and approaches the BLEURT score of the plain cap-
tioning model. This suggests that METEOR is biased to-
wards measuring surface similarity rather than underlying
semantics, consistent with the findings of [59] who explic-
itly compare METEOR and BLEURT. This can also be
seen in the qualitative examples in Table 10 of prediction
(CLIPCap CC+pHHI) and ground truth pairs from Waldo
and Wenda where METEOR and BLEURT differ strongly
in magnitude.

Method Data BLEU METEOR BLEURT

CLIPCap CC 0.00 0.13 0.27
CLIPCap CC+pHHI 0.06 0.46 0.42

baseline (constant) 0.00 0.36 0.29
baseline (jumbled) 0.00 0.43 0.33

Table 9. Comparison of ngram-based metrics and BLEURT, ag-
gregated across data sources in Waldo and Wenda, as described in
Section A.5.

We replace [NAME] with the text “person” as needed
to calculate these scores, just as we do for calculating
BLEURT scores (see Section B.9).

A.6. Ablation of few-shot learning for synthetic cap-
tion generation

In order to ablate few-shot examples used when gen-
erating synthetic captions (see Section B.4), we split our
synthetic caption-interaction pairs into two non-overlapping
folds, train summarization models on each of these folds
and then generate pseudo-labels with each model. We fine-
tune CLIPCap+CC on these pseudo-labels and evaluate the
resulting models on Waldo and Wenda, as shown in Table
11. The negligible differences across all metrics suggest
that our method is robust to the particular (randomly se-
lected) few-shot examples used in training the summarizer.

A.7. Qualitative results

See our project page for an interactive visualization of
the results of all of the considered models on the Waldo
and Wenda 1,000-item test set and on the 8,021-item imSitu-
HHI dataset.
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Ground truth Prediction METEOR BLEURT

[*] wrestling with [*] [*] competing against [*] 0.25 0.65
[*] giving signatures to [*] [*] signing autographs with [*] 0.20 0.57
[*] arguing with [*] [*] driving with [*] 0.64 0.28
[*] making sandcastles with [*] [*] working with [*] 0.77 0.24

Table 10. Comparison of METEOR and BLEURT scores on selected examples from Waldo and Wenda, as described in Section A.5.
Predictions are from CLIPCap trained on Conceptual Captions and fine-tuned on our pseudo-labels.

Method Training Data BL ↑ pe ↑ pc ↓ sim ↑
CLIPCap CC+pHHI1 0.39 0.35 0.35 0.43
CLIPCap CC+pHHI2 0.39 0.35 0.37 0.42

Table 11. Few-shot learning ablation. pHHI1 and pHHI2 refer
to pseudo-labels produced from summarizers trained on two non-
overlapping splits of our synthetic caption-interaction data.

B. Additional Details
B.1. Scraping additional captions from CC-News

In order to find additional caption texts for use in our
knowledge distillation process, we use the CC-News dataset
as available via Hugging Face datasets7, containing the
text of ∼708k scraped English language news articles from
2017 through 2019 [24]. These frequently include the text
of captions accompanying images in news articles. To
roughly filter for these captions, we select lines of ≤ 1, 000
characters that contain any of the following textual patterns:
“(left)”, “(right)”, “(center)”, “, left,”, “, right,”, “, center,”,
“, centre,”, “, pictured,”, “PHOTO: ”, “Photo by”, “Image
copyright”, “Getty ”, “AP Photo”, “AP Image”.

In captions that we extract, we remove those patterns
along with the following, so that the extracted captions will
not all contain common substrings: “(Image ...)”, “(Photo
...)”, “(AP Photo ...)”, “(Credit ...)”, “[Image ...]”, “[Fea-
tured Image ...]”, “Getty Images”, “Image copyright ... Im-
age caption”, “Photo:”, “FILE PHOTO:”, “Image (number)
of (number)”.

Finally, we discard captions that did not contain an in-
teraction as extracted in Section B.2. This left us with
6,212 captions. Examples of such captions from CC-News
include the following (patterns detected and removed are
shown in red strike-through text):

• Northern Ireland’s Corry Evans, left, and Germany’s
Toni Kroos battle for the ball during their 2018 World
Cup Group C qualifying soccer match at Windsor Park,
Belfast, Thursday, Oct. 5, 2017. (Brian Lawless/PA
via AP)

• Arizona Coyotes defenseman Luke Schenn (2) and Los
Angeles Kings left winger Kyle Clifford (13) reach for

7https://huggingface.co/datasets/cc_news

the puck during the second period of an NHL hockey
game in Los Angeles on Saturday, Feb. 3, 2018. (AP
Photo/Reed Saxon)

• Image copyright Kalpana Vaughan Wilson Image cap-
tion Kalpana Wilson pictured with daughter Clara
shortly after giving birth

B.2. Syntactic parsing-based interactions

We use syntactic parsing with spaCy’s
en core web trf model to extract interactions from
CC-News and Who’s Waldo captions using the proce-
dure described below. As described in Section B.3, the
parsing-based interactions from CC-News are used as
seeds to generate more novel interaction texts. Then,
as further described in B.5, the interactions from Who’s
Waldo and novel interactions are used to generate synthetic
interaction-caption pairs for use in training a summarization
model.

For each caption, we search for verbs that it contains.
For each verb lemma V, we consider all of its children in
the syntactic parse tree. For child node X, we extract the
text of X’s syntactic head. If X is a preposition, we also
extract the head of its complement, and for any determined
noun we also extract the text of its determiner. We filter out
any such X containing named entities of types DATE, GPE,
FAC, ORG, LOC, or TIME, and if X contains coordinated hu-
man named entities (“NAME and NAME”) we include both of
them. We mask all human name entities using the special
token [NAME]. We concatenate all of these together, in-
cluding V in present continuous form, to form an extractive
interaction text. Finally we filter for such texts containing
at least two NAME entities, with at least one of them being a
syntactic subject8.

Also note that since captions from Who’s Waldo already
have human names masked as [NAME], we first replaced
these tokens with generic names (“Adam, Bob, ...”) before
applying syntactic parsing, so that the input text would be
valid English.

Among CC-News captions, 6,212 captions include such
interactions. Interactions extracted from CC-News captions
include the following:

8The default entity labels in this parsing model use the label PERSON
for human entities, but we use NAME for consistency with later sections.
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• – CC-News caption: Chinese President Xi Jinping
(L) and First Lady Peng Liyuan bid farewell as
they board their plane to depart from the Julius
Nyerere International Airport in Dar es Salaam,
Tanzania, March 25, 2013. REUTERS/Thomas
Mukoya/File Photo

– Extracted interaction: [NAME] and [NAME]
bidding farewell

• – CC-News caption: Colombia’s Radamel Falcao
jumps for the ball with England’s Harry Maguire
during the round of 16 match between Colombia
and England at the 2018 soccer World Cup in the
Spartak Stadium, in Moscow, Russia, Tuesday,
July 3, 2018.

– Extracted interaction: Colombia [NAME]
jumping for the ball with England [NAME] dur-
ing the match

• – CC-News caption: Chuck Munro and Brian
Alexander of Spraying Systems welcome Eric
Vetters of ProCorr to their booth at NACE 2018
in Phoenix.

– Extracted interaction: [NAME] and [NAME]
welcoming [NAME] to their booth

In addition, 22,637 captions from Who’s Waldo include
such interactions. Interactions extracted from Who’s Waldo
captions include the following:

• – Who’s Waldo caption: Chief of Naval Opera-
tions Adm. [NAME] speaks at the Navy and Ma-
rine Corps Relief Society ball with Vice Com-
mandant of the Marine Corps Gen. [NAME] at
the Washington Hilton.

– Extracted interaction: [NAME] speaking at the
ball with [NAME] at the Hilton

• – Who’s Waldo caption: [NAME] and [NAME]
discuss Ancestry at the Maltz Performing Arts
Center

– Extracted interaction: [NAME] and [NAME]
discussing Ancestry at the Center

• – Who’s Waldo caption: NASA astronaut
[NAME] (left) and Japan Aerospace Exploration
Agency (JAXA) astronaut [NAME], both Expe-
dition 20 flight engineers, perform a check of
the Synchronized Position Hold, Engage, Reori-
ent, Experimental Satellites (SPHERES) Beacon
/ Beacon Tester in the Destiny laboratory of the
International Space Station.

– Extracted interaction: [NAME] and [NAME]
performing a check in the laboratory

Note that these extracted interactions may contain prepo-
sitional phrases. We remove prepositional phrases from re-
sults when generating synthetic interaction-caption pairs, as
described in Section B.4.

B.3. Generating novel interaction texts

Among the 6,212 CC-News captions with interactions,
we have only 3,146 unique interaction texts as extracted by
the parsing-based model described above. In order to have
access to a richer set of interactions for training the subse-
quent summarization model, we use text generation with a
large language model to generate more interactions similar
to those extracted from CC-News captions with the above
method, using the parsing-based interactions as seeds. We
use few-shot prompting by providing 10 random newline-
separated parsing-based interactions from CC-News cap-
tions as a prompt to the large language model GPT-Neo-
1.3B [3, 18] and generating until the next newline. We use
nucleus sampling [26] with p = 0.95, as well as a constraint
to prevent repeated trigrams. We also replace [NAME]
mask tokens with generic names (“Alex, Bailey, . . . ”) so
that the input text is more natural English and thus more in
distribution for the language model. We discard texts that
do not pass the following filters:

• Text contains “Alex” and “Bailey” in order, exactly
once, and no other names.

• Text does not contain uppercase letters, besides in
names.

• Text must contain a word ending in “-ing”.

• Text does not end with “ the” or “ a”.

Finally, we re-mask names with the token [NAME]. In
this way we generate ∼116k novel interaction texts used for
synthetic interaction-caption pairs as described in Section
B.4.

Examples of such randomly generated interaction texts
include the following:

• [NAME] kissing [NAME] after a win

• [NAME] handing [NAME] an autograph sheet

• [NAME] congratulating [NAME] in victory

• [NAME] calling [NAME] in a business suit

• [NAME] hugging [NAME]

• [NAME] telling [NAME] he’ll have

• [NAME] catching a short pass from [NAME] during a
play
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• [NAME] receiving a high five from [NAME] in the
post

• [NAME] giving [NAME] congratulations for a goal
during a period

• [NAME] telling [NAME] that he’s glad he came out to
see him

• [NAME] as [NAME] is being picked

• [NAME] shooting over [NAME] during practice

• [NAME] saying to [NAME] what he is going to do

• [NAME] watching [NAME] celebrate with teammates
as the ceremony began

• [NAME] walking with [NAME] around the deep area

As mentioned above, these may contain prepositional
phrases, which are removed later as discussed in Section
B.4.

B.4. Synthetic interaction-caption pair generation

Using syntactic parsing-based caption-interaction pairs
from Who’s Waldo data, described in Section B.2, and novel
interaction texts from CC-News, described in Section B.3,
we use few-shot learning to generate training data for an
abstractive summarization model as follows:

For each inference iteration, we construct a few-
shot prompt by selecting 10 interaction-caption pairs
(I1, C1), · · · , (Ik, Ck) using captions from Who’s Waldo
and syntactic parsing-based interaction texts, and a single
novel CC-News based interaction I∗. For each pair (Ii, Ci),
as well as in I∗, we replace [NAME] tokens with random
names using the random-name library9 library. We then
construct a prompt containing the following texts, in order
and newline-separated:

• For i = 1, · · · , k:

– “Caption of image showing Ii”

– Ci

• “Caption of image showing I∗:”

We input this prompt to GPT-Neo-1.3B [3, 18] and gen-
erate text until a newline is output. We generate using nu-
cleus sampling [26] with p = 0.95, temperature 0.7, a con-
straint to prevent repeated trigrams, and a maximum output
length of 200 tokens.

Denote the output of generation by C∗. The pairs
(I∗, C∗) generated by this method are noisy, so we select
for valid synthetic interaction-caption using the following
filters:

9https://github.com/dominictarr/random-name

• C∗ must contain the same random names that were
used for I∗ in the prompt

• C∗ must entail I∗ (pe > 0.5), as measured by
the entailment probability pe calculated by a pre-
trained NLI model. We use BART-large [37]
fine-tuned on the MNLI dataset [74] (using the
facebook/bart-large-mnli checkpoint from
Hugging Face model hub10).

• I∗ must contain a verb, checked using spaCy’s
en core web trf syntactic parsing model.

• I∗ may not contain any of the following banned sub-
strings, which are common artifacts that do not reflect
interactions: “photo”, “image”, “picture”, “in this”,
“In this”

Finally, we postprocess each I∗ with the following steps:

• Remove prepositional phrases that do not contain
[NAME]. For example: “[NAME] meeting with
[NAME] at a hotel” → “[NAME] meeting with
[NAME]”.

• Normalize subjects of verbs containing two or more
people joined by “and”, “with”, “&” and/or commas,
by replacing them with “with [NAME]” at the end of
an interaction. For example: “[NAME] and [NAME]
meeting” → “[NAME] meeting with [NAME]”.

It total, we generate 62,176 synthetic interaction-caption
pairs with this method. Examples of such pairs include the
following:

1. Caption: Estella, a member of the Women’s Auxiliary
Fire Corps, hugs Lorne, the President of the United
States, at a ceremony honoring firefighters at the White
House in Washington, D.C. on Sept. 30, 2012.
Interaction: [NAME] hugging [NAME]

2. Caption: Angelia shoots the puck in the face of Gladi
during a game on April 27, 2012, at the St. Louis Blues
home rink in St. Paul, Minn.
Interaction: [NAME] shooting the puck against
[NAME]

3. Caption: Emmie receives a letter in her mailbox from
Jacinthe.
Interaction: [NAME] receiving a letter from [NAME]

4. Caption:The hug between Bettye and Hester is a mo-
ment of joy in the life of Hester and Bettye. It was a
special moment for all of them. It is a special mem-
ory for Bettye, and it is a great moment for Hester, and

10https://huggingface.co/facebook/
bart-large-mnli
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that’s how it should be.
Interaction: [NAME] hugging [NAME]

5. Caption: Kippie, who attended the conference, asked
Paulie to make an official statement on the issue of
the military’s role in the US Embassy in Timor-Leste.
Paulie stated that he would not comment on the matter.
Interaction: [NAME] pressuring [NAME]

Note that although the interaction often contains the
same verb as the accompanying caption, it may also contain
a verb based on non-verbal cues (“hugging” in example 4
above, with the noun “hug” in the caption) or even based on
the general meaning of the synthetic caption (“pressuring”
in example 5 above).

B.5. Pseudo-label generation

Using the synthetic interaction-caption pairs (I, C) de-
scribed and illustrated in Section B.4, we fine-tune a pre-
trained T5 model [56] using the “summarize:” task prefix
on these pairs, using each I as the target. We use T5-base
and fine-tune for 3 epochs with batch size 8, initial learning
rate 5e − 5 with linear schedule, AdamW optimizer with
(β1, β2) = (0.9, 0.999), and maximum gradient norm of
1.0, and otherwise default hyperparameter settings as de-
fined in the Hugging Face summarization model training
script.11

After fine-tuning, we apply this model to each caption
in the Who’s Waldo dataset corresponding to samples with
≥ 2 facial detections, as provided in the dataset, to create
pseudo-labels. We filter these to only keep those pseudo-
labels beginning with [NAME], followed by a present pro-
gressive verb (“-ing”), followed by more text containing ex-
actly one additional [NAME]. We filter out examples con-
taining any of the banned substrings “photo”, “image”, or
“picture” since these often are artifacts that do not reflect
interactions.

Finally, in order to avoid data leakage with the test set,
we remove any samples with captions identical to those in
the test set, or with identical date-time metadata fields (since
these often are images taken from the same event).

In total, this procedure yielded 126,696 pseudo-labels
for Who’s Waldo, including 1,263 unique verbs, and 16,136
unique interactions.

Examples of such pseudo-labels created from Who’s
Waldo captions include the following:

Caption: The Assistant Commandant of the Marine
Corps, Gen. [NAME], [NAME], left, poses for a photo

11As of v4.18.0, script available at https://
github.com/huggingface/transformers/blob/
31ec2cb2badfbdd4c1ac9c6c9b8a74e974984206/
examples/pytorch/summarization/run_summarization.
py

with Master Sgt. [NAME] during the U.S. Marine Corps
Command, Control, Communications and Computers
(C4) annual awards dinner in Arlington, Va., April 17,
2014. The awards presented included the Gen. [NAME]
for outstanding communications leadership, the James
Hamilton Information Technology Management Civilian
Marine of the Year Award, the Pfc. Herbert A Little-
ton Non-Commissioned Officer Trophy for operational
communications excellence, and the Lt. Col. [NAME]
Memorial Unit Award.
Pseudo-label: [NAME] posing with [NAME]

Caption: [NAME] and [NAME] at Governor [NAME]
annual address in February 2016
Pseudo-label: [NAME] standing next to [NAME]

Caption: With Italian Prime Minister [NAME].
Pseudo-label: [NAME] talking with [NAME]

Caption: [NAME] at the Gothenburg Book Fair 2014.
Pseudo-label: [NAME] standing with [NAME]

Caption: Commemoration of 150th birth anniversary of
[NAME], organized by the Ministry of Culture, Govern-
ment of India.
Pseudo-label: [NAME] congratulating [NAME]

Caption: General [NAME], Air Force Chief of Staff,
addresses the 347th Wing personnel. Senator [NAME] is
standing next to the general.
Pseudo-label: [NAME] standing next to [NAME]

Caption: Luge World Cup Men 2017/18 in Altenberg:
Flower Ceremony – [NAME], [NAME], [NAME]
Pseudo-label: [NAME] congratulating [NAME]

Caption: US Reality TV Star And Fashion Expert
[NAME] in Sydney, by [NAME] ’How Do I Look’ was the
topic of conversation at King’s Cross Barrio Chino tonight.
US reality television star [NAME] and host of the ’How Do
I Look’ show was the main attraction. The red carpet came
out as [NAME] and a few familiar Sydney faces did their
walks and poses.
Pseudo-label: [NAME] talking to [NAME]

Caption: Crown [NAME] and [NAME] of Sweden during
the inauguration of the Northern Link in Stockholm
November 30, 2014.
Pseudo-label: [NAME] standing next to [NAME]

Caption: [NAME], french politician, Brive la Gaillarde
book fair, France, 2010 11 06
Pseudo-label: [NAME] attending [NAME]’s book fair
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Caption: [NAME] during 2013 World Championships in
Athletics in Moscow.
Pseudo-label: [NAME] standing with [NAME]

Caption: [NAME] shakes hands with Vice President
[NAME] shortly after becoming a U.S. citizen during a
naturalization ceremony on Camp Victory in Baghdad,
July 4, 2010. [NAME], assigned to the 82nd Airborne
Division’s 307th Brigade Support Battalion, 1st Advise and
Assist Brigade, is originally from Colombia.
Pseudo-label: [NAME] shaking hands with [NAME]

Caption: A bit of ’Underbelly’ blurb that we got hold
of (thanks [NAME] - author of Razor) reads...Back in
the day the East Village was called ’The Tradesman’s
Arms’, a bloodhouse with sawdust on the floor to soak
up the spit and vomit, hard stools at the bar and a dozen
cheap wooden tables with chairs scattered around&quot;.
The cast of Underbelly Razor and special guests partied
into the night celebrating the Underbelly Razor Uncut
DVD release at the very same place that crime queens
[NAME], [NAME], along with [NAME] frequented back
in their heyday. Strutting the blood red carpet was all of
the Razor cast, including [NAME], better known now as
our vice queen [NAME], [NAME] who played [NAME],
[NAME] ([NAME]), [NAME], better recognised as the
[NAME], [NAME], aka the suave [NAME]’ [NAME]
and [NAME], who we know as [NAME]. [NAME] tells
us of the former glory days of ’The Arms’, recounted
from the many interviews he conducted, compiling the
book, [NAME]. The red carpet event brought out the inner
gangster in a few of us with [NAME] stating she would
consider more ’Underbelly Razor’ type roles under the
right circumstances, [NAME] telling us to watch out for
his uncut and fight scenes, and [NAME] saying he was a
&quot;fashionable gangster&quot;.
Pseudo-label: [NAME] hitting the red carpet with
[NAME]

Caption: [NAME] and wife [NAME]
Pseudo-label: [NAME] sitting with [NAME]

Caption: [NAME] at 2017 European Athletics U23
Championships
Pseudo-label: [NAME] standing with [NAME]

Caption: [NAME], coach of the french feminine ski-
jumping team 2010
Pseudo-label: [NAME] coaching [NAME]

Caption: [NAME] on the red carpet for ’Gods of Egypt’ in
New York City on February 24, 2016.

Pseudo-label: [NAME] standing with [NAME]

Caption: SEOUL (July 6, 2009) Chief of Naval Operations
(CNO) Adm. [NAME] receives the National Security
Merit Tongil Medal for his outstanding and meritorious
service rendered to the Republic of Korea. [NAME] is on
an official visit to the U.S. 7th Fleet area of responsibility
to strengthen global maritime partnerships.
Pseudo-label: [NAME] receiving [NAME]’s award

Caption: [NAME], a retired United States Marine Lieu-
tenant Colonel, and administrator at the State University of
New York’s Maritime College, being promoted to two-star
general in New York’s Military Forces.
Pseudo-label: [NAME] being promoted by [NAME]

Caption: Pabradė, Lithuania – Maj. Gen. [NAME], Penn-
sylvania’s adjutant general, shakes hands with Maj. Gen.
[NAME] in an APC 113 used by the Lithuanian Army while
preparing to tour the training grounds. [NAME] visited the
exercise Amber Hope 2011 June 22 while conducting his
first trip to Lithuania as Pennsylvania’s adjutant general.
Pseudo-label: [NAME] shaking hands with [NAME]

B.6. imSitu-HHI details

We form imSitu-HHI, an 8,021-sample subset of the im-
Situ dataset [80], as described here.

Because we only use this data to evaluate our models,
and in order to have a sufficiently large sample size in the
final subset, we use all data from imSitu dataset (train, vali-
dation and test set combined together). In total this includes
126,102 samples. Using person detections from a pre-
trained YoloV5 model (ultralytics/yolov5 check-
point12, pretrained on MS COCO)[16], we discard samples
whose images have less than two person detections. We
also filter using the semantic frame data from imSitu, to se-
lect for samples with at least two human participants. Since
arguments are not directly labelled as human or non-human,
we use NLI-based filtering to select for human arguments.
There are 146,347 unique argument texts in imSitu. For
each such arugment A, we apply a pretrained NLI model
(BART-large finetuned on MNLI, as described in Section
B.4) to the following pair of texts:

• Premise: This is a A.

• Hypothesis: This is a human.

The model returns an entailment probability pe for each
such text pair, and we classify A as a human participant if
pe > 0.5. We remove all samples containing less than two
arguments that are classified as human.

12https://hub.docker.com/r/ultralytics/yolov5
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13,560 of the unique argument texts are classified as hu-
man, including the following examples:

• alpha

• desk sergeant

• Alfred the Great

• chief justice

• Gregory Pincus

• Pablo Neruda

• Spanish people

• abidance

• friend

• Cline

Examples of the remaining argument texts not classified
as human include the following:

• sugar beet

• barouche

• water development

• St. John’s

• stopper

• horsehair

• stripe

• advocator

• readjustment

• flamingo plant

It can be seen that the arguments have a very heavy-tailed
distribution, with many rare or highly specific texts, and the
NLI filtering contains noise. However we find this filtering
to be a useful heuristic in addition to other forms of filtering.

We filter out samples containing the following verbs
with negative or inappropriate connotations: ailing, appre-
hending, arresting, attacking, bandaging, begging, biting,
bothering, brawling, burning, clawing, complaining, con-
fronting, crying, destroying, detaining, disciplining, dis-
secting, exterminating, frisking, frowning, gambling, griev-
ing, grimacing, handcuffing, hanging, hitting, hunting, in-
terrogating, misbehaving, mourning, panhandling, peeing,
pinching, poking, pooing, pouting, punching, restraining,
scolding, shooting, slapping, spanking, spearing, spying,

stinging, striking, stripping, subduing, urinating, weeping,
whipping

After these filtering criteria, we are left with 15,207 sam-
ples. These samples include 359 out of the 504 unique verbs
found in imSitu. The number of images supporting each
verb gives an estimate of the likelihood of the given verb
to describe a scenario with multiple human participants and
thus gives us an estimate of its affinity to human-human in-
teractions (HHI).

The verbs with the highest support are “socializing” (270
images), “distributing” (261 images), “teaching” (252 im-
ages), “communicating” (251 images), and “interviewing”
(244 images). Among the least-supported verbs, which
have only a single image as support, are “slipping”, “skip-
ping”, “boarding”, “reading”, and “erasing”.

Finally, to select for verbs that represent HHI, only use
samples with verbs that are supported by at least 100 im-
ages. This leaves us with the 8,021 imSitu-HHI dataset.
This contains the following 50 verbs:

• socializing (270 images)

• distributing (261 images)

• teaching (252 images)

• communicating (251 images)

• interviewing (244 images)

• lecturing (241 images)

• training (228 images)

• providing (223 images)

• instructing (217 images)

• giving (213 images)

• pushing (201 images)

• helping (200 images)

• asking (195 images)

• coaching (192 images)

• selling (185 images)

• talking (185 images)

• educating (183 images)

• buying (170 images)

• filming (161 images)

• assembling (157 images)

• encouraging (157 images)
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• serving (156 images)

• dragging (155 images)

• baptizing (153 images)

• carrying (150 images)

• flinging (149 images)

• unloading (149 images)

• crowning (145 images)

• patting (138 images)

• examining (132 images)

• nagging (131 images)

• tickling (131 images)

• admiring (129 images)

• shaking (123 images)

• pinning (122 images)

• videotaping (122 images)

• arranging (121 images)

• imitating (119 images)

• offering (116 images)

• plunging (116 images)

• pitching (115 images)

• reassuring (114 images)

• autographing (112 images)

• ignoring (109 images)

• clapping (109 images)

• dousing (107 images)

• speaking (104 images)

• operating (103 images)

• wheeling (103 images)

• loading (102 images)

B.7. Training details

For training CLIPCap [44], we use checkpoints for the
MLP mapping CLIPCap variant with fine-tuned GPT2 de-
coder, trained on Conceptual Captions.13

For the Enc-Dec model, we initialize the CLIP encoder
with checkpoint vit-base-patch32 and the GPT2 de-
coder with checkpoint gpt2 (base), as available in the Hug-
ging Face transformers library.

We trained all models with batch size 16, AdamW opti-
mizer with learning rate 1e−5 and (β1, β2) = (0.9, 0.999),
and weight decay 0.1. For pretrained CLIPCap fine-tuned
on our pseudo-labels, we trained for two epochs, CLIP-
Cap trained on entire Who’s Waldo captions was trained for
three epochs, and the simple Enc-Dec model was trained for
17 epochs.

For models fine-tuned on our pseudo-labels, we use sam-
ple weights during training. In particular, we multiply the
loss for samples with label L by c(L)−1/4, where c(L) is
the count of occurrences of label L in our training data. In
order to prevent overfitting to repeated captions in training
data, we also use a multiplier of c(C)−1 applied to training
samples with caption C, where c(C) gives the number of
times caption C occurs verbatim in the training data. (See
Section B.5 for details on how we filter out samples with
captions that are repeated in the test set.)

B.8. Baseline model details

As in B.7, pretrained CLIPCap baselines use the MLP
mapping variant with fine-tuned GPT2 decoder; in this
case, using both the COCO and Conceptual Captions
checkpoints. For ExpansionNetV2 [27], we initialize with
the weights of the ensemble model pretrained on COCO
(rf model.pth)14. For CoFormer, we use the publicly
available pretrained checkpoint for inference15.

B.9. Metric calculation details

All reported BLEURT metrics use the BLEURT-20
checkpoint which more accurately predicts semantic sim-
ilarity than the original BLEURT model [52]. For all
BLEURT calculations involving texts containing [NAME]
slots in either the predicted or ground truth text, we replace
[NAME] with the text “person” so that the texts are in dis-
tribution for BLEURT.

NLI metrics (pe, pc) use BART-large [37]
fine-tuned on the MNLI dataset [74] (using the
facebook/bart-large-mnli checkpoint from
Hugging Face model hub). To calculate these metrics,

13Available at https://github.com/rmokady/CLIP_
prefix_caption.

14Available at https://github.com/jchenghu/
expansionnet_v2.

15Available at https://github.com/jhcho99/CoFormer.
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[NAME] slots in texts are filled with an underscore
character (“ ”).

Verb similarity scores use GloVe [49] word embeddings,
specifically the glove-wiki-gigaword-200 model
available via Gensim. For models trained on our pseudo-
labels, the model typically outputs the verb as the first
word token, so we could use it for this metric directly.
For captioning models not trained on our pseudo-labels, we
virst extract a verb from their outputs for this metric using
spaCy’s en core web trf model. We find the first verb
lemma in the given text and convert it to present continuous
form (“-ing”). For texts not containing a verb, we use the
zero vector as their verb embedding.

B.10. CoFormer evaluation details

Since the CoFormer baseline model does not output free
text, we elaborate here on the evaluation method used to
compare it to the other methods under consideration.

For all tasks, we evaluate CoFormer by using its pre-
dicted verb, discarding semantic frame and grounding pre-
dictions. This is because these semantic arguments do
not directly map to the text of a human-human interaction
string, so we cannot directly compare them using text-based
metrics.

The results for CoFormer on Waldo and Wenda reported
in the main paper are calculated by inserting its predicted
verbs into a text prompt and treat this as the predicted inter-
action. We use two different prompt templates for evalua-
tion:

• P1: “ Ving ”, where V denotes the given verb. This
is most appropriate for transitive verbs (“ greeting ”).

• P2: “ Ving with ”, where V denotes the given verb.
This is most appropriate for intransitive verbs (“ danc-
ing with ”).

Because P1 or P2 may be more appropriate depending
on the verb, the reported metrics are aggregated by using
the best (maximum or minimum, depending on the metric)
score among both prompt templates for each sample.

We also note that we are discarding predicted semantic
frame arguments from CoFormer’s predictions that could be
important to understanding the depicted interaction. How-
ever, they do not map directly to a single interaction string.
Our approach has the advantage of directly inserting addi-
tional context into the predicted string using valid English
syntax.

C. Image Attribution
• COCO val2014, ID 503278 / CC BY-NC-ND 2.0

• COCO val2014, ID 369122 / CC BY-NC-ND 2.0

• Photo by Jennifer A. Villalovos / Public domain

• Leandre Gramss double double bass 14 by Schorle /
CC BY-SA 4.0

• 2017 Ski Tour Canada Quebec city 17 by Cephas / CC
BY-SA 4.0

• UWS Giants vs. Eastlake NEAFL round 17, 2015 159
by Amy Mergard / CC BY 2.0

• Gansler swearing in by Doug Gansler / CC BY 2.0

• 20091112 Freddie Barnes huddling by PhotoBen27 /
CC BY 2.0

• Enrique and Maja in Toronto 2014 02 by 001Jrm / CC
BY-SA 3.0

• USMC-051115-M-9876R-032 by Slick-o-bot / Public
domain

• Photo by Glenn Fawcett / Public domain
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• Photo by Karolina A. Martinez / Public domain

• AJ Challenges Paige by Miguel Discart / CC BY-SA
2.0
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