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Abstract

Task driven object detection aims to detect object in-
stances suitable for affording a task in an image. Its chal-
lenge lies in object categories available for the task being
too diverse to be limited to a closed set of object vocabu-
lary for traditional object detection. Simply mapping cat-
egories and visual features of common objects to the task
cannot address the challenge. In this paper, we propose
to explore fundamental affordances rather than object cat-
egories, i.e., common attributes that enable different ob-
jects to accomplish the same task. Moreover, we propose
a novel multi-level chain-of-thought prompting (MLCoT) to
extract the affordance knowledge from large language mod-
els, which contains multi-level reasoning steps from task
to object examples to essential visual attributes with ratio-
nales. Furthermore, to fully exploit knowledge to benefit ob-
ject recognition and localization, we propose a knowledge-
conditional detection framework, namely CoTDet. It con-
ditions the detector from the knowledge to generate object
queries and regress boxes. Experimental results demon-
strate that our CoTDet outperforms state-of-the-art meth-
ods consistently and significantly (+15.6 box AP and +14.8
mask AP) and can generate rationales for why objects are
detected to afford the task.

1. Introduction
The traditional object detection task [3, 12, 37, 65], as

shown in Figure 1a, aims to detect object instances of given
categories in an image, so objects of categories such as the
cup, bottle, cake, and knife are detected. In contrast, de-
tection tasks in real-world applications [1, 4], such as in-
telligent service robots, usually appear in the form of tasks
rather than object categories [38]. For example, when an
intelligent robot is asked to complete the task of “opening
parcels”, the robot needs to autonomously locate the tool
shown in Figure 1b, i.e., a knife. So the core of this type
of task is to detect the object instances in the image that are
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Figure 1. An example of (a) traditional object detection, (b)-
(e) task driven object detection, and (f) our multi-level chain-of-
thought (MLCoT) prompting large language models (LLMs) to
generate visual affordance knowledge.

most suitable for the task [19, 42]. However, the challenges
for task driven object detection are multi-fold. Previous
methods that directly learn the mapping between objects
and tasks from objects’ visual context features or categories
cannot achieve satisfactory results. As shown in Figure 1c,
the context-based approach GGNN [42] wrongly chooses
vegetable stem for afford task of “opening parcels” be-
cause it learns that visually slender objects can open parcels.
Similarly, the category-based approach TOIST [19] consid-
ers that no object in the image can perform the “opening
parcels” since it could not even recognize an instance of
the knife in the image. In contrast, people will intelligently
and naturally choose to use the knife to open parcels in the
scene of Figure 1b.

Recently, Large Language Models (LLMs) like GPT-
3 [2] and ChatGPT [31] have demonstrated impressive ca-
pabilities in encoding general world knowledge from a vast
amount of text data [32, 40, 52]. A naive approach is to
prompt LLMs directly to return “what objects should we
use to open parcels” and leverage the returned object cate-
gories to simplify task driven object detection to the tradi-
tional one. However, we observe that LLMs usually only
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return a few categories of commonly used objects, such as
the knife, pen, paper cutter, and scissors shown in Figure 1f.
According to these categories, although the knife in Fig-
ure 1b can be identified as the target object, the detection
system will miss other objects that also can be used to open
parcels, such as the fork in Figure 1d and the temperature
probe next to the microwave oven in Figure 1e. In turn, we
ask why people can easily lock the fork and temperature
probe in Figure 1d and 1e as the target objects? We argue
that the reason is that people are not restricted to using spe-
cific categories of objects to accomplish a task but instead
select objects based on the commonsense knowledge that
objects with “a handle and sharp blade” or “a handle and
sharp tip” can “open parcels”.

In this paper, we propose to explicitly acquire visual af-
fordance knowledge of the task (i.e., common visual at-
tributes that enable different objects to afford the task)
and utilize the knowledge to bridge the task and objects.
Figure 1f shows two sets of visual affordance knowledge
(marked inside the yellow box) for opening parcels. How-
ever, it is not trivial to acquire such task-specific visual af-
fordance knowledge.

Furthermore, we propose a novel multi-level chain-of-
thought prompting (MLCoT) to elicit visual affordance rea-
soning from LLMs. At the first level (object level), we
prompt LLMs to return common objects by the above-
mentioned approach. Unlike before, which treats the re-
turned object categories as target categories, we instead
treat this query progress as brainstorming to obtain repre-
sentative object examples. At the second level (affordance
level), we generate rationales from LLMs for why object
examples can afford the task and cooperate rationales to
facilitate LLMs to reason and summarize the visual affor-
dances beyond object examples. As shown in Figure 1f,
the rationale and visual affordances that enable the knife to
open parcels are “easily cut through paper and plastic...”
and “a sharp blade and handle”, respectively. Our MLCoT
can capture the essence of visual affordances behind these
object examples without being limited to object categories.
Thus we can successfully detect the fork and temperature
probe in Figure 1d and 1e as they meet the visual affor-
dances required by the task.

Moreover, we claim that visual affordance knowledge
not only helps recognize and identify objects suitable for
the task but also helps localize objects more precisely be-
cause visual attributes such as color and shape are use-
ful in object localization. Therefore, unlike some meth-
ods [9, 30, 44, 46, 53] to take knowledge as complemen-
tary to the image’s visual features, we condition the detector
on the visual affordance knowledge to perform knowledge-
conditional object detection. Specifically, we follow [19] to
use an end-to-end query-based detection framework [3,65].
But instead of randomly initializing queries, we gener-

ate knowledge-aware queries based on image features and
visual affordance knowledge. In addition to generating
queries, we use visual affordance knowledge to guide the
bounding box regression explicitly, inspired by the denois-
ing training [18]. Unlike [18] introduces denoising for
accelerating training, our knowledge-conditional denoising
training aims to teach the decoder how to utilize visual
knowledge to regress the boxes for queries.

Finally, we propose the CoTDet network, which acquires
visual affordance knowledge from LLMs via the proposed
MLCoT and performs knowledge-conditional object detec-
tion to effectively utilize the knowledge. Moreover, our
CoTDet can easily be extended to task driven instance seg-
mentation by employing a segmentation head [5, 15].

In summary, our main contributions are:

• We are the first to propose to explicitly acquire vi-
sual affordance knowledge and utilize the knowledge
to bridge the task and object instances.

• We propose a novel multi-level CoT prompting (ML-
CoT) to make abstract affordance knowledge con-
creted, which leverages LLMs to generate and summa-
rize intermediate reasoning steps from object examples
to essential visual attributes with rationales.

• We claim that visual affordance knowledge can benefit
both object recognition and localization and propose a
knowledge-conditional detection framework to condi-
tion the detector to generate object queries and guide
box regression through denoising training.

• Our CoTDet not only consistently outperforms
state-of-the-art methods (+15.6 AP50box and +14.8
AP50mask) by a large margin but also can generate ra-
tionales for why objects are detected to afford tasks.

2. Related Work
Task Driven Object Detection/Instance Segmentation
aims to detect or segment out the most suitable objects in
an image to afford a given task, such as opening parcel
or getting lemon out of tea. Different from traditional ob-
ject detection or instance segmentation [3, 5, 10, 12, 37, 65],
it requires modeling the preference for selecting objects
based on a comprehensive understanding of the specific
task and the image scene. Although referring expres-
sion grounding [6, 15, 41, 45, 54, 56, 57] and segmenta-
tion [14, 20, 47, 51, 55, 58, 60, 62] similarly locate the ref-
erent according to a natural language description, they rely
on the object attributes and relations in the scene for local-
ization without considering the prior knowledge needed to
afford the given task. These factors result in the challenge
of task driven object detection which requires complex and
joint knowledge reasoning on the requirements for one spe-
cific task and objects’ functional attributes beyond visual
recognition and scene understanding.
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Figure 2. Overall framework of the proposed CoTDet with multi-level chain-of-thought prompting (MLCoT). We first generate
visual affordance knowledge from LLMs with the proposed novel MLCoT. Next, we perform knowledge-conditional object detection by
utilizing the knowledge to generate object queries for the scene as well as guide object localization through denoising training.

The pioneering work [42] adopts a two-stage framework
that first detects objects and then compares among objects
to select suitable objects via graph neural networks [43].
The following work TOIST [19] distills target object names
to pronouns such as something by conditioning on the lan-
guage description of the task. However, these works lack
to model explicit requirements of tasks and objects’ affor-
dances to tasks, which limits their performance and gener-
alization capabilities.

Knowledge Acquisition in Vision-Language Tasks. Inte-
grating external knowledge into computer vision tasks [16,
35,44,46] and vision-language tasks [29,49,50,63] has been
found beneficial. Previous methods [16, 28, 30, 35, 53, 61]
are interested in acquiring structured knowledge (e.g., Con-
ceptNet [22]), which usually includes commonsense con-
cepts and relations and is presented in fixed data struc-
tures such as the graph or triple. Recently, large language
models [2, 7, 36] have been demonstrated to learn open-
world commonsense knowledge from the large-scale cor-
pus [32, 40]. Some works [9, 59] utilize language models
to encode the representations of inputs or directly generate
answers conditioning on visual inputs, leveraging the latent
knowledge in language models. Unlike previous works, we
prompt language model GPT-3 [8] to obtain external knowl-
edge explicitly with the chain of thought (CoT) [25, 52, 64]
for better interpretability. To the best of our knowledge, we
are the first to explore CoT to acquire visual commonsense
knowledge in text form, leveraging the reasoning ability of

the language model to filter effective visual functional at-
tributes to afford tasks.
External Knowledge Utilization. Incorporating knowl-
edge reasoning has attracted growing interest in computer
vision [11,26,34,35,44,63] and vision-language [49] fields
such as object detection [44, 46], visual relationship detec-
tion [16, 61] and visual question answering [9, 28, 30, 53].
For tasks that focus on capturing relations among ob-
jects, such as scene graph generation and visual relation-
ship detection, extracting knowledge of the interactions be-
tween general concepts becomes natural [11, 16, 61, 63].
Other tasks like object detection and image classification
rely on category-related knowledge that is retrieved in the
knowledge base as definitions or attributes of general con-
cepts [9, 26, 34, 44, 46, 53]. For knowledge utilization, they
mainly directly take external knowledge as an expansion
to visual content or explicitly constrain the consistency be-
tween knowledge and visual content. Different from exist-
ing works, we leverage attribute-level commonsense knowl-
edge about requirements for completing tasks and take ex-
ternal knowledge of tasks as the condition to condition the
detector for task driven object detection.

3. Method

The framework of our proposed CoTDet is shown in
Figure 2. First, we introduce the problem definition and
image and text encoders in Section 3.1. Second, we ac-



quire visual affordance knowledge from LLMs by lever-
aging the multi-level chain-of-thought prompting and ag-
gregation (Section 3.2). Next, we present the knowledge-
conditional decoder that conditions acquired knowledge to
detect and segment suitable objects (Section 3.3). Finally,
we introduce the loss functions in Section 3.4.

3.1. Problem Definition and Encoder

Problem Definition. Given a task in text form S (e.g.,
“open parcel”) and an image I , task driven object detec-
tion require detecting a set of objects most preferred to af-
ford the task. Note that the target objects indicated by the
task are not fixed in quantity and category, which may vary
with changes in the image scene. In contrast, traditional ob-
ject detection [3, 10, 65] detects objects of fixed categories
while referring image grounding [6,17,27,33] localizes un-
ambiguous objects.
Encoders. For the task S, we leverage the linguistic infor-
mation from two perspectives. First, the text S is preserved
as input for extracting knowledge from LLMs. Besides, we
employ RoBERTa [23] as the text encoder to obtain the text
feature ts for the task S, which will be used to query the
task-relevant visual content in the image. For the image I ,
we adopt the ResNet-101 [13] as the visual backbone to ex-
tract multi-scale visual feature maps and flatten the maps
along the spatial dimension to features V .

3.2. Visual Affordance Knowledge from LLMs

To detect objects to afford a particular task, we naturally
consider the task’s requirements first and subsequently lo-
calize suitable objects that meet the requirements. Never-
theless, the task requirements are abstract and can not di-
rectly correspond to the visual content in the image for lo-
calizing the objects. Motivated by this, we propose to ex-
plicitly extract common visual attributes (i.e., visual affor-
dances) that make different objects can afford the task and
use visual affordances to bridge task requirements and ob-
ject instances in the image. Furthermore, we generate visual
affordances from LLMs because LLMs generally contain
world knowledge learned from a vast amount of text data.

Specifically, we first design a novel multi-level chain-
of-thought prompting to leverage LLMs to generate visual
affordances (see Section 3.2.1) and then encode and ag-
gregate them automatically to be utilized for detection (see
Section 3.2.2).

3.2.1 Multi-Level Chain-of-Thought Prompting

Our multi-level chain-of-thought prompting (MLCoT)
leverages LLMs to generate and summarize intermediate
reasoning steps from object examples to essential visual at-
tributes with rationales. MLCoT first brainstorms the object
examples to afford the task and then considers rationales

why the examples can afford the task and summarizes cor-
responding visual attributes for rationales.
Object-level Prompting as Brainstorming. At the first
level, we prompt LLMs to generate daily object examples
that afford the input task S. Specifically, we design the fol-
lowing text prompt:

Prompt: What common objects in daily life can be used as
a vehicle for the human to [task]? Please list the twenty
most suitable objects.
Output: knife, pen, paper cutter, scissors, screwdriver, ...

Where [task] is filled with the task text S. We denote the
number of objects returned from LLMs as No. For simplic-
ity, we present the most critical parts of the prompts. For
complete prompts, please refer to Appendix. One straight-
forward idea is to perform traditional category-specific ob-
ject detection with respect to the categories of object exam-
ples. However, it is not feasible due to the following ob-
servations: (1) object examples are overly limited to partial
object categories, resulting in the gap between object cat-
egories and the actual task requirements. For instance, the
fork in Figure 2 is not among the objects returned by LLMs.
(2) a few noisy unsuitable objects may be output. Although
the noisy objects are few, relying entirely on the object ex-
amples is risky. For example, for the task of extinguishing
fire, LLMs return the fire axe, a common firefighting tool,
but it cannot be directly used to extinguish the fire.
Affordance-level Prompting with Rationales. To address
the above challenges and capture the essential visual affor-
dances implied in representative object examples, we pro-
pose to generate rationales for why these objects can afford
the task and summarize visual affordances from rationales.
With the object examples, we prompt LLMs to generate ra-
tionales as follows:

Prompt: For each object, let’s think about the rationales
for why they afford the task from the perspective of visual
features.
Output: Knife: They have a sharp blade which can easily

cut through paper and plastic; They have a handle which
provides a good grip for the user. Pen: ...

By the above prompting, we get a set of rationales for each
object. Next, we further prompt LLMs to summarize visual-
related rationales to form visual affordances as follows:

Prompt: Summary corresponding visual features of the ob-
ject for each rationale.
Output: {A sharp blade and a handle. }, {...}, ...

Finally, we obtain No sets of visual affordances, where each
set contains several visual attributes relevant to why objects
can afford the task S. And we define each set of visual affor-
dance knowledge as a knowledge unit. Note that although
each knowledge unit is derived from the rationales of an
object example, the affordance knowledge in that unit is not



limited to that object example or its related categories. For
example, the first visual affordance unit comprises “a sharp
blade and a handle”, which correspond to the returned ob-
ject “knife”. Notably, this visual affordance unit also ap-
plies to “box cutter” and “paper cutter”.

3.2.2 Knowledge Encoding and Aggregating

We further extract a refined knowledge base by filtering
out a few knowledge units corresponding to the unsuit-
able object examples mentioned in Section 3.2.1. For each
knowledge unit, we concatenate textual descriptions of its
visual affordances into a textual sequence and then utilize
RoBERTa [23] to obtain the sentence feature. To filter out
unsuitable units, we compute the cosine similarity between
each pair of knowledge units and exclude outlier units if
their maximum similarity to other units falls below a pre-
determined threshold. Additionally, for each selected unit,
we extract its word representations via RoBERTa. In sum-
mary, we aggregate N visual affordance knowledge units,
denoted as K = {pkj , pvj}Nj=1, where pkj and pvj are the sen-
tence feature and word features of j-th unit, respectively.

3.3. Knowledge-conditioned Decoder

We base on the detection architecture of Deformable-
DETR [65], a DETR-like detector [3, 5, 18], which uses
object queries to capture object-level information for detec-
tion (Section 3.3.1). Unlike randomly initializing the object
queries, we leverage visual affordance knowledge to gener-
ate the object queries (Section 3.3.2) and guide the bound-
ing box regression with denoising training (Section 3.3.3).

3.3.1 Introduction to Deformable-DETR

Deformable-DETR contains a Transformer encoder and a
Transformer decoder. The encoder inputs visual features V
and outputs the refined visual features F = {f1, f2, ..., fi}
via multi-scale deformable attention. The decoder ran-
domly initializes queries Q = {q1, q2, ..., qk} and predicts
a reference point pk for each object query qk, and these ref-
erence points L = {l1, l2, ..., lk} serve as the initial guess
of the box centres. Next, the decoder searches for objects O
for these queries Q with reference points L via multi-scale
deformable cross-attention and self-attention, which is for-
mulated as follows,

O = Deformable([Q,L], F ), (1)

where Deformable(·, ·) denotes the Transformer decoder of
Deformable-DETR.

3.3.2 Knowledge-conditional Query Generation

Instead of randomly initializing the queries, we generate the
queries and their reference points based on the visual con-

tent of the image, the task, and the visual affordance knowl-
edge. Specifically, we utilize visual affordance knowledge
to select visual features and combine them with the knowl-
edge to generate queries, and then the spatial information in
these visual features naturally becomes the spatial priors of
reference points.

Given visual features F = {f1, f2, ..., fi}, we first fuse
each feature fi with the task’s text feature ts, and then cal-
culate its relevance to the task’s visual affordance knowl-
edge K = {(pkj , pvj )}Nj=1. Since each knowledge unit
(pkj , p

v
j ) in the knowledge base K is a set of affordances

that meet the task requirements, we use the fused feature’s
largest similarity to each knowledge unit (pkj , p

v
j ) in the

knowledge base K as the feature’s relevance score. The cal-
culation is formulated as follows,

si,j = cos(fc(fi) + fc(ts), p
k
j ),

ri = maxj(si,j), di = argmaxj(si,j),
(2)

where cos(·, ·) computes the cosine similarity, fc(·) repre-
sents the fully connected layer, and si,j is the similarity be-
tween i-th visual feature and j-th knowledge unit. Then,
ri and di mean the i-th visual feature’s relevance score and
index of the corresponding knowledge unit, respectively.

Next, we select the visual features with the top-k largest
relevance scores {ri} to incorporate their corresponding
knowledge {(pkdi

, pvdi
)} to generate queries Qkn as follows,

Qkn = topkri{fi +AttentionPool(fi, p
v
di
)}, (3)

where topkri means to select the corresponding features
with the top-k largest relevance scores ri. The atten-
tion pooling layer [48] AttentionPool(fi, pvdi

) returns the
weighted features on pvdi

based on their similarities to the
fi. Note that, for each knowledge unit (pkj , p

v
j ), we use its

global sentence feature pkj to compute its overall similarity
to each visual feature in Eq. 2 while adopting word-level
features pvj to better enhance the query’s fine-grained rep-
resentations in Eq. 3. Similar to Deformable-DETR, we
further predict the reference points Lkn from the queries
Qkn. In addition, to facilitate the learning of Top-k selec-
tion, the selected queries Qkn are directly fed into the pre-
diction heads and supervised during training using the same
training loss in Section 3.4.

3.3.3 Knowledge-conditional Decoding

With queries Qkn, reference points Lkn, and the refined vi-
sual features F , we apply the Deformable decoder to search
objects Okn as follows,

Okn = Deformable([Qkn, Lkn], F ). (4)

In addition to utilizing visual affordance knowledge for
query generation and providing the decoder with prior



task1: step on task2: sit comfortably task3: place flowers task4: get potatoes out of fire task5: water plant
task6: get lemon out of tea task7: dig hole task8: open bottle of beer task9: open parcel task10: serve wine
task11: pour sugar task12: smear butter task13: extinguish fire task14: pound carpet

Method
Task(APbox@0.5)

Mean
task1 task2 task3 task4 task5 task6 task7 task8 task9 task10 task11 task12 task13 task14

GGNN [42] 36.6 29.8 40.5 37.6 41.0 17.2 43.6 17.9 21.0 40.6 22.3 28.4 39.1 40.7 32.6
TOIST [19] 44.0 39.5 46.7 43.1 53.6 23.5 52.8 21.3 23.0 46.3 33.1 41.7 48.1 52.9 41.3
TOIST† [19] 45.8 40.0 49.4 49.6 53.4 26.9 58.3 22.6 32.5 50.0 35.5 43.7 52.8 56.2 44.1
Ours 58.9 55.0 51.2 68.5 60.5 47.7 76.9 40.7 47.4 66.5 41.9 48.3 61.7 71.4 56.9

Table 1. Comparison with state-of-the-art models for task driven object detection on COCO-Tasks dataset. † means the model is
with noun-pronoun distillation.

knowledge, we further improve the knowledge utilization
by designing a knowledge-based denoising training [18].
As the visual affordance knowledge indicates the target
objects’ visual attributes, such as shape and size, the
knowledge-base denoising guides the decoder in learning
how to use this kind of visual knowledge to regress the tar-
gets’ boxes.

Specifically, during the training stage, we first randomly
add noise to ground-truth boxes Ogt = {ogt

m}Mm=1 to con-
struct the noised objects following DN-DETR [18] and then
extract noised boxes’ visual features and centers as the
noised queries F noise = {f noise

m }Mm=1. Notice that the previ-
ous denoising training method [18] adds noise to both boxes
and categories labels to capture label-box relations better.
But we only add noise to boxes because we aim to utilize the
knowledge without noise to help denoise boxes. Therefore,
we extract the knowledge unit (pkdm

, pvdm
) for each ground-

truth box ogt
m through Eq. 2. Finally, the knowledge units

{(pkdm
, pvdm

)}Mm=1 guide the decoder to regress the ground-
truth boxes Ogt from the noised queries F noise, which is for-
mulated as follows,

P kn = {AttentionPool(f noise
m , pvdm

)}Mm=1

Odenoise = Deformable([F noise + P kn, Lnoise], F, )
(5)

where P kn is the visual affordance knowledge of noised
queries, and the Deformable(·, ·) in Eq. 4 and Eq. 5 shares
the same parameters. And the denoising is only considered
in the training stage.

3.4. Loss Functions

Following DETR [3], we use bipartite matching to find
the unique predictions for the ground-truth objects and
adopt the same bounding box regression loss Lbox consist-
ing of L1 loss and GIoU [39] loss. Moreover, we use the
binary cross entropy loss as the classification loss Lcl. The
overall loss is represented as:

Lcost = λclLcl + λboxLbox, (6)

where λcl and λbox are the hyperparameters of the weighted
loss. Our method can be easily extended to instance seg-
mentation by adding a segmentation head [5] and replacing
the box regression loss with the Dice loss Lmask.

4. Experiment
4.1. Dataset and Implementation Details

Dataset. We conduct experiments on the COCO-Tasks
dataset [42], which comprises 14 different tasks (see Ta-
ble 1). This dataset is derived from the COCO dataset [21],
but with customized annotations for task driven object de-
tection. Each task contains 3600 training and 900 testing
images. Besides, we follow [19] to incorporate mask anno-
tations to the original COCO-Tasks dataset for the instance
segmentation benchmark.
Implementation Details. Following previous works [19,
42], we use ResNet-101 [13] as the image encoder and
RoBERTa [23] as the text encoder. The model is pre-trained
on the COCO dataset but images already part of COCO-
Tasks are removed. We train the model for 4000 iterations
with the initial learning rate 1e-4 and use AdamW [24] as
the optimizer. The hyperparameters λcl and λbox are 4 and
5. Following [19], we evaluate the segmentation and de-
tection performance of each task using APmask@0.5 and
APbox@0.5, respectively. And we denote their means across
all tasks as mAPmask and mAPbox. Unless otherwise speci-
fied, we leverage the GPT-3 [2] to extract visual affordance
knowledge due to its capability to generate rationales [52].

4.2. Comparison with State-of-the-Art Methods

Table 1 and Table 2 show the comparison of our CoT-
Det with state-of-the-art models (SOTAs) on detection and
segmentation benchmarks. Our model consistently outper-
forms the SOTAs [19, 42] on all benchmarks and tasks.
Comparison with SOTAs. Compared to TOIST [19],
our CoTDet achieves significant performance improve-
ment (15.6% mAPbox and 14.8% mAPmask), which demon-
strates the effectiveness of our task-relevant knowledge
acquisition and utilization. Compared to the two-stage



Method
Task(APmask@0.5)

Mean
task1 task2 task3 task4 task5 task6 task7 task8 task9 task10 task11 task12 task13 task14

GGNN [42] 31.8 28.6 45.4 33.7 46.8 16.6 37.8 15.1 15.0 49.9 24.9 18.9 49.8 39.7 32.4
TOIST [19] 37.0 34.4 44.7 34.2 51.3 18.6 40.5 17.1 23.4 43.8 29.3 39.9 46.6 42.4 35.2
TOIST† [19] 40.8 36.5 48.9 37.8 43.4 22.1 44.4 20.3 26.9 48.1 31.8 34.8 51.5 46.3 38.8
Ours 55.0 51.6 51.2 57.7 60.1 43.1 65.9 40.4 45.4 64.8 40.4 48.7 61.7 64.4 53.6

Table 2. Comparison with state-of-the-art models for task driven instance segmentation on COCO-Tasks dataset. † means the model
is with noun-pronoun distillation.

Ablation task2 task6 task9 mAPbox mAPmask

“objects” 25.4 16.5 21.0 31.9 31.3
“visual” 50.4 30.3 38.3 48.1 44.7

w/o rationales 52.0 40.7 41.2 52.4 49.0
MLCoT 55.0 47.7 47.5 56.9 53.6

MLCoT(ChatGPT) 50.6 48.1 50.3 57.0 54.0

Def+GGNN [42] 38.6 24.7 23.4 38.8 35.8
Def+TOIST [19] 43.4 21.0 29.0 40.3 37.6

Init w/ MLCoT 42.2 35.9 35.6 48.7 46.4
Fuse w/ MLCoT 44.0 42.3 41.2 50.6 47.7

Select w/ MLCoT 50.0 47.2 43.7 55.3 51.7
Full Decoder 55.0 47.7 47.5 56.9 53.6

Table 3. Ablation study about knowledge acquisition, detection
framework, and knowledge utilization of our CoTDet.

method GGNN [42], we achieve 24.3% mAPbox and 21.2%
mAPmask performance gain, which demonstrates the impor-
tance of leveraging the visual affordance knowledge rather
than purely visual context information.
Comparison on Sub-tasks. The following comparisons
on sub-tasks further demonstrate that the affordance-level
knowledge is capable of bridging tasks and objects. Our
CoTDet significantly improves the detection and segmenta-
tion performance on task4 (get potatoes out of fire), task6
(get lemon out of tea) and task7 (dig hole), achieving ap-
proximately 20% mAP improvement on both benchmarks.
These tasks face the common challenge of the wide vari-
ety of targets’ categories and visual appearances, which is
hardly dealt with by methods like [19, 42] that merely learn
the mapping between tasks and objects’ categories and vi-
sual features. In contrast, our method explicitly acquires the
visual affordance knowledge of tasks to detect rare objects
and avoid overfitting to common objects, outperforming
significantly in these tasks. In addition, for those less chal-
lenging tasks with a few ground-truth object categories, we
still achieve approximately 8% mAP improvement, demon-
strating the effectiveness of conditioning on visual affor-
dances to object localization.

4.3. Ablation Study

We evaluate seven variants of our CoTDet and two SO-
TAs with the same backbones as ours to validate the effec-

tiveness of the proposed knowledge acquisition and utiliza-
tion. The results are shown in Table 3. In addition to mAP,
we report APbox@0.5 on relatively easy task2 (sit comfort-
ably) and challenging task6 (get lemon out of tea) and task9
(open parcel) for reference, and the full results and analysis
on sub-tasks are provided in Appendix.
MLCoT Prompting for Knowledge Acquisition. To eval-
uate the impact of core designs in MLCoT, we replace
the MLCoT pipeline with the following approaches and
utilize the acquired knowledge as the condition to guide
detection: (1) We encode the object categories returned
by the object level of MLCoT as the knowledge to per-
form the knowledge-conditional object detection. The re-
sults (31.9% mAPbox and 31.3% mAPmask) demonstrate that
simply extracting the object categories from LLMs cannot
achieve satisfactory performance. (2) We attempt to ac-
quire affordance-level rather than object-level knowledge.
Specifically, we prompt LLMs by asking “what visual fea-
tures can we use to determine the suitability of an object
for {TASK}?” to generate visual affordance knowledge di-
rectly. The attempt improves the above object-level model
by 16.2% mAPbox and 13.4% mAPmask, showing the neces-
sity of exploring the essential visual affordances behind the
object categories. However, this model still underperforms
by approximately 9% mAP compared to our full model. It is
difficult to summarize a unified description of widely vary-
ing objects without priors, resulting in only one set of visual
attributes being returned from LLMs. (3) To increase the
diversity of visual affordances, we prompt LLMs to gen-
erate visual features for each object retrieved, which leads
to a significant improvement to 52.4% mAPbox and 49.0%
mAPmask. (4) Finally, we further add rationales to filter out
the misleading and irrelevant attributes, achieving a 4.5%
and 4.6% increase in mAPbox and mAPmask, respectively.
(5) We also evaluate the effect of using different LLMs
to extract visual affordance knowledge. Our MLCoT with
ChatGPT [31] has a similar mAP to MLCoT with GPT-3.
Knowledge-conditional Object Detection. To validate the
effectiveness of our proposed knowledge-conditioned de-
coder, we conduct ablation studies with two baselines and
three variants based on Deformable-DETR [65] framework:
(1) We develop GGNN [42] on the Deformable-DETR de-
tection framework. Def+GGNN simply learns the rela-



“visual”GT w/o KDNGT OursTOIST

(b) “open bottle of beer” TOIST(∅), (d) “get lemon out of tea”

(a) “get lemon out of tea”  GT(∅),Ours(∅) (c) “pound carpet”

Ours

Rationale for (b): sharp blade with a pointed end to insert 
into the bottle cap.

Rationale for (d): handle of the spatula is long enough to reach the bottom of 
the cup; flat edge is designed to scoop up the lemon pieces.

Figure 3. Visualization for prediction results of our CoTDet, its variants, and the existing best-performing TOIST [19].

tions between objects and identifies objects based on their
contexts, limiting its performance. (2) Besides, similar
to TOIST [19], we initialize queries with the task’s tex-
tual feature based on our framework. The performance gap
(16.6% mAPbox and 14.1% mAPmask) between Def+TOIST
and our final model. (3) We introduce the visual affordance
knowledge extracted by MLCoT but simply use it to initial-
ize the queries of the decoder (Init w/MLCoT). The model
achieves significant performance gain compared to the two
baselines. (4) We further fuse knowledge with the im-
age’s visual feature map to construct a multi-modal feature
map (Fuse w/MLCoT), which jointly understands the two
modalities and improves performance (1.9% mAPbox and
1.3% mAPmask) compared to the last model. (5) Our pro-
posed knowledge-conditional query generation, generating
based on the visual content of the image, the task, and the
visual affordance knowledge, helps the decoder better local-
ize the objects, resulting in average improvements of 4.7%
mAPbox and 4.0% mAPmask. (6) Finally, the knowledge-
conditional denoising training improves APbox and APmask
by 1.6% and 1.9%, respectively.

4.4. Visualization

Figure 3 visualizes qualitative results for several exam-
ples. For (a), no objects in the image should be selected to
“get lemon out of tea”. Our model can successfully return
the empty set, while TOIST detects the french fry that is
one of the salient objects in the image as the tool. Simi-
larly, as knives are uncommon for “opening bottle of beer”,
the knife in (b) is challenging for TOIST to identify and lo-
cate. Guided by the visual affordance of “sharp blade with
a pointed end”, our model correctly localizes and selects
the sharp knife. The (c) and (d) demonstrate effectiveness
without MLCoT or knowledge-conditional denoising train-
ing (KDN). With visual affordance knowledge obtained by
directly asking LLMs, our model relies solely on matching
with the single knowledge unit, which incorrectly detects
the trunk in (c) and misses the knife in (d). The former
trunk is easily confused with objects that are “flat, broad

with a handle”, while the latter knife is ignored because its
visual attributes of straight mismatch the single knowledge
unit that includes “curved or angled”. Furthermore, with-
out KDN, our detector lacks explicit guidance, leading to
inaccurate detection in challenging scenes. Specifically, the
glove in (c) and the knife in (d) are not detected success-
fully, and the packing line in (d) is mistakenly detected.

5. Conclusion

In this paper, we focus on challenging task driven object
detection, which is practical in the real world yet under-
explored. To bridge the gap between abstract task require-
ments and objects in the image, we propose to explicitly
extract visual affordance knowledge for the task and de-
tect objects having consistent visual attributes to the visual
knowledge. Furthermore, our CoTDet utilizes visual affor-
dance knowledge to condition the decoder in localizing and
recognizing suitable objects.
Limitations: While acknowledging the disparity between
the COCO-Task dataset and real-world application scenar-
ios, attributed to its limited task variety and preference for
images and annotations, our approach has the potential to
extend beyond these confines. Notably, our knowledge
acquisition and utilization are flexible and generalizable,
granting it the capacity to transcend specific dataset, spe-
cific tasks, object categories, or tools. We leave this to fu-
ture works. Furthermore, with the incorporation of LLM,
our approach inherits potential social biases from LLM,
which could potentially be reflected in the preference for
selecting frequently used tools.
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