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Abstract

Vision-language pre-training (VLP) methods are blos-
soming recently, and its crucial goal is to jointly learn vi-
sual and textual features via a transformer-based architec-
ture, demonstrating promising improvements on a variety
of vision-language tasks. Prior arts usually focus on how to
align visual and textual features, but strategies for improv-
ing the robustness of model and speeding up model conver-
gence are left insufficiently explored.

In this paper, we propose a novel method VILTA, com-
prising of two components to further facilitate the model to
learn fine-grained representations among image-text pairs.
For Masked Language Modeling (MLM), we propose a
cross-distillation method to generate soft labels to enhance
the robustness of model, which alleviates the problem of
treating synonyms of masked words as negative samples in
one-hot labels. For Image-Text Matching (ITM), we lever-
age the current language encoder to synthesize hard nega-
tives based on the context of language input, encouraging
the model to learn high-quality representations by increas-
ing the difficulty of the ITM task. By leveraging the above
techniques, our VILTA can achieve better performance on
various vision-language tasks. Extensive experiments on
benchmark datasets demonstrate that the effectiveness of
VILTA and its promising potential for vision-language pre-
training.

1. Introduction

Recent advancements in Vision-Language Pre-training
(VLP) have achieved significant improvements in a wide
range of multimodal tasks, such as visual question answer-
ing (VQA) [4], image captioning [3]], and image-text re-
trieval [35, 45]. The target of VLP generally starts with
training a model on massive image-text pairs in a self-
supervised way, which empowers a new paradigm for fine-
tuning various downstream tasks. Most recent VLP mod-
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els [44] 31} 16 166l 5] usually utilize a transformer-based
architecture [55] with some specific training techniques
(e.g. image-text contrastive learning (ITC), masked lan-
guage modeling (MLM), and image-text matching (ITM))
to align visual and textual information. These models have
achieved outstanding performance on a variety of multi-
modal benchmarks, which further advances the field of mul-
timodal representation learning. However, the above VLP
models also suffer from two vital limitations: (1) one-hot
labels in MLLM hinder the robustness of the model; (2) neg-
ative samples selection in ITM affects the model conver-
gency and downstream performance.

In specific, the MLM task is designed to predict masked
tokens in a given language input by utilizing both visual and
textual features. However, compared to traditional MLM
approaches in NLP [14]], the MLM task in vision-language
pre-training presents a unique limitation. VLP models use
a pre-trained language model for secondary pre-training
on image-text pairs, which may result in a loss of knowl-
edge initially acquired from NLP datasets. Empirical re-
sults from previous studies [17] indicate that pre-training on
multimodal datasets may lead to degraded performance on
unimodal language tasks. Moreover, the presence of multi-
ple candidate words to fill a masked position in an image-
text pair can hinder the training of MLM. For instance, in
the sentence “Two giraffes pace around their habitat”, sub-
stituting “pace” with ”walk” does not alter the sentence’s
meaning. Consequently, treating these words as negative
samples in one-hot labels can impede MLM training.

As a popular pre-training task in VLP, the goal of ITM
task is to distinguish positive and negative image-text pairs
based on the learned representations. The common and
straightforward way for negative selection is to randomly
sample negatives for any given image-text pair. However,
such a simple method can not provide more contributions
for model convergence and result in sub-optimal perfor-
mance. As a result, the model can easily achieve high accu-
racy in the first training epoch, usually above 99%. To fur-
ther improve the model’s ability to learn fine-grained rep-
resentations, an effective method is to offer hard negative
samples to make the pre-training task more challenging.
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Figure 1. The overall architecture of ViLTA. The framework of VIiLTA contains three components, including vision, language, and multi-
modal encoders (Cf. (a)); soft labels obtained by the froze language encoder to enhance the robustness of model with noisy data in MLM
(Cf. (b)); synthetic hard negatives generated by the current language encoder for ITM (Cf. (c)).

These hard negative samples are similar to positives and it
is difficult for the model to distinguish them from positives.
A growing body of research [49, 42, [21]] illustrates that min-
ing hard negatives can drastically alter the performance of
multimodal models among various tasks, highlighting the
significance of hard negative samples for enhancing the rep-
resentation capabilities of the model. However, the exist-
ing attempts in mining hard negatives for vision-language
pre-training only focus on sampling negatives in the dis-
crete data space, ignoring the relationship among image-
text pairs and the context of language input.

Present Work. To address the abovementioned issues, we
propose a novel vision-language pre-training model named
ViLTA, comprising two key components. For MLM, we
propose a cross-distillation method to generate soft labels
for improving the learning efficiency and boosting the ro-
bustness of the model. In specific, such a distillation method
leverages the frozen language encoder to generate soft la-
bels, which can be integrated into the original MLM task for
joint training. In ITM, we propose to synthesize hard neg-
atives based on the current language model by leveraging
the context of language input, which is significantly differ-
ent from previous works that select hard negatives from the
raw data [31,16]]. By utilizing these two techniques, our pro-
posed ViLTA can achieve better performance on a variety of
downstream tasks, including visual question answering, vi-
sual entailment, visual reasoning, image-text retrieval, and
image captioning. Extensive experimental results demon-
strate the effectiveness of VILTA. We summarize the contri-
butions of this work as follows:

1) The proposed knowledge distillation method cross-

distillation generates soft labels to allow the model to better
capture representations among image-text pairs, enabling
the learning of the model more smooth and robust.

2) As opposed to sampling hard negatives from the raw
data, we propose a strategy to synthesize hard negative sam-
ples based on the current language model, boosting the rep-
resentation ability of the model by enhancing the difficulty
of the ITM task.

3) By effectively integrating these two techniques, our
ViLTA brings about outstanding performance improve-
ments on various downstream tasks, demonstrating the su-
periority of ViLTA.

2. Related Work

Vision-Language Representation Learning. In prior re-
search, several techniques have been utilized to integrate
visual and language features for multimodal learning. One
approach is to use pre-trained object detectors as feature
extractors. VILBERT [39] and LXMERT [53] employed
co-attention for modality fusion, where two independent
transformer modules were used for visual and language fea-
tures, respectively. Alternatively, VisualBERT [32], VL-
BERT [51], UNITER [11], OSCAR [34], VinVL [67],
and VL-T5 [12]] employed a merged-attention mechanism,
where visual and language features were inputted directly
into a single transformer module for information exchange.

However, due to the low computational efficiency of ob-
ject detectors and the inability to update weights during
multimodal pre-training, researchers have shifted towards
end-to-end pre-trained models. CLIP-ViL [50] and Pixel-
BERT [24] fed grid features extracted by CNNs and text



features into a single transformer module. ViLT [26] con-
catenated image patch embeddings and text token embed-
dings for pre-training. Recent works focus on unifying
the structure of image and text encoders. For instance,
ALBEF [31]], METER [17]], Florence [64], CoCa [63],
Flamingo [2]], and PaLlI [10] utilized ViT [15] as an image
encoder, thereby unifying the structure of image and text
encoders to some extent. In contrast, VLMo [6]] and BEIT-
3 [58] adopted multi-way transformers to unify the model-
ing of text and images where text, images, and image-text
pairs are fed into a single transformer module.

Knowledge Distillation. Knowledge distillation [22f] is
firstly proposed to transfer the knowledge learned by the
teacher model to the student model. It has wide-ranging
applications across various modalities [46l 25| |54, 137,
311, 159} [13] to reduce the number of parameters and im-
prove the performance of the student model. Among these
works, KD-VLP[37] proposed an object-aware end-to-end
VLP framework with object knowledge distillation. CLIP-
TD [59] used CLIP-targeted distillation to distill knowledge
from both CLIP’s vision and language branches into the ex-
isting VL model. VLKD [13] aligned the CLIP text en-
coder and BART encoder to enable the capability for multi-
modal generation. The work is similar to our method in the
multimodal field is ALBEF [31], which employed momen-
tum distillation by using its own momentum model as the
teacher model. However, while these works have focused
on knowledge transfer within the same modality, our pro-
posed cross-distillation method aims to transfer knowledge
from a language model to a multimodal model.

Negative Sampling. Hard negative mining is a widely
adopted technique to enhance model performance. Prior re-
search [8] has demonstrated that hard negative samples have
the most significant impact on the training process, render-
ing the easiest 95% of negatives redundant. [49], 42]] gener-
ated a substantial number of hard negative samples through
adversarial word replacement, resulting in a significant de-
cline in the performance of several multi-modal models.
On the other hand, works such as [19} 68| [61] employed
hard negative mining to improve model performance in con-
trastive learning. For ITM tasks, recent works [31 16} [16]]
employed hard negative mining by selecting negative sam-
ples with the highest cosine similarity to the positive sam-
ples in the same batch. Nevertheless, this method has two
limitations: First, the selection of negative samples is sig-
nificantly influenced by the learning of the ITC task and the
batch size. Second, this method has a high probability of
choosing false negative samples, thereby adversely affect-
ing the model’s learning. To the best of our knowledge,
our proposed method is the first to employ self-generated
synthetic hard negative samples to enhance performance in
image-text matching tasks.

3. Method

To improve vision-language pre-training, we propose
ViLTA that comprises of two components: 1) Knowledge
Distillation for MLM; 2) Synthetic Hard Negatives for [TM.
Figure [T shows the overall model architecture of VILTA.

The goal of ViLTA is to further improve downstream
performance of vision-language models by leveraging tex-
tual augmentation. To achieve it, the first is to utilize the
frozen language encoder to generate soft labels for MLM.
The second is to provide hard negatives for ITM by syn-
thesizing negatives based on the current language encoder,
which is significantly different from previous negatives se-
lection method [31,, 6]

3.1. Model Architecture

As shown in Figure |1} the overall model architecture
comprises of three components, including vision encoder,
language encoder, and multimodal encoder. Here, we intro-
duce each component in detail.

Vision Encoder.  We employ ViT [15] as a vision en-
coder to model an input image, which directly feeds im-
age patches segmented from a whole image input and en-
codes them as encodes them as a sequence of embeddings
{Vels, U1, ..., vy } with a additional [CLS] token embed-
ding. Following the success in previous works [50, [13} {17,
29], we initialize the weights of the image encoder using a
pre-trained CLIP-ViT-224/16 model [44].

Language Encoder. We leverage RoBERTa [36] as a lan-
guage encoder to model language inputs. It converts the
input caption into a sequence vector {wes, w1, ..., Wy }, in
which the embedding of the [CLS] token summarizes the
global text feature. This sequence vector is then fed into the
subsequent multimodal encoder to explore the relationship
between image and text pairs.

Multimodal Encoder. To further capture the relationship
among image-text pairs, we adopt a multimodal encoder
which employs two independent cross-attention transformer
modules to deeply fuse image and text information. The
cross-modality multi-head attention module uses the repre-
sentations of one modality as the query and another modal-
ity’s representations as the key and value, as shown in Fig-
ure[ll This deep fusion mechanism independently encodes
image and text features and fuses cross-model interaction,
leading to better performance improvements.

3.2. Knowledge Distillation for MLM

Masked Language Modeling (MLM) aims to predict
masked words by leveraging the learned image and text fea-
tures. In specific, for any certain image-text pair, we first
randomly mask a portion of tokens in a sentence by sub-
stituting them with the special token [MASK]. Then, the



original masked tokens can be predicted by the remaining
text input T and its corresponding image input /. Thus,
the MLM task can be formulated with a cross-entropy loss:

Loim =By 7y pHY™ S p™ (L, Tog)) (D)

where D represents the whole training image-text pairs,
p™5(I, The) denotes the predicted probability of the
masked token, and y™¥ is a one-hot representation of the
randomly masked ground-truth token.

Different from the traditional single-modality text en-
coders [28]136] and previous vision-language encoders [31}
34] that randomly mask 15% of the input tokens, we in-
crease the mask ratio from 15% to 50% in order to encour-
age the model to reconstruct the masked token by leverag-
ing on both the context of text and image features. Such a
mask ratio in BEIT-3 [58] also verifies that a higher mask
ratio can urge the model to recover the masked token from
the content of the image rather than depending only on the
context of the text itself.

In the MLM task, if the model is trained to only learn
one-hot labels and treat all other potential positive exam-
ples as negative examples, it could harm the model’s ability
to learn effectively. In this work, we propose a novel cross-
distillation method to generate soft labels that can replace
one-hot labels. Specifically, we duplicate the language en-
coder as a teacher model and freeze its parameters. Next,
we input the non-masked language sequence into the frozen
language encoder to obtain a predicted probability matrix of
a sequence of tokens. This is achieved by adding a masked
language modeling (MLM) head on top of the output em-
beddings. We denote the predicted probability matrix as
q(T) € RS>V, where S is the length of the text sequence
and V is the vocabulary size. Subsequently, we select the
predicted probability vector ¢™*(T") of the original masked
tokens from ¢(7T") and use KL-divergence to measure the
difference between the prediction of the multimodal en-
coder p™¥ (I, Ting) and the soft labels ¢™*(T"). The dis-
tillation loss for MLM is defined as follows:

Edis = E([’Tmsk)ND’TNDKL(quk(T) ) pmSk(Ia Tmsk)) (2)

As aresult, the final loss can be formulated by the com-
bination of the original MLM loss and distill loss:

Lo = aLoim + (1 — ) Lais 3)

where « is a hyperparameter that controls the distillation
weight. In our experiments, we set «v as 0.5 for simplicity.

Discussion on Cross-Distillation. The motivation behind
cross-distillation is rooted in the observation that when a
complete caption without [MASK] token is fed into a lan-
guage encoder, the encoder captures not only the contex-
tual information surrounding each word but also informa-
tion about the word itself. As shown in Figure [2] it allows

A black bear in a river next to trees and rocks.

| river |—m pasture
f—m stream | hut
|—= creek {—m tent
|—m water f—m camp

. . valley | nest
L lake L tunnel
Two giraffes pace around their habitat at the zoo.
|—mpace | hanging
| walk [ swimming
|—a stroll (= hopping
| paced |—m running

|—mspeed [ jump

s pacing = flying

Figure 2. Examples of ViLTA are presented in two columns: 1st
col displays the soft labels generated by cross-distillation, while
2nd col lists the top negative words.

the predicted tokens with high probability at each position
to serve as potential synonyms or hypernyms of the original
word, and the probability can be measured to determine the
degree of similarity between the predicted words and the
original word in context. This intuition ensures that sub-
stituting the masked token with the predicted token with
a high probability will not alter the semantic meaning or
grammatical structure of the sentence. Therefore, cross-
distillation is utilized to enhance the learning efficiency,
representation, and generalization ability of the model. In
this approach, we combine the one-hot labels of randomly
masked ground-truth tokens with the soft labels generated
by a frozen language encoder to train vision-language mod-
els. This enables smooth and efficient learning, where the
potential synonyms generated by the frozen language en-
coder can be regarded as a variant of positive samples.

3.3. Synthetic Hard Negatives for ITM

The purpose of Image-Text Matching is to capture the
fine-grained alignment among image-text pairs. ITM can
be viewed as a binary classification problem, which aims
to predict whether an image-text pair is positive (matched)
or negative (unmatched) based on the learned embeddings
of the [CLS] token. Such embeddings are generated by
the multimodal encoder, manifesting global cross-modality
representations. Since the multimodal encoder adopts two
cross-attention transformer modules, we concatenate two
embeddings of the [CLS] token generated by vision and
language modules respectively to obtain the final embed-
dings for ITM training. After that, a fully-connected (FC)
layer with softmax activation function serves as a classifier
to predict a two-class probability p'™. The ITM loss can be
represented as:

Lim =B myopH(y"™, p"™(1,T)) “4)

where 3™ denotes a binary ground-truth label.

A crucial method to improve performance on ITM is to
find more informative negatives for model training. Nega-
tives for ITM should be satisfied both of the following cri-
teria:



e The embedding of the hard negative sample should be
similar to that of the positive sample in the embedding
space.

o The hard negative sample must be a true negative sam-
ple with some fine-grained features that contradict the
positive sample.

To accomplish the abovementioned criteria, we propose
to synthesize hard negatives through textual augmentation,
which differs significantly from ALBEF [31] selecting neg-
atives with higher contrastive similarities from ITC in the
current batch. Such a synthetic method can generate neg-
atives that are close to the positive sample in the embed-
ding space while alleviating simultaneously the false neg-
ative issue. Specifically, for any given positive image-text
pair (I,T), the synthetic hard negatives method generates
its corresponding negative pair (I, 7},), which can be di-
vided into three steps:

1) Generate the masked sentence T": Substituting one
word with a [MASK] tag in the original sentence 7', based
on part-of-speech (POS) tagging. The POS tagging helps
identify crucial parts of a sentence, such as nouns, verbs,
adjectives, and numerals.

2) Calculate predicted probability p,,: Taking the
masked sentence 7" as input and passing it into the cur-
rent language encoder to compute probabilities p,, (¢t|7") at
the [MASK] position during the beginning of each training
step.

3) Synthesize hard negative sentence 7,,: Sampling the
probability of the corresponding [MASK] position ¢™(T)
from ¢(7") which we have used in cross distillation mod-
ule; calculating the negative sampling distribution p,, =
L q";l,(ktg;) ; sampling one word based on p,, to synthesize hard
ne?gative sentence T,.

Discussion on Hard Negatives. In contrast to prior works
that sample hard negatives from existing negatives, our pro-
posed VIiLTA paradigm synthesizes negatives based on the
current language encoder. As mentioned in the previous
section, the plausibility of predicted words in the masked
position can be measured by p,, (t|7”), while ¢m*(T") can
gauge the similarity between the prediction words and the
original word (See Figure [2). Consequently, selecting the
predicted word with the highest p,, ensures its plausibility
in the context and its dissimilarity with the original word.
This approach introduces a novel perspective on hard neg-
atives, as it can be seen as a variant of data augmentation.
Specifically, instead of generating positive samples for con-
trastive learning [20,|9] through data augmentation, we aim
to synthesize hard negative samples for the ITM objective in
vision-language pretraining. These synthetic hard negatives
offer additional information for model training since they
conform to, but differ from, the positive samples, thereby

accelerating the model’s convergence and enhancing down-
stream performance.

4. Experiments

To demonstrate the effectiveness of VILTA, we conduct
comprehensive experiments on 5 vision-language tasks.
First, we introduce experimental setup, including model ar-
chitecture, pre-training datasets, downstream tasks, and im-
plementation details. Second, we compare our proposed
VILTA with other classical vision-language pre-training
models on various tasks, including visual question answer-
ing, visual reasoning, image-text retrieval, image caption-
ing. Lastly, we design a series of ablation studies for model
analysis.

4.1. Experimental Setup

Pre-training Datasets. In pre-training, we collect a vast
number of image-text pairs from the Internet to train our
model with two pre-training tasks (MLM and ITM). In
line with previous research, we adopt four datasets for pre-
training, including Conceptual Captions [48], COCO [35],
SBU Captions [41], and Visual Genome [27]. Here, we uti-
lize 4 million images for training since a large proportion of
the image links have broken in the process of downloading
datasets. Statistics of datasets are shown in Appendix A.

Downstream Tasks. We evaluate our proposed ViLTA on
5 downstream vision-language tasks, including visual ques-
tion answering, visual reasoning, visual entailment, image-
text retrieval, and image captioning tasks. The detailed de-
scription of each task is represented in Appendix B.

Implementation Details. We train VILTA on 8 NVIDIA
A100 GPUs for a total of 360,000 steps with a batch size
of 1024, which takes a period of approximately 5 days.
The maximum text sequence length is set to 50 and a max
resolution of pre-training images is set to 288 x288. We
utilize the AdamW optimizer [38] with an initial learning
rate of le — 5 for the bottom vision and language encoders
and 5e — 5 for the top multimodal encoder. To optimize
the learning process, we adopt a linear decay learning rate
schedule that contains a warm-up period with a ratio of
10%. The learning rate is subsequently linearly decreased
to le — 8 after 10% of the total training steps.

4.2. Results on VL Classification Tasks

We conduct an empirical evaluation of our proposed
ViLTA on vision-language (VL) classification tasks, includ-
ing VQA, visual reasoning, and visual entailment. In order
to demonstrate the effectiveness of VILTA, we compare it
with SOTA methods and report the experimental results in
Table[T] It can be obviously observed that VILTA achieves
impressive performances on the VQAv2 dataset and out-



Model #Pretrain Visual VQAv2 NLVR? SNLI-VE
Images Encoder test-dev  test-std  dev test dev test
BASE-Size Models
VIiLT [26] 4M VIT-B-384/32 71.26 - 75.70  76.13 - -
UNITERBase [IL1] 4M Faster R-CNN 72.70 72.91 77.18 77.85 7859  78.28
GLIPV2gase [66] 20M Swin-B-224 73.1 73.3 - - -
VILLAgaske [18] 4M Faster R-CNN 73.59 73.67 7839 79.30 7947  79.03
UNIMOsask [33] 4M Faster R-CNN 73.79 74.02 - - 80.00  79.10
CLIP-ViLgask [50] 9.2M CLIP-Res50 73.92 74.09 - - 78.64  78.97
KD-VLP [37] 4M ResNet-101 74.20 7431 7736 7778 7821 77.87
ALBEF [31] 4M DEIT-B-224/16 74.54 7470  80.24 80.50 80.14  80.30
ALBEF [31] 14M DEIT-B-224/16 75.84 76.04 8255 83.14 80.80  80.91
VinVLgask [67] 5.7M ResNeXt-152 75.95 76.12  82.05 83.08 - -
VLMogase [6] 4M MOME Transformer  76.64 76.89 8277 83.34 - -
BLIPgase [30] 14M DEIT-B-224/16 77.54 77.62  82.67 82.30 - -
METER-CLIP-VIiT [17] 4M CLIP-ViT-B-224/16 77.68 77.64 8233 83.05 80.86 81.19
SimVLMgaske [60] 1.8B ResNet-101 77.87 78.14 8172 81.77 8420 84.15
OFApase [37] 54M ResNet-101 77.98 78.07 - -
X-VLM [65] M Swin-B-224 78.07 78.09  84.16 84.21 - -
BLIPgase [30] 129M DEIT-B-224/16 78.25 78.32  82.15 82.24 - -
ViLTAgase 4M CLIP-ViT-B-224/16 78.62 78.47 83.21 84.29 81.50 81.67
Large-Size Models
UNITERLarGE [[1L1] M Faster R-CNN 73.82 74.02  79.12 7998 7939  79.38
VILLALArGE [18] 4M Faster R-CNN 74.69 7487 79.76 8147 80.18  80.02
UNIMO¢arce [33]] M Faster R-CNN 75.06 75.27 - - 81.11 80.63
VinVLyparce [67] 5.7 ResNeXt-152 76.52 76.60  82.67 83.98 - -
CLIP-ViLparce [50] 9.2M CLIP-Res50x4 76.48 76.70 - - 80.61 80.20
VLMo arce [6] 4M MOME Transformer 79.94 79.98 85.64 86.86 - -
ViLTALARGE 4M CLIP-ViT-L-334/14 80.19 80.17 85.16 86.13 83.12  82.98

Table 1. Result comparison with representative vision-language pre-training models. T denotes using additional text premise as input.

performs all baselines on both test-dev and test-std with
either BASE or LARGE architecture. Notably, with the
same amount of pre-training images (4M), VILTA signifi-
cantly surpass other models [50, [17]] adopted CLIP-weights
to initialize the vision encoder. Additionally, VILTA brings
about performance improvements in visual reasoning and
visual entertainment over most of baselines, especially with
the condition of the same amount of pre-training images.
It clearly demonstrates that the superiority of our proposed
ViLTA in VL classification tasks. By performing BASE
and LARGE architectures on the downstream classifica-
tion tasks, the experimental results indicate that scaling the
model’s parameters can result in a significant performance
improvements, which provides additional experimental sup-

ports to verify the effectiveness of VILTA.

4.3. Results on VL Retrieval Tasks

Table[13]shows the results on VL retrieval tasks. We can
find that ViLTA outperforms existing VL models in most
cases, especially on the Flickr dataset. Notably, the results
in recent studies [31} 130, [16] illustrate the importance of
ITC for retrieval tasks, which integrates ITC task into the
pre-training and adopts a re-ranking strategy in the fine-
tuning. Such investigations reveal that ITC can bring about
a consistent improvement of 6% in terms of R@1. The
above fact may lead to slight performance improvements
on the Flickr dataset and even performance degradation on
the COCO dataset since VILTA only adopts MLM and ITM



Method Flickr COCO
IR@1 IR@5 IR@10 TR@1 TR@5 TR@10 | IR@1 IR@5 IR@10 TR@1 TR@5 TR@10

ViLTgase [26] 644  88.7 93.8 83.5 96.7 98.6 427 729 83.1 61.5 86.3 92.7
PixelBERT [24] 715 921 95.8 87.0 98.9 99.5 50.1 71.6 86.2 63.6 87.5 93.6
UNITERgas [11] 725 924 96.1 85.9 97.1 98.8 503 785 87.2 64.4 87.4 93.1
VILLAgask [18] 747 929 95.8 86.6 97.9 99.2 - - - - - -
OSCAR [34] - - - - - - 540  80.8 88.5 70.0 91.1 95.5
VLMOgask [6] 793 957 97.8 92.3 99.4 99.9 572 826 89.8 74.8 93.1 96.9
ALBEFgask [31] 82.8  96.7 98.4 94.3 99.4 99.8 56.8 815 89.2 73.1 914 96.0
METER-CLIP-ViT [17] | 822  96.3 98.3 94.3 99.6 99.9 57.1 82.7 90.0 76.2 93.2 96.8
ViLTAgasg 852 972 98.8 94.5 99.8 99.8 59.5 831 89.7 73.3 91.8 95.9

Table 2. Experimental results on image retrieval (IR) and text retrieval (TR) on Flickr30K and COCO datasets.

Method COCO NoCaps Val NoCaps Test
BLEU@4 METEOR CIDEr SPICE | CIDEr SPICE CIDEr SPICE
CLIP-ViL-ViT [50] 21.1 194 58.0 12.2 - - - -
GLIPv2gase [66] 374 - 123.0 21.9 - - - -
UFOgask (56 36.0 28.9 122.8 22.2 80.7 12.5 78.8 12.5
VinVLgask [67]] 38.2 30.3 129.3 23.6 94.3* 13.17  92.5% 13.1*
METER-CLIP-ViT [[L7]] 38.8 30.0 128.2 23.0 - - - -
FIBER [16] 39.1 30.4 128.4 23.1 88.6 13.0 86.0 12.9
SimVLMgask [60] 39.0 32.9 134.8 24.0 - - - -
LEMONBask [23]] 40.3 30.2 133.3 233 100.4 13.8 - -
ViLTAgasE 41.0 30.9 135.1 23.6 103.4 13.9 100.2 13.9

Table 3. Results on image captioning. * denotes that the model was optimized using the CIDEr metric to improve performance. It is worth
noting that all the results reported for our model were obtained without CIDEr optimization.

tasks for pre-training.

4.4. Results on Image Captioning

The experimental results in Table [3] demonstrate that
VILTA achieves better performance in the image caption-
ing task. In specific, we fine-tune the model on the COCO
Captions [35]] dataset and evaluate its performance with four
metrics such as BLEU@4, METEOR, CIDEr, and SPICE.
From Table[3] we can observe that VILTA consistently out-
performs all baselines, especially compared to CLIP-ViL.
Such results verify the effectiveness of VILTA rather than
the importance of the initialization of CLIP-ViT. Further-
more, we conduct experiments on the NoCaps [1]] dataset
without any additional fine-tuning or optimization tech-
niques. It indicates that ViLTA can urge the vision-language
model to recognize fine-grained objects to enhance caption
quality.

4.5. Model Analysis

To further analyze the impact of each component of
ViLTA, we perform a series of experiments with various ob-
jectives on VL classification and image captioning tasks.

Table [] demonstrate the performance comparison among
various variants of our proposed ViLTA. Compared to the
basic variant (MLM), incorporating the ITM task can bene-
fit all downstream vision-language tasks. Such benefits can
be further enhanced with synthetic hard negatives and cross-
distillation method respectively. Synthetic hard negatives
are utilized to boost the ITM tasks while cross-distillation
method is leveraged to improve the learning of the MLM
task. We can find that the performance improvements of
hard negatives are higher than cross-distillation. By lever-
aging these two vital techniques, VILTA can achieve the
best overall performance among different variants.

Objectives ‘ VQAv2 NLVR2 SNLI-VE COCOcp
MLM 76.65  82.21 80.16 38.2
MLM+ITM 7734 8297 80.90 38.8
MLM+ITMpaa | 78.06  83.80 81.48 39.8
MLMgisan+ITM | 77.85  83.52 81.22 39.6
ViLTAgasE 7847  84.29 81.67 40.4

Table 4. Impact of each component in ViLTA.



4.6. Ablation Studies

Analysis on Image Captioning. We conduct an ablation
study that aims to enhance the adaptability of pre-trained
models for image captioning tasks in Table[5] Specifically,
we introduce an additional pre-training phase that involved
a language modeling (LM) task on the 4 million dataset for
one epoch. Our results show that a improvement of 0.6 in
BLEU@4 when incorporating the LM task. Furthermore,
we investigate the issue of information leakage caused by
deep fusion in the cross-attention modules. We explore two
approaches to address this problem: removing the cross-
attention module on top of the image encoder or transform-
ing it into a self-attention module. We compare their perfor-
mance and conclude that the cross-attention module should
be retained for optimal performance.

w/ LM w/o LM
coco ‘ w/o CA ‘ w/ CA ‘ w/o CA ‘ w/ CA
BLEU @4 40.0 41.0 39.6 40.4
CIDEr 131.5 135.1 130.0 133.1

Table 5. Ablation study on image captioning. LM: language mod-
eling pre-training. CA: cross-attention module.

Impact of Negative Mining Method. We conduct an ex-
periment to analyze the impact of different negative min-
ing methods. One straightforward approach is to utilize
WordNet [40] to generate negative samples by substituting
antonyms from the original sentence. However, the experi-
mental results in Table [ demonstrate that WordNet brings
about a minimal performance improvement compared with
in-batch randomly selected negative samples. Besides, pre-
generated negatives are preprocessed at the beginning of
pre-training, which performs better than WordNet but worse
than dynamically-generated negatives. The possible reason
is that dynamically-generated negatives are updated at each
step based on the language encoder, ensuring the hardness
of negative samples. More importantly, the combination of
WordNet and dynamically-generated negatives shows per-
formance degradation compared to the raw dynamically-
generated negatives. Such finding can be attributed to the
fact that the negatives generated by WordNet differ from the
original sentence in the semantic space and representation
space, making it easier for the model to distinguish them.

4.7. Efficiency Analysis

ViLTA employs two distinct strategies to enhance down-
stream performance: the cross-distillation technique in the
Masked Language Modeling (MLM) task and the syn-
thetic hard negative mining technique in the Information-
Theoretic Metric (ITM) task. To shed light on the train-
ing cost associated with these techniques, we present the

. . . VQAvV2
Negative Mining Method test-dey ‘ test-std
In-batch random 74.08 74.37
WordNet 74.24 74.36
Pre-generated 74.52 74.72
WordNet+Dynamically-generated | 74.71 74.86
Dynamically-generated 74.93 75.12

Table 6. Ablation study on negative mining method. In the pre-
generated approach, all negative samples are generated before the
training phase, while in the dynamically-generated approach, neg-
ative samples for each batch are updated during each training step.

Pre-training Strategies GPU-hours
cross-distill  hard negative A100

X X 34.68
v X 37.56
X v 38.09
v v 38.43

Table 7. The impact of different pre-training strategies on the time
consumption of each epoch evaluated with a single A100 GPU.

findings in Table[7] The combined implementation of both
strategies introduces a marginal increase of approximately
10% in training time per epoch. It is noteworthy, however,
that this increment in training time is inconsequential in
light of the benefits accrued. The adoption of these two
techniques not only offsets the relatively minor increase in
training duration but also contributes to the acceleration of
model convergence.

4.8. Case Study

To demonstrate the effectiveness of ViLTA in accurately
identifying objects, attributes, actions, and quantitative re-
lationships, we utilize Grad-CAM [47] for visualizations.
Figure |3| presents the results for the VQA task, indicating
that our model can focus on fine-grained features in the im-
age and correctly answer questions based on them. Besides,
as shown in Figure [] visualizations for the retrieval task
on a per-word basis illustrate the model’s precise identifica-
tion of objects and actions within the image, illustrating the
model’s precise identification of objects and actions within
the image.

5. Conclusion

In this paper, we propose a novel vision-language pre-
training method ViLTA to further improve the representa-
tion ability of the model. Specifically, we propose a cross-
distillation method to generate soft labels to address the is-
sue of treating synonyms of the masked words as negative
samples in one-hot labels for MLM, which improves the



Q: What'’s on the table?
A: Vases.

Q: How many vases have pink flowers?

A: 2.

Q: Is there a vase lying down?

Figure 3. The Grad-CAM visualization of VQA.

Original Image Bird

Perched

Rock Ocean

Figure 4. The Grad-CAM visualization of words in the caption “A white bird perched on a rock by the ocean.”

robustness of vision-language models. Moreover, we de-
sign a new negative selection method for ITM, which aims
to synthesize hard negatives based on the current language
encoder by leveraging the context of language input. Such
hard negatives provide more information for model conver-
gence, which significantly enhances the downstream per-
formances. Extensive experimental results on five vision-
language tasks demonstrate the effectiveness and general-
ization ability of the proposed method.
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Appendix
A. Pre-training Details

The statistics of pre-training datasets are presented in Ta-
ble The COCO Captions dataset comprises manually
generated captions where multiple captions are assigned to
each image. For the Visual Genome dataset, the region
description serves as the image caption, yielding several
captions for each image. The SBU Captions and Concep-
tual Caption datasets contain a single caption per image.
It should be noted that a considerable number of the im-
age links in these two datasets have become invalid because
they are collected from the Internet.

‘COCO VG SBU CC3M

108K 855K 2.98M
54M 855K 2.98M

#lmages | 113K
#Captions ‘ 567K

Table 8. Statistics of the pre-training datasets.

The default architecture of ViLTA contains a dual-
encoder architecture (a pre-trained vision encoder and a pre-
trained language encoder) and a multimodal encoder. Ta-
ble 0 reports the hyperparameters used in our pre-training
model. For ViILTApasg, we leverage a 12-layer transformer-
based structure as language/vision encoder and 6-layer for
the multimodal encoder respectively. The number of trans-
former layers for the language and vision encoders is set to
24 for VILTA[ aArge. The number of the multimodal encoder
also maintains the default setup of 6-layer transformer-
based structure. Here, we initialize the language encoder
with weights from the pre-trained RoBERTa [36] and the
vision encoder with weights from the pre-trained CLIP-ViT-
224/16 [44].

B. Fine-tuning Details

We fine-tune VIiLTA on 5 downstream tasks using the
hyperparameters reported in Table [I0] for VL classification
tasks, Table [TT] for VL retrieval tasks, Table [T2] for image
captioning. In the following sections, we provide a com-
prehensive description of the fine-tuning configurations em-
ployed for each task.

* Visual Question Answering (VQA) [4] aims to predict a
natural language answer based on the given image and
question. Following the previous works [26} 17,16, 158]],
we treat VQA as a multi-label classification task with
3,129 possible answers. We concatenate the image
representation v.;s and text representation w.s Ob-
tained from the multimodal model, and then pass it
through a 2-layer MLP layer to perform a classification
task. We use GELU activation function and a binary

Hyperparameters ViLTAgasg ViLTA ARGE
Total steps 36k 24k
Warmup steps 21.6k 14.4k
Batch size 1024 1024
Learning rate le™® 4e=6

Learning rate decay Linear
Weight decay 0.01
Dropout ratio 0.1

AdamW e le~8
AdamW g (0.9, 0.98)

Textual encoder ROBERT&B ASE RoBERTaL ARGE

Visual encoder CLIP-ViT-B-224 CLIP-ViT-L-336

Patch size 16 14

Input resolution 288 224
Number of layers 6 6

Hidden size 768 1024

FFN inner hidden size 3072 4096
Number of attention heads 12 16

Table 9. Hyperparameters for pre-training model. The last block
is the hyperparameters for the multimodal encoder.

cross-entropy loss function on the soft target scores to
optimize the model.

e Visual Reasoning focuses on predicting whether the
caption is true or false for a pair of images. Here, we
employ a pairwise strategy to effectively process the
input in NLVR? [52] dataset, where each data sample
is divided into (imagel, statement) and (image2, state-
ment). We then feed them separately into the model
to obtain two representations and concatenate them to-
gether to pass through a binary classification head.

* Visual Entailment aims to predict whether a natural
language hypothesis is entailed, neutral or contradicted
by the image premise. We train and evaluate our model
on SNLI-VE [62] dataset and treat it as a three-class
classification problem.

* Image-Text Retrieval contains two sub tasks: image-
to-text retrieval (TR) and text-to-image retrieval (IR).
COCO [35] and Flickr30K [43]] serve as evaluation
datasets. Following the standard setting in ViLT [26],
We use the pre-trained ITM head, specifically the com-
ponent that calculates the true-pair logits, to initialize
the similarity score head. We then sample 15 random
texts as negative examples and use a cross-entropy loss
that maximizes the scores for positive pairs.

* Image Captioning is a generative task and we inves-



tigate whether our encoder-only model is suitable for
such generative tasks. To adapt our model for image
captioning, we modify the encoder on the text side
of the model by transforming it into a causal decoder
through the adjustment of the attention mask. Subse-
quently, we fine-tune the model on the COCO Cap-
tions [35] dataset using cross-entropy loss and evaluate
it on the NoCaps [1] dataset without additional train-
ing.

Hyperparameters ‘ VQAv2 NLVR? SNLI-VE

Learning rate le=® le™?® 26
Epochs 10 10 5
Batch size 512 256 64
AdamW ¢ le~8

AdamW f3 (0.9, 0.98)
Weight decay 0.05 0.01 0.01
Dropout ratio 0.1

Input resolution 5762 3842 2882

Table 10. Hyperparameters for fine-tuning ViLTA on VL classifi-
cation tasks.

Hyperparameters | COCO Flickr

Learning rate 5e~6
Epochs 10
Batch size 64
AdamW ¢ le~8
AdamW g3 (0.9,0.98)
Weight decay 0.01
Dropout ratio 0.1
Input resolution 5762

Table 11. Hyperparameters for fine-tuning ViLTA on VL retrieval
tasks.

C. Scaling Ability

To show the effectiveness of VILTA on extensive
datasets, we expand the training of ViLTA-base and ViLTA-
large on a subset of the LAION-2B and CC12M datasets
employing 64 A100 GPUs in Table [I3] The total volume
of data was roughly 150M, comparable to the 129M dataset
used in BLIP. All performance metrics for retrieval tasks
show substantial enhancements, ranging from 73.3 to 80.5
on the COCO dataset for text retrieval in terms of recall@1.
However, the gain in VL understanding (VLU) tasks is not
as prominent as the increase in retrieval tasks, which is con-
sistent with the findings in previous studies [30, [7]. Such

Hyperparameters | COCO Captioning

Learning rate le™®
Epochs 10
Batch size 512
AdamW ¢ le~8
AdamW g (0.9, 0.98)
Weight decay 0.01
Dropout ratio 0.1
Input resolution 5762
Label smoothing 0.1
Beam size 5

Table 12. Hyperparameters for fine-tuning ViLTA on image cap-
tioning.

discrepancy arises due to the challenges associated with the
considerable noise present in large-scale web data, which
are integral to VLU tasks. As shown in Table[T4] in the con-
text of a large-scale dataset, VILTA achieves a better gain,
while, in contrast, BLIP brings about performance degrada-
tion.

CoCo
TR@1 TR@5 TR@10

Dataset
TR@1 TR@5 TR@10

Flickr

aM \94.5 998  99.8 \73.3 91.8 959

150M \95.7 999 999 \80.5 9.6 973

Table 13. Experimental results on retrieval task.

BLIP ViLTA
14M 129M | 4M  129M

NLVR2-dev | 82.67 8215 | 85.16 8633
NLVR2-test | 8230 82.24 | 86.13 87.25

Dataset

Table 14. Results on NLVR2 dataset. Large scale data may not
have significant benefits for VLU tasks.

D. Additional Results

In this section, we present additional results generated by
VILTA. Specifically, we show the efficacy of VILTA in im-
age captioning. The case study in Figure[5]shows the gener-
ated image captions on a series of samples. Notably, VILTA
generates diverse and descriptive captions, which can effec-
tively encapsulate the content of the corresponding images.
These results verify the effectiveness of ViLTA in different
VL tasks.



A white train traveling down A white and black fire A row of surfboards sticking A man flying through the air
a street next to a tall clock  hydrant in a parking lot. out of the sand. while riding a skateboard.
tower.

(sl {
A bunch of umbrellas that A sandwich cut in half on Ahe
are hanging from the ceiling. a plate. top of a lush green field. of a pole.

A street scene with cars and A young boy holding a A man riding a dirt bike on  Three giraffes are standing
traffic lights. Nintendo Wii game controller. top of a lush green field. in a grassy field.

Figure 5. Case study of VIiLTA on image captioning task.



