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Abstract

Recently, the pure camera-based Bird’s-Eye-View (BEV)
perception provides a feasible solution for economical au-
tonomous driving. However, the existing BEV-based multi-
view 3D detectors generally transform all image features
into BEV features, without considering the problem that
the large proportion of background information may sub-
merge the object information. In this paper, we propose
Semantic-Aware BEV Pooling (SA-BEVPool), which can fil-
ter out background information according to the semantic
segmentation of image features and transform image fea-
tures into semantic-aware BEV features. Accordingly, we
propose BEV-Paste, an effective data augmentation strat-
egy that closely matches with semantic-aware BEV feature.
In addition, we design a Multi-Scale Cross-Task (MSCT)
head, which combines task-specific and cross-task informa-
tion to predict depth distribution and semantic segmentation
more accurately, further improving the quality of semantic-
aware BEV feature. Finally, we integrate the above mod-
ules into a novel multi-view 3D object detection framework,
namely SA-BEV. Experiments on nuScenes show that SA-
BEV achieves state-of-the-art performance. Code has been
available at https://github.com/mengtan00/SA-BEV.git.

1. Introduction
Camera and LiDAR are the two most commonly used

sensors for 3D object detection, which is essential to au-
tonomous driving systems. LiDAR-based methods [4, 12,
33, 39, 34, 35, 42] have attained excellent performance due
to the accurate spatial structure information of point clouds,
but the expensive LiDAR sensor reduces its universality. In
contrast, camera-based methods [30, 29, 31, 18, 19] are rel-
atively low-cost with plentiful semantic information, but are
constrained by the lack of geometric depth cues.

*indicates the corresponding author.

Original Frame Pasted Frame After-pasting Frame

Figure 1: Comparison between normal BEV features (up-
per row) and semantic-aware BEV features (lower row).
The brightness reveals the norm of the features and the red
/ green boxes are the ground truth of the original / pasted
frame. The last column shows BEV-Paste, an data augmen-
tation strategy that matches semantic-aware BEV features.

Considering the performance gap between camera and
LiDAR, the Bird’s-Eye-View paradigm transforms multi-
view image features into the BEV feature to make the fol-
lowing 3D perception easier [22, 10]. This practical and
scalable camera-only paradigm is gaining popularity, and
numerous advancements have allowed it to reach high per-
ceptual precision [15, 14, 16, 8, 11]. The core step of the
BEV paradigm is generating virtual points from image fea-
tures, which will be projected into the “pillarized” BEV
space. The features of the virtual points in the same pil-
lar are then cumulated as the BEV feature. However, this
operation does not fully utilize the semantic information of
the image features and will inject massive background in-
formation that submerges object information.

In order to take full advantage of the valuable semantic
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information of image features, we propose Semantic-Aware
BEV Pooling (SA-BEVPool) to generate semantic-aware
BEV features, which replace the normal BEV feature for
3D detection. Before projecting virtual points into BEV
space, the semantic segmentation of image features is first
predicted. If a virtual point is generated by the image el-
ement that belongs to the background, it will not be pro-
jected into BEV space. Similarly, virtual points with low
depth scores will also be ignored. The comparison between
normal BEV features and semantic-aware BEV features is
shown in Fig. 1. SA-BEVPool can obviously filter out most
of the background BEV features and alleviate the problem
that the large proportion of background information sub-
merges object information, therefore effectively improving
the detection performance. Some multi-modal 3D objec-
tors [27, 36] also adopt segmentation on images when com-
bining with LiDAR features, but they generally use power-
ful instance segmentation networks like CenterNet2 [43] to
predict the segmentation of the large-scale image. Instead,
SA-BEVPool can be easily applied in current BEV-based
detectors like BEVDepth [15] and BEVStereo [14] by us-
ing their depth branch to simultaneously predict the seman-
tic segmentation of small-scale image features.

GT-Paste [33] is a successful data augmentation strategy
that has been frequently adopted by various LiDAR-based
3D detectors. However, due to the modality gap, it cannot
directly adapt to camera-based 3D detectors. In our work,
thanks to the reliable depth distribution and semantic seg-
mentation predicated on image features, the semantic-aware
BEV feature can approximately represent the information
of all objects that are located appropriately in BEV space.
As a result, adding the semantic-aware BEV features of an-
other frame to the current semantic-aware BEV feature is
the same as pasting all objects of another frame into the cur-
rent frame. This strategy, we called BEV-Paste, enhances
data diversity in a similar way to GT-Paste.

Although it is convenient to predict depth distribution
and semantic segmentation with the same branch, doing
so may result in a sub-optimal semantic-aware BEV fea-
ture. Research conclusion in the field of multi-task learning
demonstrates that the integration of specific tasks and cross-
task information is more conducive to the optimal solution
of multiple prediction tasks. Inspired by this, we design a
Multi-Scale Cross-Task (MSCT) head to combine the task-
specific and cross-task information through multi-task dis-
tillation and dual-supervision on multiple scales prediction.

We integrate our proposed modules as a whole and name
it SA-BEV. Extensive experiments on nuScenes dataset
show that SA-BEV achieves a new state-of-the-art. In sum-
mary, the major contributions of this paper are:

• We propose SA-BEVPool, which uses semantic infor-
mation to filter out unnecessary virtual points and gen-
erate the semantic-aware BEV feature, alleviating the

problem that the large proportion of background infor-
mation submerges the object information.

• We propose BEV-Paste, an effective and conve-
nient data augmentation strategy closely matching the
semantic-aware BEV feature, which enhances data di-
versity and further promotes detection performance.

• We propose the MSCT head that combines the task-
specific and cross-task information through multi-task
learning on multiple scales, facilitating the optimiza-
tion of the semantic-aware BEV feature.

2. Related Work
2.1. Vision-based 3D Object Detection

Although camera does not provide reliable depth of the
surroundings like LiDAR, the plentiful semantic informa-
tion carried by images still supports vision-based 3D object
detectors to achieve considerable precision. Early vision-
based 3D detectors predict attributes of 3D objects directly
from 2D image features. For instance, CenterNet [44], a 2D
detector, can be used to predict 3D objects without many
modifications. Lately, FCOS3D [30] detects the 2D cen-
ters of the 3D objects, and features around the centers are
used to predict the 3D attributes. PGD [29] establishes
geometric relation graphs to improve the depth estimation
results for better 3D object detection. DETR3D [31] fol-
lows DETR [2] and detects 3D objects with Transformer.
PETR [18] introduces 3D position-aware representations,
ameliorating the detection precision. PETRv2 [19] further
brings in temporal information and improves efficiency.

Recently, an approach that transforms the image fea-
ture into the BEV feature is proposed by LSS [15],
and BEVDet [10] employs the detection head of Center-
Point [35] to predict 3D objects from BEV feature. This
paradigm can achieve comparable accuracy without cum-
bersome operations and is easy to extend, making it gain
popularity. BEVDet4D [8] processes multiple key frames
to introduce temporal information. BEVFormer [16] uti-
lizes the deformable attention mechanism to generate the
BEV feature. BEVDepth [15] applies explicit depth super-
vision on the predicted latent depth distribution, improving
the detection accuracy. BEVStereo [14] further improves
the quality of the depth by applying the multi-view stereo
on nearby key frames. PolarFormer [11] generates the BEV
feature using the polar coordinate for a more accurate lo-
cation. However, these methods project all image features
into BEV features, without considering the problem that
the large proportion of background information may sub-
merge the object information. In this paper, we propose
SA-BEVPool, which can filter out background information
according to the semantic segmentation of image features
and generate semantic-aware BEV features.
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Figure 2: Overall framework of SA-BEV. The MSCT head uses multi-scale image features to predict the depth distribution
and semantic segmentation, which are utilized by SA-BEVPool to generate the semantic-aware BEV feature. BEV-Paste is
then applied to increase the diversity of BEV features during the training phase.

2.2. Data Augmentation in 3D Object Detection

The diversity of the dataset is crucial to the general-
ization performance of models. Besides regular data aug-
mentation like random scaling, flipping and rotation, GT-
Paste [33] is another effective strategy frequently used by
LiDAR-based detectors. It crops the points according to
the 3D boxes of ground truth and pastes them to other
frames to create new training data. Lately, an improvement
in generating a visibility map to correct the wrong occlu-
sion relationship introduced by GT-Paste is proposed in [7].
The augmentation on the individual object is also proposed
in [3, 41] which takes object points into parts and applies
operations like dropout, swap, and mix on it.

Since GT-Paste shows excellent effectiveness on in-
crease data diversity, there have been some attempts to
adopt it in camera-only 3D detectors. Box-Mixup and Box-
Cut-Paste proposed by [24] directly cut the objects from im-
ages according to their 2D bounding boxes and paste them
into other frames. To paste precisely, objects are cropped by
their instance masks in [37]. Pointaugmenting [28] utilizes
a more complicated way to tackle the occlusion relation-
ship of original objects and pasted objects. However, these
attempts to expand the GT-Paste into image space cannot
easily overcome the issues caused by the gap between Li-
DAR and camera. In this paper, we propose BEV-Paste, a
convenient way to effectively extend GT-Paste into BEV-
based methods with the help of SA-BEVPool.

2.3. Multi-task Learning

Multi-task learning generally leads to better prediction
through interactive learning between multiple tasks. Ac-

cording to [25], both task-specific information and cross-
task information are important for getting optimal results on
multiple tasks. PAD-Net [32] proposes multi-modal distil-
lation module to automatically supplement cross-task infor-
mation. PAP-Net [40] extracts cross-task affinity patterns
and recursively propagates the pattern by affinity matrices.
MTI-Net [26] models the task interactions at different scales
and aggregates multi-scale information to make precise pre-
dictions.

Some methods also introduce multi-task learning into 3D
object detection. MMF [17] deeply fuses the features of im-
ages and LiDAR through simultaneous supervision made on
multiple tasks. Latent support surfaces are estimated in [23]
to help improve the precision of 3D detection. A multi-task
LiDAR network proposed by [5] makes predictions on 3D
detection and road understanding that can complement each
other. Some BEV-based 3D detectors [16, 19] also apply
BEV segmentation to obtain better BEV representation. In
this paper, we propose the MSCT head that combines the
task-specific and cross-task information of multiple scales
for depth estimation and semantic segmentation, facilitat-
ing the optimization of the semantic-aware BEV feature.

3. Method

In this work, we propose SA-BEV, a novel multi-view
3D object detection framework that generates semantic-
aware BEV features for better detection performance. It
contains the Semantic-Aware BEV Pooling (SA-BEVPool),
the BEV-Paste data augmentation strategy and the Multi-
Scale Cross-Task (MSCT) head. The overall framework of
SA-BEV is shown in Fig. 2.
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Figure 3: Illustration of Semantic-Aware BEV Pooling. The
green line represents the projection of the foreground fea-
tures, while the yellow line represents the ignored back-
ground features. The foreground virtual points with depth
scores lower than the threshold are also ignored.

3.1. Semantic-Aware BEV Pooling

The way of transforming the image features into
BEV features for better perception was first proposed by
LSS [22]. It predicts the depth distribution α and context
feature c of each image feature element. Then each element
generates virtual points at different depths. The feature of
the point at depth d is represented as pd = αdc. After that,
all virtual points will be projected to the BEV space which
is divided into pillars. The features of virtual points in the
same pillar will be cumulated as the BEV feature. This pro-
cess is known as BEV pooling.

Subsequent BEV-based 3D detectors [15, 20, 9] signifi-
cantly improve the efficiency and accuracy of BEV pooling.
But what is unchanged is that these methods insist on pro-
jecting all virtual points into BEV space. However, we ar-
gue that this is unnecessary for 3D detection tasks. On the
contrary, if all virtual points belonging to the background
are projected, the foreground virtual points that account for
less than 2% of the total virtual points will be submerged.
It will confuse the following detection head and reduce the
detection accuracy.

To highlight the valuable foreground information in the
BEV features, we propose a novel Semantic-Aware BEV
Pooling (SA-BEVPool) that is shown in Fig. 3. It applies
semantic segmentation on the image features to get the fore-
ground score β of each element. The element with low β
is more possible to carry useless information for detection,
and the virtual points generated from it will be ignored dur-
ing the BEV pooling. Similarly, the virtual points with low
αd provide trivial information and will also be ignored. De-
noting the filtering function as:

F(x, y) =

{
0, x < y,

1, x ≥ y
, (1)

the point features after filtering are changed as:

p̂d = F(αd, TD)F(β, TS)pd, (2)

Pasted Frame
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Figure 4: Illustration of BEV-Paste.

where TD and TS are the threshold for αd and β. Only non-
empty p̂d will construct BEV feature. Since the operation
of filtering relatively low-value virtual points attaches se-
mantic information to the generated BEV features, they can
be called semantic-aware BEV features.

The difference between the normal BEV feature and the
semantic-aware BEV feature is clearly shown in Fig. 1. The
normal BEV features in the first row generally have a ring
of light in the center, which represents the ground. It ac-
counts for most of the signal strength in the feature with-
out contributing useful information for detection. In con-
trast, most of the background information is removed in the
semantic-aware BEV feature and object information is em-
phasized. Furthermore, the location of object information in
the semantic-aware BEV feature matches the ground truth
well, making the detection head easier to predict accurately.

3.2. BEV-Paste

GT-Paste [33] is a data augmentation strategy commonly
used by LiDAR-based 3D detectors. It has been proved that
the diversity of the dataset can be effectively increased by
sampling the points in 3D boxes and pasting them into other
frames. However, several problems prevent the application
of GT-Paste in camera-based methods. First, sampling an
object by the bounding box on the image can not get its
pure data as the point cloud does. Another problem is that
pasting objects to another image may wrongly occlude orig-
inal objects and result in data loss. In addition, the illu-
mination change of different frames also gives the pasted
objects unnatural appearances. Some multi-modal 3D de-
tectors [24, 28, 37, 38] make an effort to solve these issues
but generally lack convenience and accuracy.

Here, we propose BEV-Paste that successfully applies
GT-Paste in camera-only 3D detectors without complicated
steps. With SA-BEVPool, the semantic-aware BEV fea-
tures transformed from image features approximately rep-
resent the information of all objects in the frame as shown
in Fig. 1. It makes adding arbitrary semantic-aware BEV
features of two frames during the training phase equiva-
lent to aggregating the objects contained in two frames into
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Figure 5: The structure of Multi-Scale Cross-Task head.
Both 1/16 and 1/8 scale image features are taken as input.

one frame. While effectively increasing the diversity of the
entire training dataset, BEV-Paste does not increasing the
computational cost in the inference stage.

In practice, we randomly select the original semantic-
aware BEV feature BO and the pasted semantic-aware BEV
feature BP from the same batch. This is to guarantee BO

and BP follow the same distribution. Instead of directly
pasting BP to BO, extra BEV data augmentations (BDA)
shown in Fig. 4 are first applied to BP and B̂P is obtained.
It prevents the data duplication of BP . The same augmen-
tation is also applied to the ground truth of the pasted frame
GP to get ĜP . The detection loss after BEV-Paste can be
represented as:

Ldet = Ldet(Det(BO + B̂P ), GO ∪ ĜP ), (3)

where Det includes BEV encoder and detection head, GO

is the ground truth of original frame.

3.3. Multi-Scale Cross-Task Head

It is a convenient way to obtain semantic-aware BEV fea-
tures by making the depth branch predict semantic segmen-
tation at the same time, but it generally leads to sub-optimal
results. Let us regard the generation of the semantic-aware
BEV feature as a multi-task learning application. Accord-
ing to the research conclusion, both task-specific informa-
tion and cross-task information are important for getting the
global optimal solution of multiple tasks. If the depth distri-
bution and semantic segmentation are predicted by the same
network branch, the network only extracts cross-task infor-
mation from the image features and can not perform opti-
mally on each task.

Inspired by the principle of multi-task learning, we de-
sign a Multi-Scale Cross-Task (MSCT) head as shown in

Fig. 5. In the first stage, the head takes 1/16 scale image
feature F16

I as input and makes a relatively coarse predic-
tion of depth distribution and semantic segmentation. After
that, F16

I is transformed into depth feature F16
D and seman-

tic feature F16
S , which carry the task-specific information

of their own task. To complement cross-task information,
Multi-Task Distillation (MTD) module proposed in [32] is
applied between F16

D and F16
S . It is composed of several

self-attention blocks, which generate gate map G by

G(F) = σ(WGF), (4)

where WG is the gate convolution and σ denotes sigmoid
function. The features supplemented by the cross-task in-
formation can be formulated as:

F̂16
D = F16

D + G(F16
D )⊙ (WtF

16
S ) (5)

F̂16
S = F16

S + G(F16
S )⊙ (WtF

16
D ) (6)

where Wt is the task convolution and ⊙ denotes element-
wise multiplication. It is clear that MTD uses these self-
attention blocks to automatically extract cross-task informa-
tion from one task feature and add it to other task features.

After the task features interaction, F̂16
D and F̂16

S obtain
both task-specific information and cross-task information.
Before inputting them into the second stage prediction head,
they are up-sampled to the 1/8 scale and combined with
the 1/8 scale image feature F8

I using the same self-attention
blocks. The features can be formulated as:

F̂8
D = Up(F̂16

D ) + G(F8
I)⊙ (WtF

8
I) (7)

F̂8
S = Up(F̂16

S ) + G(F8
I)⊙ (WtF

8
I) (8)

The second stage head then predicts the relatively fine depth
distribution and semantic segmentation which will be used
to generate the semantic-aware BEV feature.

During training, both predictions on the 1/16 and 1/8
scale are supervised. It ensures the first stage head can ex-
tract task-specific information and the second stage head
can combine the task-specific information with cross-task
information. The supervision signals are obtained by pro-
jecting point clouds on images following BEVDepth [15].
The depth values of the projected points are the depth la-
bels and the points in the 3D boxes are regarded as the fore-
ground. The total loss can be formulated as:

L = Ldet +
λ1

2
(L16

S + L8
S) +

λ2

2
(L16

D + L8
D) (9)

4. Experiments
In this section, we first introduce our experimental set-

tings. Then, comparisons with previous state-of-the-art
multi-view 3D detectors are shown. Finally, comprehensive
experiments with detailed ablation studies are conducted on
SA-BEV to show the effectiveness of each component, i.e.
SA-BEVPool, BEV-Paste and MSCT head.



Table 1: Comparison with previous state-of-the-art multi-view 3D detectors on the nuScenes test set.

Method Backbone Resolution mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
FCOS3D [30] ResNet-101 900×1600 0.358 0.428 0.690 0.249 0.452 1.434 0.124
PGD [29] ResNet-101 900×1600 0.386 0.448 0.626 0.245 0.451 1.509 0.127
DETR3D [31] V2-99 900×1600 0.412 0.479 0.641 0.255 0.394 0.845 0.133
BEVDet [10] Swin-B 900×1600 0.424 0.488 0.524 0.242 0.373 0.950 0.148
PETR [18] V2-99 900×1600 0.441 0.504 0.593 0.249 0.383 0.808 0.132
BEVFormer [16] V2-99 900×1600 0.481 0.569 0.582 0.256 0.375 0.378 0.126
BEVDet4D [8] Swin-B 640×1600 0.451 0.569 0.511 0.241 0.386 0.301 0.121
PolarFormer [11] V2-99 900×1600 0.493 0.572 0.556 0.256 0.364 0.440 0.127
PETRv2 [19] V2-99 640×1600 0.490 0.582 0.561 0.243 0.361 0.343 0.120
BEVDepth [15] V2-99 640×1600 0.503 0.600 0.445 0.245 0.378 0.320 0.126
BEVStereo [14] V2-99 640×1600 0.525 0.610 0.431 0.246 0.358 0.357 0.138
SA-BEV V2-99 640×1600 0.533 0.624 0.430 0.241 0.338 0.282 0.139

Table 2: Comparison with previous state-of-the-art multi-
view 3D detectors on the nuScenes val set.

Method Backbone Resolution mAP↑ NDS↑
FCOS3D [30] ResNet-101 900×1600 0.343 0.415
DETR3D [31] ResNet-101 900×1600 0.303 0.374
PGD [29] ResNet-101 900×1600 0.369 0.428
PETR [18] ResNet-101 512×1408 0.357 0.421
BEVDet [10] Swin-B 900×1600 0.393 0.472
BEVFormer [16] ResNet-101 900×1600 0.416 0.517
PETRv2 [19] ResNet-101 900×1600 0.421 0.524
BEVDet4D [8] Swin-B 640×1600 0.421 0.545
PolarFormer [11] ResNet-101 900×1600 0.432 0.528
BEVDepth [15] ConvNeXt-B 512×1408 0.462 0.558
BEVStereo [14] ConvNeXt-B 512×1408 0.478 0.575
SA-BEV ConvNeXt-B 512×1408 0.479 0.579

4.1. Experimental Settings

4.1.1 Dataset and Metrics

nuScenes [1] dataset is a large-scale autonomous driving
benchmark. It contains 750 scenarios for training, 150 sce-
narios for validation and 150 scenarios for testing. Each
scenario lasts for around 20 seconds and the key samples
are annotated at 2Hz. The data collected from six cameras,
one LiDAR and five radars are provided to every sample.
For 3D object detection, nuScenes Detection Score (NDS)
is proposed to capture all aspects of the nuScenes detec-
tion tasks. Except mean average precision (mAP), NDS is
also related to five types of true positive metrics (TP met-
rics), including mean Average Translation Error (mATE),
mean Average Scale Error (mASE), mean Average Orienta-
tion Error (mAOE), mean Average Velocity Error (mAVE),
mean Average Attribute Error (mAAE).

4.1.2 Implementation Detail

We accomplish our proposed improvements on the network
structure of BEVDepth [15]. Our experiments are imple-
mented based on MMDetection3D with 8 NVIDIA GeForce
RTX 3090 GPUs. Models are trained with AdamW [21] op-
timizer and gradient clip is utilized. The universal data aug-
mentation we adopt on the image and BEV feature follows
the configuration in [10]. For the ablation study, we use
ResNet-50 [6] as the image backbone and the image size is
downsampled to 256×704. The models are trained for 24
epochs without CBGS strategy [45] for the ablation study.
When compared to other methods, the models are trained
for 20 epochs with CBGS strategy.

4.2. Main Results

4.2.1 Comparison with State-of-the-Arts

We compare SA-BEV with state-of-the-art multi-view 3D
detectors on nuScenes test set and show the results in Ta-
ble 1. We take 640×1600 resolution image as input and
VoVNet-99 [13] as the image backbone. SA-BEV achieves
the best mAP and NDS, 3.0% and 2.4% higher than its base-
line (i.e. BEVDepth [15]). It also exceeds BEVStereo [14]
by 0.8% mAP and 1.4% NDS, which adopts the compli-
cated multi-view stereo structure for more accurate depth
estimation. The comparison on nuScenes val set is shown
in 2. It can be found SA-BEV also achieves the best detec-
tion precision. The decent results highlight the advantage
of the proposed SA-BEV.

4.2.2 Visualization

We visualize the detection results on images and BEV fea-
tures in Fig. 6. Compared to BEVDepth, SA-BEV can
make more precise predictions with the help of semantic-
aware BEV features. For instance, the orange dashed rect-
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Figure 6: Visualization of detection results on images and BEV features. The red boxes and green boxes on BEV features
represent the ground truth and the predicted boxes, respectively. The dashed rectangles illustrate that the prediction of SA-
BEV is more precise than BEVDepth.

Table 3: Ablation study of component in SA-BEV on
the nuScenes val set. pool, paste and head denotes SA-
BEVPool, BEV-Paste and MSCT head, respectively.

Baseline pool paste head mAP↑ NDS

BEVDepth [15]

0.330 0.436
✓ 0.340 0.449
✓ ✓ 0.354 0.464
✓ ✓ ✓ 0.365 0.483

BEVDet [10] 0.278 0.322
✓ ✓ 0.304 0.348

BEVStereo [14] 0.349 0.454
✓ ✓ 0.364 0.467

angles show that the filtration of the background prevents
SA-BEV from making false detection. The yellow dashed
rectangles indicate that the semantic-aware BEV feature
correctly emphasizes the location of the truck, which results
in precise detection. In addition, the green / blue dashed
rectangles display that SA-BEV can successfully recall the
missed object and remove the redundant detection box.

4.3. Ablation Study

4.3.1 Component Analysis

We individually evaluate the contributions of SA-BEVPool,
BEV-Paste and MSCT head with BEVDepth [15] as the
baseline. The results are shown in Table 3. After apply-
ing SA-BEVPool, the performance is boosted by 1.0% and
1.3% on mAP and NDS. It is further improved by 1.4%
/ 1.5% and 1.1% / 1.9% through incorporating BEV-Paste
and MSCT head respectively. Finally, we obtain the full
model of SA-BEV, which gains 3.5% and 4.7% in total, val-
idating its effectiveness. SA-BEVPool and BEV-Paste are
also applied to BEVDet [10] and BEVStereo [15], increas-
ing 2.6% / 2.6% and 1.5% / 1.3% respectively on mAP and
NDS. It demonstrates that these components can be easily
embedded into the existing BEV-based detectors and bring
about noticeable precision improvement.

4.3.2 Semantic-Aware BEV Pooling

The semantic threshold TS and semantic threshold TD in
SA-BEVPool control the scale of the valid virtual points.
We vary thresholds and show the results in Table 4. The
results indicate that even a low TD can sharply reduce the



Table 4: Ablation study of the semantic threshold used in
SA-BEVPool. “Percentage” denotes the average proportion
of valid virtual points.

TD TS mAP↑ NDS↑ Percentage
- - 0.330 0.436 100%

0.0085 - 0.338 0.438 7.92%
0.0085 0.10 0.339 0.444 3.26%
0.0085 0.25 0.340 0.449 1.80%
0.0085 0.50 0.329 0.432 0.89%

Table 5: Ablation study of BEV-Paste strategy. NP denotes
the average number of frames that are pasted to the original
frame.

Method NP mAP↑ NDS↑

w/o extra BDA

0 0.340 0.449
0.5 0.348 0.453
1 0.349 0.453
2 0.349 0.452

w/ extra BDA 1 0.354 0.464

Table 6: Ablation study of MSCT head. “MTD”, “DS” and
“MS” denote the multi-task distillation module, the dual su-
pervision and the utilization of multi-scale image features.

MTD DS MS mAP↑ NDS↑
0.354 0.464

✓ 0.358 0.468
✓ ✓ 0.361 0.473

✓ 0.361 0.478
✓ ✓ ✓ 0.365 0.483

scale of valid virtual points and an appropriate TS can effec-
tively improve the detection precision. However, a too-high
semantic threshold may lead to the loss of foreground in-
formation and damage the precision. We set the semantic
threshold to 0.25 as a good trade-off. It only needs 1.8%
valid virtual points, resulting in 1% mAP and 1.3% NDS
performance improvement.

4.3.3 BEV-Paste

We conduct experiments with different settings when apply-
ing BEV-Paste, including the number of frames pasted to
each original frame and whether to utilize extra BDA. The
results are shown in Table 5. Setting NP to 0.5 means half
of the original frames are augmented by one pasted frame
while the others are not augmented. As shown in Table
5, the BEV-Paste is not sensitive to the number of pasted

frames. Considering that pasting too many frames will cost
more time on training detection head because the ground
truth objects are increased, setting NP as 1 is enough. Be-
sides, extra BDA can effectively alleviate data duplication
and further improve detection performance. The coopera-
tion of these two points contributes to the performance im-
provement of 1.4% mAP and 1.5% NDS, confirming the
effectiveness of BEV-Paste.

4.3.4 Multi-Scale Cross-Task Head

The MSCT head contains the Multi-Task Distillation
(MTD) module and the Dual Supervision (DS) on predic-
tion from Multi-Scale (MS) image features. A number of
experiments are carried out to further verify the effective-
ness of each module and the results are shown in Table 6.
Our MTD, DS and MS modules improve NDS performance
by 0.4%, 0.5% and 1.0% respectively. We attribute this im-
provement to the fact that the multi-task distillation mod-
ule supplements cross-task information, and the dual super-
vision further promotes the extraction and fusion of task-
specific information and cross-task information, as well as
the participation of multi-scale image features.

5. Conclusion and Discussion

In this paper, we propose SA-BEV to fully utilize the
semantic information of images. SA-BEVPool filters out
background virtual points and generates semantic-aware
BEV features. BEV-Paste then pastes the semantic-aware
BEV features of two frames to enhance data diversity.
MSCT head introduces multi-task learning and facilitates
the optimization of semantic-aware BEV features.

Our proposed components show strong universality. SA-
BEVPool and BEV-Paste can be easily embedded into most
BEV-based detectors and bring stable improvements. Be-
sides, we believe that introducing multi-task learning into
the generation of semantic-aware BEV features adds a valu-
able perspective and will inspire future works.

Still, there are limitations in SA-BEV. The thresholds
used in SA-BEVPool are manually set, making it hard to
achieve optimal performance. BEV-Paste may cause in-
correct object overlaps and occlusions when pasting the
semantic-aware BEV feature of one frame to another. Those
are what we will tackle next. We also would like to extend
SA-BEV into a multi-modal detector to activate the com-
plementarity between image and LiDAR.
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A. More Implementation Details

A.1. Data Augmentation

We augment both images and BEV features following
the operation applied in [10]. For images, they are first
down-sampled to the desired resolution. Then they are pro-
cessed by random scaling with a range of [0.94, 1.11], ran-
dom rotating with a range of [−5.4◦, 5.4◦] and random flip-
ping with a probability of 0.5. After that, the images are
padded and cropped to a uniform shape. For BEV fea-
tures, augmentation is applied on the virtual points whose
features are cumulated to form BEV features. The coor-
dinates of virtual points are processed by random scaling
with a range of [0.95, 1.05], random flipping of the X and
Y axes with a probability of 0.5 and random rotating with a
range of [−22.5◦, 22.5◦]. Augmenting virtual points rather
than BEV features themselves can generate more accurate
augmented BEV features because the bilinear sampling is
not required by the former. The additional BEV data aug-
mentation (BDA) used by BEV-Paste also follows the above
settings.

A.2. Detection Configuration

We use the detection head of CenterPoint [35] to detect
3D objects from semantic-aware BEV features and follow
the settings used in BEVDepth [15]. The LiDAR coordinate
system of nuScenes is used to represent the coordinate of
points in the BEV space. The X and Y coordinates are in the
range of [−51.2, 51.2], and the Z coordinate is in the range
of [−5, 3]. The BEV space is divided into pillars for cumu-
lating virtual point features. When the resolution of input
images is 256×704, the pillars are in the size of [0.8, 0.8, 8]
and the BEV features are in the shape of 128 × 128. For
larger input images, the pillars are in the size of [0.4, 0.4, 8]
and the BEV features are in the shape of 256× 256.

B. More Experiment Results

We change the image backbone of SA-BEV to ResNet-
101 when processing 512 × 1408 resolution images and
compare it with other methods that also utilize ResNet-
101 as their backbone. The results are shown in Table 7.
SA-BEV achieves the best mAP and NDS, 2.9% and 1.4%
higher than its baseline (i.e. BEVDepth [15]). It also ex-
ceeds other start-of-the-art methods that take 900 × 1600
resolution images as input. This comparison further proves
the effectiveness of SA-BEV.

We also compare the detection precision of BEVDepth
and SA-BEV in each category and show the results in Fig. 7.
SA-BEV achieves better precision than BEVDepth in most
of the categories. For instance, the APs on pedestrian and
traffic cone are increased by about 10%, and the APs on
car, truck, bus and bicycle are increased by about 3%. The

Table 7: Comparison with previous state-of-the-art multi-
view 3D detectors on the nuScenes val set.

Method Backbone Resolution mAP↑ NDS↑
FCOS3D [30] ResNet-101 900×1600 0.343 0.415
DETR3D [31] ResNet-101 900×1600 0.303 0.374
PGD [29] ResNet-101 900×1600 0.369 0.428
PETR [18] ResNet-101 512×1408 0.357 0.421
BEVFormer [16] ResNet-101 900×1600 0.416 0.517
PETRv2 [19] ResNet-101 900×1600 0.421 0.524
PolarFormer [11] ResNet-101 900×1600 0.432 0.528
BEVDepth [15] ResNet-101 512×1408 0.412 0.535
SA-BEV ResNet-101 512×1408 0.441 0.549

Figure 7: Comparison of BEVDepth and SA-BEV on AP
for each category. C.V., P.D, M.C., B.C. and T.C. are the
abbreviations of construction vehicle, pedestrian, motorcy-
cle, bicycle and traffic cone respectively.

greater improvement in pedestrian and traffic cone cate-
gories indicates that the semantic-aware BEV features ef-
fectively preserve the information of small scale objects that
is more likely to be submerged by the large proportion of
background information.

C. More Visualization Results
We provide more visualization results of BEVDepth and

SA-BEV in Fig. 8. With the help of semantic-aware BEV
features, SA-BEV can recall objects in the far distance and
identify the false truth precisely. Besides, SA-BEV gener-
ally predicts more accurate locations and directions of the
objects, which is also important in actual practice.
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Figure 8: Visualization results on images and BEV features. The red boxes and green boxes on BEV features represent the
ground truth and the predicted boxes, respectively. The dashed rectangles illustrate that the prediction of SA-BEV is more
precise than BEVDepth.


