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Abstract

Neural rendering of implicit surfaces performs well in
3D vision applications. However, it requires dense in-
put views as supervision. When only sparse input images
are available, output quality drops significantly due to the
shape-radiance ambiguity problem. We note that this am-
biguity can be constrained when a 3D point is visible in
multiple views, as is the case in multi-view stereo (MVS).
We thus propose to regularize neural rendering optimization
with an MVS solution. The use of an MVS probability vol-
ume and a generalized cross entropy loss leads to a noise-
tolerant optimization process. In addition, neural rendering
provides global consistency constraints that guide the MVS
depth hypothesis sampling and thus improves MVS perfor-
mance. Given only three sparse input views, experiments
show that our method not only outperforms generic neural
rendering models by a large margin but also significantly
increases the reconstruction quality of MVS models.

1. Introduction
Neural surface reconstruction techniques, coupled with

coordinate-based neural network models, have become in-
creasingly popular in the field of 3D vision [75, 62, 76]. Al-
though these methods perform very well, they require dense
input views as supervision. This is limiting for many real-
world applications where sparse input images are the only
source of information, such as robotics, augmented reality,
autonomous driving, and scene reconstruction in-the-wild.
As shown in Fig. 1, the reconstruction quality of a scene
using VolSDF [75] (a state-of-the-art technique) drops sig-
nificantly when only 3 views are used. This is due to the
shape-radiance ambiguity problem [83].

The shape-radiance ambiguity [83] means that there is
a high probability an incorrect geometry reconstruction sat-
isfies the photometric constraint when it is visible from a
single view only, as is in the case of sparse views. In that
scenario, the photometric loss alone can not guide the model
toward a correct solution. To regularize this, we need to
constrain surface points to be visible from multiple views,

(a) Sparse Set of 3 Input Views

(b) VolSDF

(c) Our method

Figure 1. Shape-Radiance Ambiguity. In the last two rows, we
compare the novel view synthesis results from VolSDF [75] and
our model: RGB renderings (left), predicted normal maps (mid-
dle), and expected depth maps (right).

hence, we need correspondences, as in multi-view stereo
(MVS) [7, 38, 69, 72, 73, 9, 78, 21, 71, 81, 67, 70, 64, 85,
87, 16]. Thus, we propose to guide neural rendering op-
timization with information from MVS. The challenge is
how to effectively incorporate the noisy MVS predictions
into the neural rendering pipeline.

Many modern MVS methods [72, 21, 16, 9] integrate
the evidence for each possible 3D point into a probability
volume and regress depth from it. In order to avoid possi-
ble errors in MVS 3D point reconstruction, we do not use
point estimates, but the whole probability volume. We also
note that the rendering weights in neural rendering methods
and the probability volume in MVS actually have the same
meaning: the probability that a point at a particular location
is visible by multiple views. Based on recent MVS litera-
ture [46], we can think of all possible 3D points on a ray
as interior or exterior to the object (i.e. a binary classifi-
cation problem). Thus, we can treat the MVS probability
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volume as a set of noisy labels for the rendering weights
(i.e. occupancy values). Posing neural rendering as a clas-
sification problem allows the use of cross entropy loss to
optimize neural rendering methods. However, as shown by
the classification literature [86, 54], the cross entropy loss
is sensitive to noisy labels. Instead, we adopt a generalized
cross entropy loss [86] to reduce the penalty on false pos-
itive MVS predictions and thus increase the optimization’s
tolerance to noise.

In order to produce our final geometry, we want to take
advantage of global consistency constraints including pho-
tometric consistency and surface smoothness imposed by
neural rendering. Thus, we propose to incorporate neu-
ral surface reconstruction into coarse-to-fine MVS models.
Specifically, we use the coarse stage MVS predictions to
regularize neural surface optimization. Then, we use the
rendered depth maps to guide the next stage’s depth hy-
pothesis sampling in MVS. Moreover, neural surface op-
timization only requires 10-15 minutes in current hardware
to obtain good results because of strong geometry cues from
MVS. As a result, we obtain much better surface recon-
struction than either MVS or neural rendering alone, at a
relatively fast speed.

In this paper, we propose S-VolSDF, a novel approach
that leverages multi-view stereo priors to optimize neural
surface reconstruction with sparse input views. Our main
contributions are as follows:

• We propose a simple but effective noise-tolerant cost
function that combines multi-view stereo with neu-
ral volumetric surface reconstruction methods, so their
optimization is regularized by the probability volumes
of MVS methods.

• We integrate neural surface reconstruction into multi-
ple coarse-to-fine MVS models. Our method consis-
tently improves depth estimation for better MVS per-
formance at a faster speed.

• We evaluate our method on surface reconstruction and
novel view synthesis on the DTU [1] and BlendedMVS
[74] datasets. Our reconstruction is significantly better
than both neural rendering and MVS models.

2. Related Work
2.1. Multi-View Stereo (MVS)

Traditional multi-view stereo uses representations such
as depth maps, point clouds, and volumetric representa-
tions [18]. Depth map based methods [5, 20, 56, 50, 68]
typically rely on a reference image and additional nearby
source images for depth estimation. Point cloud based
methods [19, 32, 35] attempt to optimize a collection of
patches that best describe a 3D scene. Volumetric meth-
ods [29, 27, 31, 51, 11, 59, 22, 52, 17, 80] often aggregate

information into a global representation such as a volume
or mesh.

Deep-learning MVS methods [7, 38, 69, 72, 73, 9, 78,
21, 71, 81, 67, 70, 64, 85, 87, 16] typically use depth maps
as 3D representations and follow the steps below: i) they
use a differentiable homography to aggregate features from
nearby views and build the cost volume, ii) they use a 3D
CNN to regularize the cost volume and regress the depth
and finally, iii) by applying a softmax function, they obtain
a probability volume from the cost volume. A winner-takes-
all technique is often used to determine the depth. Cascade
cost volumes [9, 21, 71, 81, 16] and recurrent cost volume
regularization [67, 70, 73] further reduce memory consump-
tion. The cascade cost volume is constructed in a coarse-to-
fine manner that first regresses a coarse depth in low resolu-
tion and then predicts finer depth values in higher resolution
based on the depth range inferred from the coarse result.

MVS explicitly forces surface points to be visible from
multiple views. This property prevents degenerate geome-
try in the case of sparse input views. However, the corre-
spondence problem is often hard to solve, which introduces
significant noise in the predicted geometry. Furthermore,
the use of the argmax operation (winner-takes-all) removes
potentially correct predictions in the MVS probability vol-
ume and introduces further noise. Thus, we propose to di-
rectly use information from the probability volume instead
of the noise-prone MVS point estimates.

2.2. Neural Volumetric Representations

Neural volumetric representations are popular in 3D re-
construction [24, 76, 43, 28, 33, 62, 75, 44, 82, 12] and
novel view synthesis [53, 36, 41, 48, 57, 2, 39, 45, 76].
NeRF [41], the most well-known method, is based on the
volume rendering equation [40, 26] and stores 3D informa-
tion inside a neural network in the form of a compact Multi-
layer Perceptron (MLP). Due to the expressive power of the
neural network, it is able to model high-quality details and
reconstruct complex 3D structures with a relatively small
storage cost. VolSDF builds on NeRF with improved vol-
umetric rendering of implicit surfaces. However, as shown
in Fig. 1, in the case of sparse input views, the quality of
the VolSDF reconstruction drops significantly because of
the radiance-ambiguity problem described in Sec. 1.

Regularization-based approaches are simple, but effi-
cient ways to mitigate this problem, using priors such as
smoothness [42, 44], cross-view semantic similarity con-
straint [23], normal priors [61], and depth priors [47, 66].
DS-NeRF [14] utilizes estimated depth from structure-
from-motion [49]. MonoSDF [79] and SparseNeRF [60]
utilize monocular depth estimation. Monocular depth es-
timation is often not accurate, only roughly approximating
shapes, and may lead to sub-optimal results. Sensor depth
[15, 30] and MVS [82, 88] have also been adopted to reg-



ularize the training of neural rendering models. Although
MVS is a strong prior in general, it can be unreliable when
the MVS prediction is noisy with sparse input views.

A different approach is to increase the generalization
ability of neural rendering by utilizing priors derived from
a larger model trained on multi-view image datasets [37, 6,
63, 77, 34, 10, 34, 55]. PixelNeRF [77] is conditioned on
features extracted by a CNN. MVSNeRF [6] forms a neural
volume from the cost volume obtained by warping image
features, and is conditioned on this neural volume. IBRNet
[63] aggregates features from nearby views to infer geome-
try and adopts an image-based rendering approach. GeoN-
eRF [25] utilizes a cascaded cost volume and an attention-
based technique to aggregate information from different
views. SparseNeuS [37] proposes cascaded geometry rea-
soning and consistency-aware fine-tuning. These methods
considerably improve reconstruction, but our experiments
show that their results still suffer from entanglement of tex-
ture with geometry, and inconsistencies between views.

Our method differs from generic neural rendering meth-
ods like MVSNeRF and GeoNeRF in that we explicitly
utilize the MVS prior through noise-tolerant test-time op-
timization. In contrast, generic methods implicitly utilize
the MVS prior by conditioning the rendering MLP on fea-
tures derived from the cost volume, which may not work
well in challenging sparse-input scenarios. In Sec. 4.3, we
show our approach outperforms generic methods to effec-
tively and reliably disentangle texture and geometry.

3. Method

 MVS (coarse) Noise-tolerant
OptimizationImage  MVS (fine)

Figure 2. Our proposed method improves the quality of depth maps
obtained from the coarse stage multi-view stereo (MVS) by in-
troducing noise-tolerant optimization techniques. The resulting
depth maps then guide depth hypothesis sampling in the finer stage
MVS, leading to more accurate and detailed 3D reconstructions.

We propose a novel way to integrate neural volume ren-
dering with multi-view stereo algorithms. Specifically, we
adopt VolSDF [75] for the neural surface reconstruction and
notice that with sparse input views, VolSDF’s reconstruc-
tion quality degrades dramatically. To mitigate this, we pro-
pose S-VolSDF that makes use of the correspondence-aware
probability volume from MVS algorithms. Fig. 2 and Fig. 3
provide an overall illustration of our method.

3.1. Background

Volume Rendering of Implicit Surfaces. We use forward
volume rendering [40, 26, 41] as our differentiable volu-
metric representation of the 3D scene and apply VolSDF
[75]. VolSDF represents scene geometry as a signed dis-
tance function (SDF), which is subsequently transformed
into density values for volume rendering. For each pixel,
we sample points between the near and far depths along the
ray r and approximate the pixel color Ĉ by:

Ĉ(r) =

N∑
i=1

wi · ci,

where wi = Ti (1− exp (−σiδi)) ,

Ti = exp

−
i−1∑
j=1

σjδj

 .

(1)

Here, wi is the rendering weight, σi and ci denote the den-
sity and color at the sampled point i, respectively and δi is
the distance between adjacent samples along the ray. The
density value is approximated from the SDF s, with learn-
able parameter α, β, as follows:

σ(s) =


1
2 exp

(
s
β

)
· α if s ≤ 0(

1− 1
2 exp

(
− s

β

))
· α if s > 0

(2)

3.2. S-VolSDF

Implicit neural 3D representations usually require dense
images, since their per-scene optimization can be seen as
a trial-and-error process to determine the underlying 3D
structures. Therefore, given sparse training views as super-
vision, neural rendering models often fit the training views
flawlessly while the underlying geometry can be vastly in-
correct [42]. This can be understood as a local optimum
and is known as the shape-radiance ambiguity problem [83].
In Fig. 1, we demonstrate it experimentally by training
VolSDF [75] using 3 views only. As shown in Fig. 1,
VolSDF completely fails to estimate geometry.

We propose to combine information from MVS to make
neural rendering models correspondence-aware. The chal-
lenge lies in effectively incorporating noisy MVS predic-
tions into VolSDF [75]. We propose two steps:
Soft Consistency. Instead of the hard consistency con-
straints imposed by estimating the depth of each point, we
impose soft consistency constraints by operating directly
on the probability volumes: In MVS, depth maps are typ-
ically obtained by applying argmax on the probability vol-
ume along each view direction. Then, photometric and ge-
ometric consistency checks [72] are used to filter out depth
outliers before fusing the depth maps into a point cloud.
argmax works well when dense inputs are available, but in
the case of sparse inputs, the correct depth is often not as-
signed the highest probability. As a result, incorrect depths
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Figure 3. Overview. We propose to use probability volumes, obtained from multi-view stereo (MVS) models, to supervise the rendering
weight estimated by VolSDF [75]. We apply a soft consistency check to refine the volumes. The weight loss function ensures consistency
between the probability volume and the rendering weight. This process allows us to use the reconstructed depth information provided by
VolSDF to guide the depth hypothesis sampling in the MVS models, as depicted in Fig. 2.

introduced by argmax will be filtered out by consistency
checks, resulting in an incomplete reconstruction.

Alternatively, we propose directly computing consis-
tency measures on the probability volumes. The reference
view is the image, the depth of which we want to deter-
mine. The other images are the source views. By applying
MVS to these views, we obtain probability volumes. Then,
we multiply each probability value Pref (x) in the refer-
ence probability volume with 3D position x, with the sum of
Pj

src(x) at the same location, to compute a new consistency
weighted probability volume. Pj

src(x) is interpolated from
the probability volumes of the source views. We demon-
strate that this multiplication works adequately in our abla-
tion study in Sec. 4.4. However, significant errors in depth
still appear in challenging sparse-input scenarios.
Noise-Tolerant Loss. We further propose a noise-tolerant
weight loss that utilizes the noisy probability volume to
improve the reconstruction of VolSDF [75]. Given points
sampled along a viewing ray, we notice that P and w in
Eq. (1) actually have the same meaning: their normalized
values along the ray/depth both form a depth probability
mass function, which can also be seen as the probability
that a correspondence exists. The larger the value of w,
the more likely it is that this point is visible in multiple
views (i.e. a correspondence between pixels in different im-
ages). Instead of directly checking for consistency between
the different probability volumes, we use them (in the form
of w) during neural rendering optimization. Thus, we lever-
age the smoothness of neural implicit models and combine
the global consistency guaranteed by volumetric rendering.

Specifically, we use our consistency weighted probabil-
ity volume as supervision to regularize w in the volume ren-
dering Eq. (1). Based on [46], we can think of all possible
3D points on a ray as interior or exterior to the object (i.e. a
binary classification problem). Thus, the MVS probability
volume becomes a set of noisy positive labels for the render-
ing weights (i.e. occupancy values) with confidence from
soft consistency. Hence, we have a classification problem
that allows the use of cross entropy loss to optimize neu-
ral rendering methods. However, as shown in [86, 54], the
cross entropy loss is sensitive to noisy labels. Based on in-
sights from [86], we adopt a generalized cross entropy loss
in Eq. (3) to reduce the penalty on false positive MVS pre-
dictions and thus increase optimization tolerance to noise.
The noise tolerance level can be controlled by parameter
q, where the generalized cross entropy loss is equivalent to
the cross entropy loss when q approaches 0 [86], and to the
Mean Absolute Error (MAE) loss when q = 1. Our noise-
tolerant weight loss is shown in Eq. (3).

Lweight =
∑
x∈X

1−w(x)
q

q
·P′

ref (x),

where P′
ref (x) = Pref (x) ·

∑
j

Pj
src(x),

(3)

w(x) is the rendering weight predicted by the neural ren-
dering model at the sampled location x along a ray in the
reference view, Pref is the probability volume in the refer-
ence view, and Pj

src is the probability volume of a source
view. In this way, we are essentially optimizing correspon-
dences across images in a globally consistent and noise-



tolerant way. In spirit, this is similar to finding a graph-cut
in a volume of correspondence costs described in [59].
Coarse-to-fine MVS Reconstruction. As shown in Fig. 2,
we incorporate our method into three coarse to fine MVS
models [16, 9, 21]. We use the first coarse stage MVS prob-
ability volume to guide VolSDF [75] optimization. After
that, we use the depth map obtained from VolSDF and re-
place the original depth map estimated by the coarse stage
MVS model to remove the noise in the coarse stage MVS
depth. We then follow the same protocol as in coarse-to-
fine MVS models: use the depth map estimated from the
coarse stage to guide the sampling range of the depth candi-
dates of the next, finer stage in MVS. Because our coarse
guidance depth map is more complete and accurate, the
next stage MVS depth estimation is simpler. Therefore, we
only use half of the depth search width in the finer stages
compared to the default search width used in MVS models.
Our surface reconstruction is more complete and still accu-
rate compared to MVS models. Furthermore, as we show
in Tab. 1, our method can be effortlessly incorporated into
most coarse-to-fine MVS models and achieves considerable
improvement compared to standalone MVS models.
Optimization. We use the same loss functions as VolSDF
[75], along with our weight loss and sparsity regularization:

Lsparse =
1

∥Q∥
∑
r∈Q

1/(dr + ϵ), (4)

where dr are predicted depths and Q are rays without MVS
supervision (

∑
P′(x) ≈ 0). We encourage sparsity by

maximizing depth values. Lsparse is only used in the first
200 steps, along with heavily Gaussian-smoothed images
as photometric supervision to suppress floating surfaces.
Rendering. For coordinate-based MLPs, fitting high-
frequency details and maintaining good geometry simulta-
neously is challenging [75]. Since our method produces
reasonably good geometry, we experiment with a simple
image-based rendering approach [13, 8, 3] in testing to warp
nearby view pixels based on predicted depth maps to syn-
thesize novel views. In areas where there are no valid pixels
to warp (i.e., the geometric consistency check between the
rendered depths of the novel view and input views fails),
we use rendered colors. A 4-level Laplacian pyramid [4] is
used to smoothly blend the warped pixels. Our method with
image-based rendering is denoted as OursIR.

4. Experiments
We evaluate our method on complex multi-view 3D sur-

face reconstruction tasks, using two datasets: DTU [1] and
BlendedMVS [74], both featuring real objects with diverse
materials captured from multiple views. We demonstrate
the superiority of our approach over prior work through
quantitative and qualitative evaluation (Sec. 4.3). Further-

more, we conduct extensive ablation studies to verify the
effectiveness of our design choices (Sec. 4.4).

4.1. Experimental Settings

Datasets. For the DTU dataset [1], we combine the scans
used in [76, 75, 77] with the ones used in conventional MVS
settings [16, 72], and remove the training scans of common
MVS models. Our primary experiments are on three-view
3D reconstruction. Similar to PixelNeRF [77], we use views
25, 22, and 28 for three-view reconstruction. We further
test on 6 and 9 input views with consistent improvements
in performance1. For the BlendedMVS dataset [74], we se-
lect 9 challenge scenes, following [75]. For each scene, we
select a set of sparse input views (i.e. 3 images) with a
relatively wide baseline, similar to the setting in the DTU
dataset. The image resolution is set to 768 × 576 for both
the DTU and BlendedMVS datasets. We use foreground
masks from [42, 76] following [42, 37] for evaluation.
Metrics. For surface reconstruction, we follow the standard
evaluation protocol in [1, 76, 75] and report the Chamfer
distance (in mm) of the output point clouds with ground
truth point clouds. For novel view synthesis, we adopt the
mean of PSNR, structural similarity index (SSIM) [65], and
the LPIPS perceptual metric [84].
Implementation details. We experiment mainly using Cas-
MVSNet [21] to obtain the cascade probability volume.
We notice that, given only 3 input views, the default plane
sweep settings (48, 32, and 8 depth hypotheses with inter-
val widths 4, 2, and 1 respectively) do not retain fine details
very well. We change them to 192, 32, and 8 depth hypothe-
ses with intervals 1, 0.5, and 0.5 respectively. We are able
to make the finer stage depth search interval widths much
smaller because our method produces more complete and
accurate coarse depth maps. The batch size is 512 rays. The
q in our weight loss Eq. (3) is 0.5 in all experiments. We op-
timize each scene for 100K steps. Before fusing the depth
maps output by the MVS model into a point cloud, standard
photometric and geometric consistency [72] checks based
on probability values and depth errors are adopted.

4.2. Baselines

Neural Rendering Methods. We compare against state-of-
the-art generic neural rendering methods, including IBRNet
[63], MVSNeRF [6], GeoNeRF [25], and SparseNeuS [37].
We fine-tune IBRNet and SparseNeuS using three input im-
ages for each scene for 20K and 10k iterations, respectively.
We only report non-fine-tuned results for MVSNeRF and
GeoNeRF because our attempts to fine-tune using 3 im-
ages did not succeed due to the inherent difficulty of the
task, consistent with [42, 37]. Additionally, we compare
our method with per-scene optimization based neural sur-
face reconstruction methods, NeuS [62] and VolSDF [75],

1Results for the 6 and 9 image scenarios are in supplementary.



Scan 21 24 34 37 38 40 82 106 110 114 118 Mean

IBRNetft [63] 3.40 3.54 3.13 6.78 3.32 4.80 3.48 2.59 3.93 1.23 2.74 3.54
MVSNeRF [6] 2.07 2.35 1.23 3.87 1.36 2.40 2.23 1.64 1.76 0.65 1.86 1.95
GeoNeRF [25] 2.13 3.04 1.00 3.93 1.20 2.46 2.32 1.82 2.21 0.79 1.67 2.06
SparseNeuSft [37] 5.26 4.93 5.59 7.04 5.18 7.38 4.78 4.58 5.61 4.55 5.61 5.51
NeuS [62] 4.52 3.33 3.03 4.77 1.87 4.35 1.89 4.18 5.46 1.09 2.40 3.36
VolSDF [75] 4.54 2.61 1.51 4.05 1.27 3.58 3.48 2.62 2.79 0.52 1.10 2.56

TransMVSNet [16] 3.39 3.61 1.55 4.24 1.95 3.06 3.45 2.94 3.81 1.67 2.34 2.92
[16] + Ours 1.91 2.08 0.98 2.94 1.21 1.90 2.70 1.56 1.99 1.09 1.35 1.80

UCSNet [9] 2.57 3.01 1.82 4.07 1.62 3.10 2.49 1.93 1.27 0.68 1.59 2.20
[9] + Ours 1.89 2.12 1.24 3.17 1.07 2.07 1.38 1.24 0.78 0.54 1.16 1.52

CasMVSNet[21] 2.40 3.07 1.23 3.27 1.35 2.76 1.82 1.72 1.30 0.70 1.44 1.92
[21] + Ours 1.96 1.99 0.74 2.58 0.95 1.47 1.37 1.32 0.54 0.51 1.03 1.32

Table 1. Quantitative results on 3D reconstruction for the DTU dataset. ”+ Ours” means that we use the cited MVS algorithm as the
probability volume builder and optimize using our method. The metric is the Chamfer distance (lower is better).

GT MVSNeRF [6] GeoNeRF [25] SparseNeuSft [37] NeuS [62] VolSDF [75] Ours

Figure 4. 3D reconstruction results of neural rendering methods on DTU. Our results appear more complete and accurate.

with VolSDF being the neural rendering model used to re-
fine MVS predictions in our method. For fair comparison
with MVS, we only maintain the foreground depth maps
generated by neural rendering techniques by applying stan-
dard geometric consistency checks and ground truth masks.
We merge the depth maps into a point cloud for evaluation
[72].
MVS Methods. To evaluate the generalizability of our
method, we incorporate it into three state-of-the-art coarse
to fine MVS models: CasMVSNet [21], UCSNet [9], and
TransMVSNet [16]. All MVS networks are pre-trained only
on DTU [1] with ground-truth depth as supervision and are
frozen during per-scene optimization.

4.3. Comparisons

3D Reconstruction. Our approach surpasses state-of-the-
art techniques in 3D reconstruction, as demonstrated by its

superior performance on both the DTU [1] and Blended-
MVS datasets [74] (Tab. 1 and Tab. 2). We show meshes
extracted from neural rendering method outputs in Fig. 4
and Fig. 7.

As shown in Fig. 4, VolSDF [75] and NeuS [62] show
suboptimal performance due to the weak photometric con-
straint in resolving the shape-radiance ambiguity. Fine-
tuning SparseNeuS [37] can lead to degenerate results, es-
pecially on the BlendedMVS dataset, so we only report its
performance on DTU. Fine-tuned IBRNet [63] performs
worse than methods using stronger MVS priors such as
MVSNeRF [6] and GeoNeRF [25]. Although MVSNeRF
and GeoNeRF demonstrate impressive performance, they
still fall short compared to our method (see Fig. 8).

As shown in Tab. 1 and Fig. 5, MVS models coupled
with our noise-tolerant optimization perform much better
than MVS models or VolSDF [75] alone. Thus, our method



TransMVSNet [16] [16]+Ours CasMVSNet [21] [21]+Ours UCSNet [9] [9]+Ours

Figure 5. Point cloud visualization on DTU. Results improve in all combinations of our method with different MVS models.

GT IBRNetft [63] MVSNeRF [6] GeoNeRF [25] NeuS [62] VolSDF [75] Ours OursIR

Figure 6. Our method appears to be more accurate in novel view synthesis on DTU.

Scene Doll Egg Head Angel Bull Robot Dog Bread Camera Mean

MVSNeRF [6] 5.3 -16.8 -17.7 38.2 13.8 11.9 -0.3 12.3 8.0 6.1
GeoNeRF [25] 29.3 21.4 11.5 37.6 -0.6 -15.1 13.7 21.4 11.5 14.5

CasMVSNet [21] 32.9 47.1 17.3 45.9 11.3 11.5 33.3 19.2 30.1 27.6
Ours 35.0 58.8 38.5 54.7 33.4 23.9 33.7 64.4 43.4 42.9

Table 2. BlendedMVS 3D reconstruction results. Since there are no units in BlendedMVS, we report relative improvement (in %) over
VolSDF [75] in terms of Chamfer distance.

can be treated as a general module that can be plugged into
other MVS methods and improve their performance.

With the introduction of MVS information, we enable
fast per-scene surface optimization. Our output surface re-
construction after 10-15 minutes of training (on an NVIDIA
A5000 GPU) is already better than the reconstruction of
the fully trained VolSDF [75] (typically 4-10 hours). More
specifically, on DTU, we obtain 39% better Chamfer dis-
tance over the fully-trained VolSDF after 15 minutes of op-
timization, with our final model achieving a 48% improve-
ment. Please refer to the supplementary for more details.
Novel View Synthesis. Our method excels at improving

geometry, yet also demonstrates competitive performance
in novel view synthesis (as shown in Tab. 3 and Tab. 4).
Fig. 6 and Fig. 7 illustrate improved view synthesis results
compared to other methods, suggesting our method’s capac-
ity to better disentangle geometry and texture. Also, adding
the image interpolation to the rendering process greatly en-
hances LPIPS, while slightly improving PSNR and SSIM,
by incorporating more details, as demonstrated in Tab. 3,
Tab. 4, and Fig. 6.



GT VolSDF [75] MVSNeRF [6] GeoNeRF [25] OursIR

Figure 7. 3D reconstruction and novel view synthesis comparisons on BlendedMVS. Our results appear more complete and accurate.

Method PSNR ↑ SSIM ↑ LPIPS ↓
IBRNetft [63] 15.71 0.759 0.295
MVSNeRF [6] 18.37 0.818 0.254
GeoNeRF [25] 19.45 0.837 0.220
NeuS [62] 15.34 0.753 0.313
VolSDF [75] 16.99 0.786 0.332
Ours 20.21 0.820 0.321
OursIR 20.58 0.855 0.157
Table 3. Novel view synthesis comparisons on DTU.

Method PSNR ↑ SSIM ↑ LPIPS ↓
MVSNeRF [6] 14.99 0.866 0.164
GeoNeRF [25] 17.09 0.886 0.139
VolSDF [75] 14.47 0.860 0.182
Ours 16.97 0.893 0.154
OursIR 17.26 0.906 0.105

Table 4. Novel view synthesis comparisons for BlendedMVS.

4.4. Ablation Study

We conduct ablation studies on the DTU dataset (Tab. 5).
First, we show that using only the soft consistency con-
straints without additional optimization still improves the

GT MVSNeRF [6] Ours

Figure 8. Depth map predictions on BlendedMVS using MVS-
NeRF [6] and our method. Improved depths are an illustration
of better geometry-appearance disentanglement.

reconstruction result. This supports our assumption that the
probability volumes contain more information than lossy
depth maps obtained from an argmax operation. Second,
to evaluate the effectiveness of our weight loss, we replace
our loss with the mean squared error (MSE) between the
reconstructed depth from VolSDF and the geo-consistency
filtered depth map obtained from MVS, similar to DS-NeRF
[14]. Third, replacing the probability volumes with the
depth maps as input, led to worse performance2. Finally,
we replace our weight loss with cross entropy loss, showing
that generalized cross entropy loss is indeed noise-tolerant.
Due to the trade-off between accuracy and completeness in

2We set the probability to be 1 only at the depth prediction location.



point cloud filtering, we use Chamfer distance as the metric,
following [76, 75]. See supplementary for more details.

Method Chamfer ↓
VolSDF [75] 2.558
CasMVSNet [21] 1.920
Ours 1.320

only soft consistency 1.711
MSE loss [14] 1.792
w/o probability volume 1.543
w/o GCE loss 1.534

Table 5. Ablation studies for the DTU dataset. All rows except the
first three are our model with different ablated components.

5. Conclusions
We presented S-VolSDF, a novel approach to recover un-

derlying geometry from sparse input views. Neural ren-
dering optimization mainly relies on dense input images so
that it can use trial-and-error mechanisms for reconstruc-
tion. Hence, its performance drops considerably with sparse
inputs. We regularized the weight distribution with a re-
fined probability volume obtained from MVS algorithms.
We further made our method noise-tolerant by applying a
generalized cross entropy loss. Our experiments show that
our model not only outperforms neural rendering models
but also significantly boosts the performance of MVS algo-
rithms.
Discussion and Limitations. While our method is capa-
ble of refining the probability volumes of the finer stages of
MVS, we notice diminishing improvement because there is
not much noise left in these stages. We include an ablation
study on this in the supplementary material. While neural
rendering models are able to deal with non-opaque, texture-
less, or glossy surfaces, our introduction of MVS reduces
this ability. This is an interesting area of research, particu-
larly in the context of few-view reconstruction.
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Appendix

In Appendix A we report additional results on 3D reconstructions, novel view synthesis, the implicit surface optimization
process, scalability, and limitations of our method. In Appendix B we describe in further detail our experiment settings. We
also include a supplementary video that compares the results of our method against various baselines.

A. Additional Results

GT MVSNeRF [6] GeoNeRF [25] SparseNeuSft [37] NeuS [62] VolSDF [75] Ours

Figure 9. Additional 3D reconstruction results of neural rendering methods on DTU. Our results appear more complete and accurate.

Additional Results on 3D Reconstructions. We showcase additional meshes extracted from neural rendering methods on
three-view 3D reconstruction for the DTU [1] and BlendedMVS [74] datasets (Fig. 9 and Fig. 10). We provide more point
cloud visualizations of the results when combining our method with different MVS models in Fig. 11 and Fig. 12.
Additional Results on Novel View Synthesis. In Fig. 13 and Fig. 10 we showcase additional qualitative comparisons
between our method and the baselines on novel view synthesis for the DTU and BlendedMVS datasets.
Optimization Process. In Fig. 14, we show an example of how the implicit surface evolves during the optimization process.
Our output surface reconstruction after 10-15 minutes of training (on an NVIDIA A5000 GPU) is already more accurate than
the reconstruction of a fully trained VolSDF [75] (typically 4-10 hours).
Scalability. We conduct an ablation study on the scalability of our method. Fig. 15 and Tab. 6 show that as the input
views become denser, the performance of our method, measured by surface reconstruction and novel view synthesis quality,
improves and is consistently better than CasMVSNet [21] and VolSDF [75]. Tab. 7 shows that, for three given views, the
reconstruction quality of our method remains the same when varying the input image resolution. CasMVSNet [21] and
VolSDF [75] perform worse when lowering the image resolution.

PSNR ↑ SSIM ↑ LPIPS ↓
3-views 6-views 9-views 3-views 6-views 9-views 3-views 6-views 9-views

VolSDF [75] 16.99 20.19 23.04 0.786 0.823 0.836 0.332 0.317 0.310
Ours 20.21 20.80 22.98 0.820 0.824 0.832 0.321 0.318 0.309
OursIR 20.58 21.48 23.01 0.855 0.872 0.895 0.157 0.145 0.128

Table 6. Quantitative results on novel view synthesis with 3-9 input views on DTU.

Ablation Study on Different MVS Models. In Tab. 8, we provide an extended ablation study across all three MVS models:
TransMVSNet [16], UCSNet [9], and CasMVSNet [21]. It validates the importance of using probability volumes, soft
consistency check, and generalized cross-entropy loss, consistent with our main text’s ablation study findings.
Additional Comparison with Related Work. In Tab. 9, we provide additional comparisons with regularization based
approach including DS-NeRF [14], which utilizes estimated depth from structure-from-motion [49], and MonoSDF [79],



Chamfer ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Resolution Low Mid High Low Mid High Low Mid High Low Mid High

CasMVSNet [21] 1.92 1.86 1.87 — — —
VolSDF [75] 2.56 2.80 2.70 16.99 15.52 15.75 0.786 0.771 0.790 0.332 0.352 0.346
Ours 1.32 1.33 1.33 20.21 19.63 19.97 0.820 0.822 0.833 0.321 0.330 0.330
OursIR — 20.58 19.98 20.30 0.855 0.853 0.858 0.157 0.178 0.186
Table 7. Quantitative results with different image resolutions: low (576×768), mid (864×1152), and high (1152×1536), on DTU.

Chamfer (mm)↓ TransMVSNet [16] UCSNet [9] CasMVSNet [21]

MVS Model 2.915 2.201 1.920
MVS + Ours 1.798 1.519 1.320
only soft consistency 2.627 1.901 1.711
MSE loss 2.233 2.019 1.792
w/o prob. volume 2.692 1.791 1.543
w/o GCE loss 2.525 1.702 1.534

Table 8. Ablation study on different MVS models, on DTU.

which [60] utilizes monocular depth estimation. Because their depth priors are either sparse or often not accurate enough,
providing only approximated structures or shapes, their results are worse than ours.

MonoSDF [79] DS-NeRF [14] Ours

Chamfer (mm)↓ 2.141 1.792 1.32
Table 9. Additional comparison with related work, on DTU.

Limitations. While our method is also capable of refining the probability volumes of the finer stages of MVS, we notice that
the benefits diminsh since there is not as much uncertainty in later stages. Our method applied to stages 1, 1,2, and 1,2,3 of
MVS resulted in chamfer distances of 1.320, 1.312, and 1.309, respectively.
Evaluation on Objects with Glossy Material. Although our method may not work well for texture-less or glossy surfaces
due to the introduction of MVS. Surprisingly, as shown in Fig. 16 and Tab. 10, our method still surpasses VolSDF in recon-
structing complex glossy surfaces. We suspect that our noise-tolerant optimization and MVS models operating on features
instead of pixels make our pipeline more robust to specular reflections that violate multi-view consistency. Further research
on this problem would be quite interesting.

PSNR ↑ SSIM ↑ LPIPS ↓ MAE◦ ↓
VolSDF [75] 20.71 0.943 0.126 32.96
Ours 20.97 0.944 0.124 29.26
OursIR 21.50 0.944 0.081

Table 10. Results on Shiny Dataset (6 scenes, from Ref-NeRF [58]). Mean angular error (MAE) is used in evaluating normal vectors.

B. Experimental Settings

Hyperparameters. We observe a strong over-fitting tendency for VolSDF [75] with sparse input views. This over-fitting is
due to the usage of the view direction to explain object color in different views, and therefore we set the positional encoding
level of view direction to 1 for VolSDF and our method. We use the same loss functions as VolSDF [75], along with our
weight loss Lweight and a sparsity regularization Lsparse. Both Lweight and Lsparse are weighted with a value of 1.0. The ϵ
in Lsparse is 0.001. Moreover, we do not apply weight loss for rays with weak MVS supervision (i.e. the sum of consistency-
weighted probability along the ray is less than 0.001). We found that our weight loss is highly tolerant to parameter choices.
We used grid search to find the best q but determined that all q in [0.2, 0.8] yield satisfactory results (overall error: 1.32-1.44).
We set q = 0.5 in all our experiments.



Rendering Pipeline. In testing, our method utilizes image-based rendering. We merge source pixels from multiple source
images for a target pixel. More specifically, we first render depth maps for all source views. Then, for a target view, we
render its depth map and project its pixels back to the source views and we apply consistency check on the back-projected
depths with the source depth to determine its visibility on source views and retrieve the interpolated source pixel colors. The
blending weights for pixel colors from different source views are based on the cosine between the target and source pixels’
view directions, computed using softmax with a temperature of 20. In areas where there are no valid pixels to blend (i.e., the
geometric consistency check fails for all source views), we use the rendered colors. Finally, a 4-level Laplacian pyramid [4]
is used to smoothly blend source pixels.
MVS Models. In our experiments, we compare our proposed method against TransMVSNet [16], CasMVSNet [21], and
UCSNet [9]. We employ the official implementation of each method provided by the authors and use their published pre-
trained models. To ensure a fair comparison, the weights for all three models we used were pre-trained exclusively on the
DTU dataset [1] with ground-truth depth as supervision.
Denser Plane Sweep. The main difference in our training scheme, compared to MVS models, is the usage of a denser plane
sweep, which we also implemented for all baseline MVS models, reducing their overall error by 33% on average.
The Choice of CasMVSNet and VolSDF. In our method, we select CasMVSNet [21] as the MVS model and VolSDF
[75] as the neural rendering model. We opt for CasMVSNet as it is the representative coarse-to-fine MVS model, and we
find no substantial improvement in other recent MVS models when compared to CasMVSNet for sparse-input scenarios,
as demonstrated in the main text. We use VolSDF, which is a state-of-the-art implicit surface reconstruction method, as
demonstrated in [37, 75]. Nevertheless, other neural rendering models like NeRF [41] and NeuS [62] can also be used in our
method but the differences in the overall performance are a subject for future work.
Metrics. The Chamfer distance is the average of the Accuracy (the distance from the reconstructed point cloud to reference)
and Completeness (the distance from reference to reconstruction). The use of stronger geometric/photometric filtering can
lead to better accuracy, but at the expense of completeness, and vice-versa. Given this trade-off between accuracy and
completeness in point cloud filtering, we choose to employ the Chamfer distance metric as our primary measure in the main
text, following [76, 75]. We present the Accuracy-Completeness trade-off in Fig. 17. The results reveal that we consistently
attain roughly 30% higher completeness than the baseline across all accuracy levels.
Datasets. For the DTU dataset [1], we combine the scans used in [76, 75, 77] with the ones used in conventional MVS
settings [16, 72], and remove the training scans of common MVS models. Specifically, we use scans 21, 24, 34, 37, 38, 40,
82, 106, 110, 114, and 118 for our evaluation. For evaluation on DTU, we adhere to the standard protocol in [1, 75, 42].

The BlendedMVS dataset [74] lacks a standard evaluation protocol for sparse-view scenarios. Therefore, we adopted a
similar evaluation protocol to DTU; select three sparse input views with a relatively wide baseline and evaluate using object
masks. Similar to DTU, only scene objects are used in the evaluation. This is simply performed by removing the plane from
the ground truth point cloud. The sparse view indexes we adopt are: Doll: 9, 10, 55; Egg: 9, 52, 59; Head: 22, 26, 27; Angel:
11, 39, 53; Bull: 32, 42, 47; Robot: 28, 34, 57; Dog: 2, 5, 25; Bread: 16, 21, 33; Camera: 10, 16, 60. For reference, we offer
quantitative comparisons without using object masks or removing the plane in Tab. 11.

Scene Doll Egg Head Angel Bull Robot Dog Bread Camera Mean

MVSNeRF [6] 22.3 -9.7 -30.8 38.1 4.1 24.8 -2.7 2.7 8.6 6.4
GeoNeRF [25] 48.8 37.9 3.6 37.6 -7.8 30.3 29.4 19.1 9.2 23.1

CasMVSNet [21] 46.2 47.7 -0.2 45.8 -6.6 41.5 41.3 8.9 31.8 28.5
Ours 47.8 62.0 23.3 54.7 20.6 49.7 48.0 59.9 49.3 46.1

Table 11. BlendedMVS 3D reconstruction results without applying object masks on the reconstruction results. Since there are no units in
BlendedMVS, we report relative improvement (in %) over VolSDF [75] in terms of Chamfer distance.

In the context of novel view synthesis, it is noteworthy that while the BlendedMVS dataset has 360-degree views of
an object, the sparse inputs partially cover the frontal area. Consequently, conducting novel view synthesis on all images,
including the back views, is unreasonable. Therefore, we choose to evaluate the closest 12 views in each scene. The indexes
for evaluation are: Doll: 0, 13, 19, 20, 22, 31, 33, 35, 36, 37, 58, 61; Egg: 1, 8, 12, 14, 23, 27, 37, 39, 49, 65, 68, 71; Head:
0, 1, 6, 7, 11, 13, 15, 16, 25, 28, 31, 33; Angel: 0, 2, 9, 23, 29, 30, 46, 48, 50, 59, 68, 71; Bull: 0, 13, 16, 17, 20, 24, 26, 41,
44, 55, 57, 58; Robot: 1, 2, 10, 13, 22, 25, 40, 55, 73, 75, 80, 88; Dog: 0, 6, 7, 8, 10, 13, 14, 17, 22, 23, 27, 29; Bread: 8, 10,
17, 18, 24, 25, 26, 27, 28, 30, 43, 47; Camera: 18, 25, 59, 65, 68, 83, 89, 92, 94, 118, 133, 136.
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Figure 10. Additional 3D reconstruction and novel view synthesis comparisons on BlendedMVS. Our results appear more complete and
accurate.
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Figure 11. Additional point cloud visualization on DTU. Results improve in all combinations of our method with different MVS models.
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Figure 12. Point cloud visualization on BlendedMVS when combining our method with CasMVSNet [21].
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Figure 13. Additional novel view synthesis comparison on DTU. Our method leads to more accurate novel views.

Figure 14. An example of the implicit surface during the optimization process. We show that, with only 10-15 minutes of training, our
output surface reconstruction is already reasonably good to guide finer stage of MVS, compared to the sub-optimal results of VolSDF [75].

3 4 5 6 7 8 9
Number of Input Views

1.0

1.5

2.0

2.5

C
ha

m
fe

r (
m

m
)

CasMVSNet
VolSDF
Ours

Figure 15. Quantitative results on 3D reconstruction with 3-9 input views on DTU.
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Figure 16. Depth map predictions on Shiny Dataset.
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Figure 17. Completeness error and Accuracy error trade-off.


