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Abstract

Video Instance Segmentation (VIS) aims at segment-
ing and categorizing objects in videos from a closed set
of training categories, lacking the generalization ability
to handle novel categories in real-world videos. To ad-
dress this limitation, we make the following three con-
tributions. First, we introduce the novel task of Open-
Vocabulary Video Instance Segmentation, which aims to si-
multaneously segment, track, and classify objects in videos
from open-set categories, including novel categories unseen
during training. Second, to benchmark Open-Vocabulary
VIS, we collect a Large-Vocabulary Video Instance Segmen-
tation dataset (LV-VIS), that contains well-annotated ob-
jects from 1,196 diverse categories, significantly surpass-
ing the category size of existing datasets by more than
one order of magnitude. Third, we propose an efficient
Memory-Induced Transformer architecture, OV2Seg, to first
achieve Open-Vocabulary VIS in an end-to-end manner
with near real-time inference speed. Extensive experi-
ments on LV-VIS and four existing VIS datasets demonstrate
the strong zero-shot generalization ability of OV2Seg on
novel categories. The dataset and code are released here
https://github.com/haochenheheda/LVVIS.

1. Introduction
Despite impressive efforts, Video Instance Segmenta-

tion (VIS) [50, 12, 46] is fundamentally constrained to seg-
ment and classify objects from a closed set of training cate-
gories, thus limiting the capacity to generalize to novel con-
cepts, see Fig. 1 (a). In real-world scenarios, this closed-
vocabulary paradigm lacks practical value, as the model
usually encounters objects from novel categories unseen in
the training stage. In contrast, recent works Open-World
Tracking (OWTB)[31], UVO [45], and BURST [4] aim

*Equal contribution.
†Corresponding author.

(a) Traditional Video Instance Segmentation

(c) Open-Vocabulary Video Instance Segmentation

(b) Open-World Tracking

Figure 1. (a) Traditional VIS fails to tackle objects from novel
categories (unseen during training, e.g. walrus in the figure); (b)
Open-World Tracking aims to segment and track all objects in a
class-agnostic manner, while lacking the ability for object cate-
gorization in videos; (c) Open-Vocabulary VIS aims to simulta-
neously segment, track, and classify objects for both training cate-
gories, e.g., person, and novel categories, e.g., walrus in the figure.
Different colors in the figures indicate different object instances.

to segment and track all visible objects, see Fig. 1 (b).
However, those works still have no capacity to classify
the objects from open-set categories, which is significant
for video-level tasks, such as video captioning and action
recognition. To enhance the practicality of VIS, and make
VIS more suited to downstream video-level tasks, we pro-
pose Open-Vocabulary Video Instance Segmentation to si-
multaneously classify, track, and segment arbitrary objects
from an open set of categories, as illustrated in Fig. 1 (c).

To properly benchmark the Open-Vocabulary VIS, a
video dataset with large and diverse object categories is
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Dataset UVO [45]YT19 [50]YT21 [50]OVIS [39]BURST [4]LV-VIS

Videos 11228 2883 3859 901 2914 4828
Instances 104898 4883 8171 5223 16089 25588

Masks 593k 131k 232k 296k 600k 544k
Mask/Frame 12.3 1.7 2.0 4.7 3.1 4.9
Object/Video 9.3 1.6 2.1 5.8 5.5 5.3

Categories 80∗ 40 40 25 482 1196

Table 1. Key statistics comparison between our LV-VIS dataset
and published video segmentation datasets. ∗ indicates the UVO
only provides category labels for objects from 80 common cate-
gories defined in MS-COCO. Our LV-VIS dataset contains a sig-
nificantly larger category set than the existing datasets.

necessary. However, existing datasets Youtube-VIS [50],
OVIS [39], and UVO [45] are not sufficient as they con-
tain only a few dozen of categories, see Tab.1. BURST [4]
contains a relevant larger category set. Still, 81.7% objects
in BURST are from the common categories in MS-COCO,
shown in Fig. 2 (b), and thus not diverse enough for the
open-vocabulary evaluation of novel categories.

In this work, we collect a Large-Vocabulary Video In-
stance Segmentation dataset (LV-VIS). LV-VIS contains
4,828 videos and over 544k instance masks from 1,196 cat-
egories, which is significantly larger than all existing video
segmentation datasets. Notably, as illustrated in Fig. 2 (b), a
large percentage of annotated objects in LV-VIS are distinct
from the categories in the commonly used datasets such as
MS-COCO [29] and LVIS [20], making it well suited for
evaluating the generalization ability on novel categories of
Open-Vocabulary VIS methods, and also a valuable supple-
ment to the existing datasets.

Architecturally, a straightforward approach for Open-
Vocabulary VIS is to associate per-frame results of open-
vocabulary detectors [57, 55] with open-world trackers [31].
However, this propose-reduce-association approach desires
intricate hand-crafted modules such as non-maximum sup-
pression, and neglects video-level features for stable track-
ing and open-vocabulary classification in videos, leading to
sub-optimal performance and inference speed.

In this work, we propose the first end-to-end Open-
Vocabulary Video Instance Segmentation model, OV2Seg,
which simplifies the intricate propose-reduce-association
paradigm and attains long-term awareness with a Memory-
Induced Transformer. Specifically, it starts by proposing
and segmenting all objects with a Universal Object Pro-
posal module, then a set of Memory Queries are introduced
to incrementally encode object features through time, en-
abling long-term awareness for efficiently tracking all ob-
jects through time. Lastly, given arbitrary category names
as input, a language transformer encoder is adopted to clas-
sify the tracked objects based on the Memory Queries. The
Memory Queries incrementally aggregate the object fea-
tures from different frames, thus leading to robust video ob-
ject classification. To our knowledge, OV2Seg is the first
end-to-end model with the capability of segmenting, track-
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Figure 2. Figure (a) and (b) show the number of categories and ob-
ject instances disjointed with a certain category set C, respectively.
CCOCO, CLVIS∗, and CLVIS represent all categories in MS-COCO,
frequent/common categories in LVIS, and all categories in LVIS.
A larger percentage of categories and objects in LV-VIS are dis-
jointed with the categories in commonly used datasets.

ing, and classifying objects in videos from arbitrary open-
set categories with near real-time inference speed.

We evaluate OV2Seg on LV-VIS as well as four existing
video segmentation datasets: Youtube-VIS2021, Youtube-
VIS2019, OVIS, and BURST. Without finetuning on down-
stream video datasets, OV2Seg matches the performance of
several fully-supervised competitors [50, 10] that have been
trained on target video datasets, while exhibiting strong
zero-shot generalization ability for novel categories unseen
during the training phase.

To sum up, our main contributions are:
(i) we introduce Open-Vocabulary VIS, which simulta-

neously segments, tracks, and classifies objects of arbitrary
open-set categories in videos, generalizing the traditional
VIS for closed-set training categories;

(ii) we collect a large-scale, pixel-level annotated video
dataset LV-VIS, with a significantly larger vocabulary set
than the existing video datasets, thus being a suitable
testbed for Open-Vocabulary VIS;

(iii) we propose the first end-to-end Open-Vocabulary
VIS model, OV2Seg, that can segment, track, and clas-
sify objects from novel categories with a Memory-Induced
Transformer architecture.

2. Related Work
Video Instance Segmentation aims to segment, track and
classify object instances from pre-defined training cate-
gories, such as people, cars, and dogs. Existing meth-
ods could be divided into frame-based methods [7, 30, 28,
52, 22, 51, 21] and clip-based methods [46, 5, 26, 47, 12,
53, 24]. Frame-based methods, such as MaskTrack R-
CNN [50], propose to include an additional tracking head to
the image instance segmentation model Mask R-CNN [22]
for video instance segmentation. The clip-based methods,
such as IFS [26], SeqFormer [47] and Mask2Former [12],
take the whole video or a clip of video as input and simul-
taneously output the masks and classification scores for all
the input frames. All the aforementioned models necessi-
tate training on a substantial dataset of videos that include



densely annotated objects from the training categories. In
contrast, our proposed OV2Seg is trained on image datasets,
yet it can be directly applied to videos during testing and has
the capability to tackle objects from novel categories.

Open-Vocabulary Object Detection aims to detect objects
in images beyond a close vocabulary set, which is proposed
in ZSD [6]. Inspired by CLIP [40], ViLD [19] and ZSD-
YOLO [48] propose to explicitly distill knowledge from
the pre-trained CLIP visual embedding into the backbone
of Faster RCNN. Detic [57] and PromptDet [18] strive to
expand the vocabulary of the detector by self-training on
additional images. Those methods inherit the standard ar-
chitecture of a two-stage detector, which follows a com-
plex propose-and-reduce pipeline. OV-DETR [55] made the
first attempt to model an end-to-end open vocabulary de-
tector with an architecture like DETR [11], while still lim-
ited in the inference speed caused by class-dependent object
queries.

Open World Tracking. Multiple Object Tracking [56, 42,
9] aims to track multiple objects through time. OWTB [31]
proposed Open World Tracking to segment and track all the
objects in videos. OWTB achieves state-of-the-art perfor-
mance on several multi-object tracking datasets. Recent
work UVO [45] focuses on class-agnostic object segmen-
tation and tracking in videos, neglecting the object classifi-
cation performance during evaluation. Methods adopted in
BURST [4], such as STCN [14] and MaskTrack [50], have
no ability to classify objects from novel categories. There-
fore BURST mainly follows the evaluation protocols of
class-agnostic Multiple Object Tracking, while only mea-
suring category-wise evaluation for the 80 training cate-
gories in MS-COCO. On the contrary, we introduce Open-
Vocabulary VIS to entail open-vocabulary object catego-
rization along with segmentation and tracking in videos. We
establish several baseline models for Open-Vocabulary VIS
by integrating open-world tracking methods [31] with open-
vocabulary detectors [57, 55] to experimentally demon-
strate the effectiveness of our proposed OV2Seg.

3. Setting of Open-Vcabulary VIS

Given a training dataset Dtrain containing pixel-level
annotations for a set of training categories Ctrain, traditional
VIS aims to train a model fθ(·) which could be tested on a
dataset Dtest = {Vi}Ni=1, where Vi ∈ RTi×Hi×Wi×3 refers
to a video clip with shape of (Hi,Wi) and Ti frames. fθ(·)
is supposed to predict a sequence of segmentation mask
{mt}Ti

t=1 ∈ RTi×Hi×Wi and a category label c ∈ Ctrain
for each object in videos from the training categories, while
the objects from novel categories Cnovel are ignored.

In contrast, Open-Vocabulary VIS aims to train a model
fθ(·) on Dtrain, and then test on Dtest for both training
categories Ctrain and novel categories Cnovel. Specifically,

given a test video clip Vi ∈ RTi×Hi×Wi×3 during infer-
ence, the trained model fθ(·) is supposed to predict the seg-
mentation mask sequence {mt}Ti

t=1 ∈ RTi×Hi×Wi and the
category label c ∈ (Ctrain ∪ Cnovel) for each object p in Vi:

{{m1,m2, ...,mTi
}, c}Pp = fθ(Vi), (1)

where P is the total number of objects in video Vi, class
label c belongs to the union of training and novel categories,
and mt ∈ RHi×Wi is the segmentation mask for each frame
t. In the experiments, we term the training categories as
base categories, while the categories disjointed with base
categories as novel categories.

Evaluation Metrics. We adopt the mean average precision
(mAP) metric for both base categories and novel categories.
The mAP in videos is defined in Youtube-VIS [50]. Specif-
ically, we first compute the average precision (AP) of each
object category among all the test videos, defined as the
area under the precision-recall curve plotting with the cat-
egory confidence score. The value of AP is measured un-
der 10 intersection-over-union (IoU) thresholds from 50%
to 95% at step 5%, following the standard setting in MS-
COCO [29]. The IoU in videos is defined in Youtube-
VIS [50], which computes the spatial-temporal consistency
of predicted and ground truth segmentation masks. Finally,
the mean average precision (mAP) is computed by averag-
ing the AP over the base category set and novel category
set, termed as mAPb and mAPn.

4. LV-VIS Dataset
To properly evaluate the Open-Vocabulary VIS, we es-

tablish a new dataset named LV-VIS with a large vocabulary
set. This section outlines the data collection and annotation
procedure, and provides a comparison of key dataset statis-
tics with existing video-level datasets.

Data Collection and Manual Annotation. We start with
collecting 7,569 video clips through the Internet by query-
ing 1,621 well-defined category names. Then we manually
remove inappropriate video clips such as videos with sensi-
tive personal information, and videos with too many objects
to annotate. Then we keep 4,828 videos in the LV-VIS. We
maintain the original resolution of the videos, varying from
480p to 1080p. All the videos are pre-processed to a length
between 2 and 10 seconds, and we extract 5 frames per sec-
ond for all the processed videos. We thoroughly annotate
all clearly visible objects in the selected videos. Each anno-
tated object is assigned a category label, instance identity,
and mask sequence in polygon format. Then we remove the
uncovered categories, merge categories with synonyms, and
then retain 1,196 well-defined object categories. The details
are shown in Supplemental Materials Sec. A. We provide
the visualization of annotated video clips in Supplemental
Materials Sec. B.
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Figure 3. Overview of OV2Seg. (a) Universal Object Proposal: Input with frame It, a transformer encoder ΦENC is adopted to extract
multi-scale features F . N class-independent queries QI

t ∈ RN×d are fed to a transformer decoder ΦDEC to generate object-centric queries
Qt. Then Qt is utilized to produce the segmentation mask m ∈ RN×H×W and object score sobj ∈ RN×1 with a mask head Hm and
an object score head Ho, respectively. (b) Memory-Induced Tracking: A set of Memory Queries QM

t−1 ∈ RN×d is proposed to associate
Qt with Hungarian Algorithm. QM

t−1 is updated by a function φM to dynamically aggregate the associated object-centric queries Q∗
t

through time and obtain QM
t for the tracking of the next frame. (c) Open-Vocabulary Object Classification: A class head Hc is applied on

QM
t to generate the class embedding ecls ∈ RN×d. ecls is then dot-producted with the text embedding etext generated by a text encoder

ΦTEXT ∈ R|C|×d to obtain the classification score scls ∈ RN×|C| for a open set of categories C.

Dataset Statistics. The LV-VIS dataset comprises 4,828
real-world videos with a total length of 6.2 hours and
contains 544,451 pixel-level annotated segmentation masks
from 1,196 categories. The categories in LV-VIS are split
into 641 base categories (seen during training) inherited
from frequent and common categories in LVIS [20], and
555 novel categories disjoint with the base categories. As
shown in Tab. 1, the vocabulary size of LV-VIS is signif-
icantly larger than Youtube-VIS (40 categories), OVIS (25
categories), UVO (80 categories), and BURST (482 cate-
gories) respectively. Moreover, 93.5%/46.4% of the cate-
gories in LV-VIS are disjoint from categories in MS-COCO
and frequent/common categories in LVIS, whereas the cor-
responding values for BURST and Youtube-VIS are much
lower at 86.7%/11.8% and 50%/15%, respectively. In the
meantime, 33.3% objects in LV-VIS are from novel cate-
gories, while the BURST only contains 2.2% objects from
novel categories, see Fig. 2. That means LV-VIS con-
tains a greater number of novel objects not shown in com-
monly used datasets such as MS-COCO and LVIS, making
it a valuable supplement to the existing datasets and thus
more suitable for the category-wise evaluation of novel cat-
egories. Due to the space limitation, more extensive dataset
statistics are shown in Supplementary Material Sec. A.

Dataset Split. LV-VIS is split into a train set, a validation
set, and a test set, which contains 3083, 837, and 908 videos
respectively. We will publicly release the videos and anno-
tations of the train set and validation set, and host an online
evaluation server to benchmark related efforts with the chal-
lenging test set.

5. Architecture of OV2Seg
After constructing the dataset, we here present an end-to-

end Open-Vocabulary VIS architecture, OV2Seg, as shown

in Fig. 3. Generally speaking, the proposed architecture
consists of three modules, (i) a Universal Object Proposal
module, proposes and segments objects with a set of class-
independent object queries; (ii) a Memory-Induced Track-
ing module, tracks the object proposals from consecutive
frames with a set of Memory Queries, which incremen-
tally aggregate object features through time to establish
long-term awareness; (iii) an Open-Vocabulary Classifica-
tion module, classifies the tracked objects with the text em-
beddings computed from a pre-trained text encoder given
arbitrary category names as input. We detail the architec-
ture in the following sections.

5.1. Universal Object Proposal

We feed each input frame It into a transformer en-
coder ΦENC, consisting of multiple deformable attention
layers [58], to get the multi-scale feature maps F :

F = {f1, . . . , f l} = ΦENC(It) (2)

where f l refers to the feature map at l-th level. To pro-
pose objects from all categories, one state-of-the-art image-
level open-vocabulary detector OV-DETR [55] uses class-
dependent object queries conditioned on the given category
names. In this way, each category is processed by a set of
separate object queries, leading to an infeasible inference
speed on real-world videos.

In this work, we experimentally prove that a set of class-
independent object queries could efficiently propose objects
from all categories, avoiding separate processes for each
category. Therefore, we adopt N class-independent learn-
able object queries QI ∈ RN×d to obtain the class-agnostic
object proposals. Specifically, the object queries QI and
the multi-scale feature maps F are fed into a transformer
decoder ΦDEC, where the QI iteratively attend to each layer



of F , generating object-centric queries Q:

Q = ΦDEC(F , QI) ∈ RN×d. (3)

Then the output object-centric queries Q from the trans-
former decoder are passed into a mask generation head Hm

and an object score head Ho:

m, sobj = Hm(Q)⊛ f−1,Ho(Q), (4)

where f−1 is the last layer of F . Hm(·) consists of 3 mul-
tilayer perceptron (MLP) layers and outputs the dynamic
convolutional kernel for each object query. The dynamic
convolution kernels are then convolved with f−1 to obtain
the per-frame segmentation masks m ∈ RN×H×W . Ho(·)
also consists of 3 MLP layers and outputs binary scores
sobj ∈ RN×1, indicating if a query represents an object.

5.2. Memory-Induced Tracking

The object-centric queries Q in consecutive frames could
be associated with the Hungarian algorithm to generate the
object tracklets in videos, inspired by MinVIS [25]. How-
ever, directly associating objects of consecutive frames ne-
glects long-term dependencies in videos. As such, this ap-
proach fails in complex cases such as objects disappearing
and reappearing in the videos.

To this end, we propose to maintain a set of Memory
Queries QM ∈ RN×d to obtain long-term dependency, see
Fig. 3 (b). Specifically, we compute the inner-product simi-
larity between Memory Queries QM

t−1 of the last frame and
the object-centric queries Qt. Each object-centric query is
associated with one of the Memory Queries by the Hun-
garian algorithm upon the similarity matrix. The QM

0 is
initialized by the Q0 of the first frame. Afterward, it is
momentum updated through time with an update function
φM (·, ·), thereby gradually encoding the video-level object
features to tackle objects with disappear or serious occlu-
sion. Specifically, φM (·, ·) is defined as:

QM
t = φM (QM

t−1, Q
∗
t ) (5)

= α · sobj ·Q∗
t + (1− α · sobj) ·QM

t−1, (6)

where α is a factor to control the update ratio and sobj is
the object score for each query. The Q∗

t is the associated
object-centric queries after Hungarian algorithm. If an ob-
ject is seriously occluded or disappears during a video, the
corresponding object score sobj tends to be low and there-
fore constrains the memory update process to keep the ob-
ject memory features unchanged. By maintaining a small
set of Memory Queries, OV2Seg efficiently tracks all the
segmented objects through time with long-term awareness,
and enhances the following object classification with incre-
mental video object features.

5.3. Open-Vocabulary Classification

We feed the vocabulary set into a frozen pretrained CLIP
Text Encoder ΦTEXT to generate the text embedding as the
classifiers. For example, a ‘dog’ classifier can be:

etext = ΦTEXT(“this is a photo of [dog]”), (7)

in which the vocabularies could be replaced by arbitrary
novel categories during inference.

The class embeddings ecls ∈ RN×d for the tracked ob-
jects are obtained by ecls = Hc(Q

M
t ), where Hc(·) indi-

cates the class head consisting three MLP layers. Then we
can obtain the classification score scls for each object track-
let by computing the cosine similarity between class em-
bedding ecls ∈ RN×d and text embedding etext ∈ R|C|×d:

scls
i,j = σ(cos(ecls

i , etext
j )/ϵ), (8)

where i ∈ [1, N ] and j ∈ [1, |C|] are indexes of object query
and text embedding. σ is the sigmoid function. cos(·, ·)
refers to the cosine similarity, and ϵ is the temperature
hyper-parameter. The memory queries QM

t aggregate the
object features from all frames weighted by the object score,
the object features with low confidence are constrained thus
leading to robust video object classification.

5.4. Training and Loss

As there is no learnable parameter in the Memory-
Induced Tracking, we can exclude the tracking module and
train OV2Seg on image-level datasets, such as LVIS. This
reduces the training resource requirements of large-scale
video datasets and improves training efficiency. We adopt a
similar training loss in DETR [11] for set prediction:

Lmatch(ŷ, y) =λobjLobj(ŝ
obj, sobj) + λclsLcls(ŝ

cls, scls)

+ λmaskLmask(m̂,m).
(9)

We use the binary cross-entropy loss for classification
loss Lcls and object score loss Lobj. The mask loss Lmask is
the sum of dice loss [35] and binary focal loss. The ground
truth ŷ consists of an object label ŝobj, a class label ŝcls and
segmentation mask m̂ for each object. We assign the ground
truth set ŷ to the prediction set y by minimizing the total loss
function Lmatch.

6. Experiments
We first introduce the datasets and evaluation metrics.

Then we describe the method implementations. Lastly, we
present a thorough analysis of the experimental results.

6.1. Datasets and Metrics

We train OV2Seg on the union of common and fre-
quent categories in LVIS [20], and evaluate the perfor-



mance on multiple video instance segmentation datasets, in-
cluding our collected LV-VIS dataset, as well as Youtube-
VIS2019 [50], Youtube-VIS2021 [50], OVIS [39], and
BURST [4]. Notably, we do not finetune OV2Seg on any
videos from the target datasets.
LVIS is a widely used image open-vocabulary detection
dataset, which contains a large set of 1,203 categories. Fol-
lowing ViLD [19], we take frequent and common categories
as the base categories and all categories disjointed with base
categories as novel categories.
Youtube-VIS is the most widely used video instance seg-
mentation dataset, which contains 40 categories for both
YVIS19 and YVIS21 versions. We divide the categories
in YVIS19 and YVIS21 into the base and novel categories
following the partitions in LVIS.
BURST is a recently published video dataset extending
TAO [15]. BURST contains 425 base categories and 57
novel categories following the partitions in LVIS.
OVIS has 25 object categories, with only one category not
in LVIS base categories; therefore, we only report the per-
formance of the overall categories for OVIS.
Metrics. We report the mean Average Precision mAP for
overall categories, and further break it down to mAPb for
base categories and mAPn for novel categories. For the
evaluation of LVIS [20], we report the mAP for overall cat-
egories and mAPn for novel (rare) categories.

6.2. Implementation Details

Baseline Models. We build several baseline models by
combining off-the-shelf two-stage open-vocabulary detec-
tion methods with the open-world tracking methods fol-
lowing the propose-reduce-association scheme. Specifi-
cally, we generate 300 object proposals for each frame by
the open-vocabulary detectors [57, 17]. Then we feed the
proposals to SORT [8] and OWTB [31] to achieve object
tracking. The SORT is a classic multiple object track-
ing method, and the OWTB is one of the state-of-the-art
open-world tracking methods, that combines the IOU ma-
trix and ROI feature similarity to estimate proposal similar-
ity across frames. For efficient evaluation, we remove the
optical flow in OWTB. In this way, we build four baseline
models, namely, Detic-SORT, Detic-OWTB, Detpro-SORT,
and Detpro-OWTB, to compare with our proposed OV2Seg.
We further design a two-stage method by propagating the
segmentation masks of Detic with a state-of-the-art semi-
supervised video object segmentation method XMem [13].

OV2Seg. We experiment with both ResNet50 [23] and
SwinB [32] as backbones. We adopt 6 multi-scale de-
formable attention layers [58] as the transformer encoder
and 6 masked-attention layers [12] as the transformer de-
coder. We use the pretrained text encoder extracted from the
CLIP ViT-32 model to generate the open-vocabulary classi-
fiers. Parameters in the text encoder are frozen during the

training. The temperature hyper-parameter ϵ is set to 50.
We adopt the prompt learning in Detpro [17] to replace the
hand-crafted prompt in the text encoder module. The num-
ber of object queries is set to 100 for all experiments. We
set λobj=2, λcls=2, λmask=5 as the weight of each loss. The
memory update factor α is set to 0.7.

Training Details. We train OV2Seg on LVIS for 30 epochs
with a batch size of 8. We adopt AdamW [33] optimizer.
The base learning rate is set to 1e-4 and then reduced by
a factor of 10 at 0.9 and 0.95 fractions of the total number
of training steps. The learning rate of backbone parameters
is factorized by 0.1. We use the large-scale jittering [16]
with a random scale sampled from the range 0.1 to 2.0. For
efficient training, we only sample 50 categories to compute
the binary cross-entropy loss in one iteration. The training
is conducted on 4 A100 GPUS for around 36 hours and all
the inferences are conducted on a single A100 GPU.

6.3. Results

In this section, we first report the result comparison on
the LV-VIS dataset between OV2Seg and a set of strong
baseline models. Then we conduct extensive ablation stud-
ies to illustrate the effectiveness of the main modules in
OV2Seg. Finally, we report the zero-shot generalization
performance of OV2Seg on existing video instance seg-
mentation datasets: Youtube-VIS2019, Youtube-VIS2021,
BURST, and OVIS.

6.3.1 Results on LV-VIS dataset

We compare our OV2Seg with the propose-reduce-
association baseline models on the LV-VIS dataset in Tab. 2.
OV2Seg with ResNet-50 backbone achieves 11.9 mAPn

and 8.9 mAPn on LV-VIS validation set and test set, out-
performing the DetPro-XMem by 6.5 and 5.3. As shown in
Tab. 3, OV2Seg matches the performance of Detpro [17]
and Detic [57] on image datasets, while outperforming
Detpro-OWTB and Detic-OWTB by a large margin on
video dataset LV-VIS. The comparison outlines the effec-
tiveness of OV2Seg on video-level tasks. This is mainly
because the several-stage baseline models require complex
hand-craft association rules and classify the objects by av-
eraging the per-frame classification scores, ignoring the
video-level correspondence.

In contrast, OV2Seg associates the object queries with
the Memory Queries, which encodes the long-term object
features for robust tracking and open-vocabulary classifi-
cation in videos. Notably, OV2Seg outperforms Detic-
XMem by a relative 120% improvement on novel categories
of the LV-VIS validation set. This is significantly higher
than the 28.4% improvement on base categories. As such,
we conclude that OV2Seg has generalization abilities on
novel categories in real-world videos. As shown in Tab. 2,



Method Backbone Val Test fps
AP APb APn AP APb APn

DetPro [17]-SORT [8] R50 6.4 10.3 3.5 5.8 10.8 2.1 3.1
Detic [57]-SORT [8] R50 6.5 10.7 3.4 5.7 10.6 2.1 6.0

DetPro [17]-OWTB [31] R50 7.9 12.9 4.2 7.0 12.6 2.9 3.1
Detic [57]-OWTB [31] R50 7.7 12.6 4.2 7.0 12.8 2.8 5.9
Detic [57]-XMem [13] R50 8.8 13.4 5.4 7.7 13.3 3.6 16.4

OV2Seg(Ours) R50 14.2 17.2 11.9 11.4 14.9 8.9 20.1

Detic [57]-SORT [8] SwinB 12.8 21.1 6.6 9.4 15.8 4.7 6.7
Detic [57]-OWTB [31] SwinB 14.5 22.6 8.5 11.8 19.6 6.1 6.8
Detic [57]-XMem [13] SwinB 16.3 24.1 10.6 13.1 20.5 7.7 13.4

OV2Seg(Ours) SwinB 21.1 27.5 16.3 16.4 23.3 11.5 16.8

Table 2. The performance comparison on LV-VIS validation and
test set. The AP, APb, and APn mean the average precision of
overall categories, base categories, and novel categories.
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Figure 4. mAP and inference time per frame (s) comparison on
LV-VIS validation dataset between class-dependent queries (QD)
and class-independent queries (QI ).

the OV2Seg with Resnet50 backbone achieves 20.1 frame-
per-second on LV-VIS, outperforming the Detic-OWTB by
14.2. We provide some visualizations in Fig. 6. Due to
space limitations, more visualizations and failure cases are
depicted in the Supplementary Material Sec. C.

6.3.2 Ablation Study

We conduct extensive ablation studies on the LVIS, LV-VIS
validation, and Youtube-VIS2019 datasets to thoroughly
validate the effectiveness of the main modules in OV2Seg.

Image-level Open-Vocabulary Detection. By removing
the Memory-Induced Tracking module, OV2Seg can also
conduct image-level Open-Vocabulary Detection. We com-
pare OV2Seg with several state-of-the-art open-vocabulary
detection methods on LVIS and LV-VIS(O) (image oracle
evaluation) to demonstrate the effectiveness and efficiency
of OV2Seg on image-level tasks. As shown in Tab. 3,
OV2Seg achieves 17.5 and 7.4 mAPn on LVIS and LV-
VIS(O) respectively with Resnet50 backbone. This matches
existing two-stage state-of-the-art approaches Detic [57]
and Detpro [17], while allowing for faster inference speeds.
Specifically, Detic and Detpro require separate region pro-
posal networks and box regression modules to generate the
objects, as well as non-maximum suppression to reduce the
redundant objects, resulting in a slow inference speed of 6.2
fps and 3.4 fps. OV-DETR [55], the first transformer-based
open-vocabulary detector, achieves 17.4 and 7.2 mAPn on

Method Backbone Stage LVIS LV-VIS(O) fps
AP APn AP APn

ViLD [19] R50 2 25.5 16.6 - - -
DetPro∗ [17] R50 2 25.7 18.7 10.8 7.6 3.4

Detic [57] R50 2 30.2 16.4 11.0 6.9 6.2
OV-DETR [55] R50 1 26.6 17.4 11.4 7.2 0.10
OV2Seg(Ours) R50 1 25.4 17.5 11.0 7.4 21.6

Detic [57] SwinB 2 38.4 21.9 13.9 7.8 7.6
OV2Seg(Ours) SwinB 1 31.4 21.8 14.2 8.3 18.2

Table 3. Image-level performance on LVIS dataset and LV-VIS
validation dataset. The LV-VIS(O) means the oracle image eval-
uation, where we regard all the frames in LV-VIS as an image
dataset and evaluate on the images separately. DetPro∗ is con-
ducted by single-scale inference for fair comparison.

Figure 5. Overall mean Average Precision (mAP) under different
memory update factor α on LV-VIS and Youtube-VIS2019 valida-
tion datasets. The w/o sobj means removing the object score sobj in
the memory update module.

LVIS and LV-VIS(O) with inference speed of 0.1 fps, lim-
ited by the class-dependent object queries. In contrast, our
proposed OV2Seg uses class-independent object queries,
avoiding separate processes for each category. As a result,
OV2Seg achieves 21.6 fps, outperforming the fps of OV-
DETR for more than two orders of magnitude. More gen-
erally, we claim that high accuracy on image datasets is not
the main goal of this work. Instead, we prefer a simple and
effective model for Open-Vocabulary VIS. Therefore, we
do not apply self-training and information distillation in our
work, which are adopted in Detic and Detpro.
Class-Dependent vs. Class-Independent Queries. OV-
DETR [55] utilizes N conditional object queries for each
category, which we refer to as class-dependent queries
QD. We compare it with OV2Seg using class-independent
queries QI and show the results in Fig. 4. We see that
OV2Seg with class-independent queries QI achieves com-
parable accuracy as with class-dependent queries QD, while
being two orders of magnitude faster. As shown in Fig. 4
(b), OV2Seg with class-dependent queries becomes signifi-
cantly slower as the number of categories |C| increases, and
thus is intractable in open-world videos containing objects
from large category set.
Memory Queries. We evaluate OV2Seg on LV-VIS valida-
tion and Youtube-VIS2019 datasets under different mem-
ory update factors α and sobj in Equation 6. As shown in
Fig. 5, the query association module without memory up-
date, i.e., α=0, only achieves 23.7 mAP and 11.9 mAP on



Method Open Backbone YTVIS2019 YTVIS2021 BURST OVIS

mAP mAPb mAPn mAP mAPb mAPn mAP mAPb mAPn mAP

FEELVOS [50] ✗ R50 26.9 - - - - - - - - 9.6
MaskTrack [50] ✗ R50 30.3 - - 28.6 - - - - - 10.8
SipMask [10] ✗ R50 33.7 - - 31.7 - - - - - 10.2

Mask2Former [12] ✗ R50 46.4 - - 40.6 - - - - - 17.3

Detic [57]-SORT [8] ✓ R50 14.6 17.0 3.5 12.7 14.4 3.1 1.9 1.8 2.5 6.7
Detic [57]-OWTB [31] ✓ R50 17.9 20.7 4.5 16.7 18.6 5.8 2.7 2.8 1.8 9.0

OV2Seg(Ours) ✓ R50 27.2 30.1 11.1 23.6 26.5 7.3 3.7 3.9 2.4 11.2

Detic [57]-SORT [8] ✓ SwinB 23.8 27.2 7.9 21.6 23.7 9.8 2.5 2.7 1.0 11.7
Detic [57]-OWTB [31] ✓ SwinB 30.0 34.3 9.7 27.1 29.9 11.4 3.9 4.1 2.4 13.6

OV2Seg(Ours) ✓ SwinB 37.6 41.1 21.3 33.9 36.7 18.2 4.9 5.3 3.0 17.5
Table 4. Performance comparison on the validation sets of four published datasets: Youtube-VIS19, Youtube-VIS21, BURST, OVIS. The
Open in the table indicates whether a method is capable of tackling objects from novel categories following the setting of Open-Vocabulary
VIS. The methods above the double horizontal lines are trained on target training videos of each dataset; we only report the overall mean
average precision mAP of those methods. The methods below the double horizontal lines are trained on image dataset LVIS and evaluated
on the video instance segmentation datasets without fine-tuning; we report both the mAP, mAPb, and mAPn of those methods.

Methods
LV-VIS Youtube-VIS2019

mAPb mAPn mAPb mAPn

Average 16.9 11.3 29.4 10.8
Memory Queries 17.2 11.9 30.1 11.1

Table 5. Comparison between two ways to obtain the classification
scores. The Memory Queries in the table indicate obtaining classi-
fication scores from the memory queries. The Average in the table
means directly averaging the per-frame classification scores.

Youtube-VIS2019 and LV-VIS validation datasets. When α
is set to a value between 0.3 and 0.8, OV2Seg achieves sta-
ble performance improvements, which shows that the mem-
ory update schedule is robust to the factor α. The best per-
formance is obtained by setting α = 0.7 and the object
score sobj is adopted, achieving 27.2 mAP and 14.2 mAP
on Youtube-VIS2019 and LV-VIS validation dataset. The
memory queries introduce long-term clues to handle occlu-
sion and disappear-reappear cases, which helps to achieve
robust object association. As shown in Fig 6, the snack is
re-tracked after entire occlusion.

In Tab. 5, we compare the performance between the clas-
sification by Memory Queries and by Averaging per-frame
classification scores. As shown, the performance of Mem-
ory Queries slightly outperforms the naive Average on both
LV-VIS and Youtube-VIS2019 datasets. This is because
Memory Queries aggregate video object features based on
per-frame object confidence, which constrains the low con-
fidence features and leads to more robust classification with
respect to complex cases such as motion blur and occlusion.

6.3.3 Zero-shot Generalization on VIS Datasets.

We directly evaluate OV2Seg on four video instance seg-
mentation datasets without finetuning on the target train-
ing videos. The performance comparison is shown in
Tab. 4. As shown, OV2Seg with ResNet-50 achieves 11.1
mAPn and 7.3 mAPn on Youtube-VIS2019 and Youtube-

Figure 6. Visualizations on LV-VIS dataset.

VIS2021 novel categories respectively, surpassing the base-
line model Detic-OWTB by 6.6 and 1.5. Note that with-
out using any training videos of Youtube-VIS, OV2Seg
achieves considerable performance compared with close-set
fully-supervised competitors such as MaskTrack [50] and
FEELVOS [43]. In BURST, OV2Seg achieves 3.7 mAP,
outperforming Detic-OWTB by 1.0 mAP in terms of over-
all mAP. The BURST dataset is not exhaustively annotated,
which makes category-wise evaluation of novel categories
statistically unreliable. On the OVIS dataset with seri-
ous object occlusions, OV2Seg achieves 11.2 mAP, com-
parable with fully-supervised competitors MaskTrack [50],
FEELVOS [50], and SipMask [10]. The comparison on
OVIS demonstrates that OV2Seg has promising perfor-
mance in complex occlusion circumstances. Visualizations
are shown in Supplementary Material Sec. C.

7. Conclusion

We propose a new task of Open-Vocabulary VIS with
the goal of segmenting, classifying, and tracking ob-
jects of arbitrary categories simultaneously. To properly
evaluate the Open-Vocabulary VIS, we collect a Large-
Vocabulary Video Instance Segmentation dataset (LV-VIS),
significantly surpassing the existing video-level segmenta-



tion datasets in terms of category sizes and diversity. More-
over, we propose the first end-to-end Open-Vocabulary VIS
model, OV2Seg, that segments, classifies, and tracks ob-
jects from arbitrary categories with a Memory-Induced Vi-
sion Language Transformer. Without finetuning on videos,
our proposed OV2Seg shows promising zero-shot general-
ization ability on novel categories unseen during training.
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Appendix

A. Dataset Statistic

Statistic Comparison. As shown in Tab. 6, we compare
the proposed LV-VIS dataset to existing ones on detailed
statistics.

The benchmarks Kitti-MOTS [44], BDD [54], and
MOTS-challenge [44] focus on the automatic driving sce-
nario, which contains long videos of street scenes captured
from a driving vehicle or a walking pedestrian. The bench-
marks DAVIS2017 [38] and Youtube-VOS [49] mainly fo-
cus on semi-supervised video object segmentation [38].
The semi-supervised video object segmentation aims to
track and segment the objects given the mask of the first
frame, which is similar to the single object tracking in
VOT [27]. UVO [45] is designed for exhaustively segment-
ing and tracking anything which humans would consider to
be ”objects” in videos. Instead of assigning a category label
to a specific object, UVO considers all the foreground ob-
jects as a single category (in v1 of UVO, the category labels
of objects belonging to MS-COCO are annotated, while the
rest objects remain unlabeled, as shown in Fig. 8). The cat-
egory labels are not provided or considered during the eval-
uation in the above-mentioned datasets.

The Youtube-VIS2019 [50], OVIS [39], and BURST [4]
assign a category label to each annotated object. There-
fore, category-wise evaluation is enabled. However, the
Youtube-VIS2019 and OVIS only contain 40 and 25 cat-
egories, which is not wide enough for the open-vocabulary
evaluation. The BURST contains a relatively large vocabu-
lary set of 482 categories, but 81% of the object instances
in BURST are from MS-COCO categories, making it inap-
propriate for the evaluation of novel categories, as shown
in Fig. 8. Therefore, BURST only considers the 80 com-
mon categories in MS-COCO in the category-wise evalua-
tion and mainly follows the evaluation protocols of class-
agnostic multiple object tracking.

By contrast, our LV-VIS dataset not only contains a large
vocabulary set of 1,196 categories but has a diverse cate-
gory and object instances distribution, as shown in Fig. 8.
Specifically, 94% categories in LV-VIS are disjointed with
categories in MS-COCO, while 46% are disjointed with fre-
quent/common categories in LVIS. Moreover, OV-VIS con-
tains 4,828 videos and 544,451 annotated masks for evalu-
ation, which is much larger than most of the validation/test
sets in existing datasets. The dataset split detail of LV-VIS
is shown in Tab. 7. As shown, we divide LV-VIS into a
training set, a validation set, and a test set, where the test set
is relatively more complex than the validation set.

Category Partition. In this section, we first illustrate how
we select the 1,196 object categories. We first include all
1,203 categories in LVIS. Then we manually select novel

categories in ImageNet21K to cover diverse types of cat-
egories, such as animals, plants, vehicles, tools, clothing,
food, etc. In this way, we get 1,612 category candidates.
As for categories with multiple meanings, we manually add
additional descriptions like LVIS dataset, e.g., date (fruit),
triangle (musical instrument). There exist two types of re-
lationships between each of the category pairs: disjoint and
non-disjoint. Non-disjoint category pairs could be in par-
tially overlapping, parent-child, or equivalent relationships,
which means a single object could have multiple valid cate-
gory labels. Therefore, we first manually merge object cat-
egories with the same semantics, ensuring that there are no
mutually equivalent category pairs. In this way, we col-
lect 1,196 well-defined mutually different object categories.
Then we construct a parent-child relationship tree among
the collected categories. For instance, ”race car” is a child
of ”car”. Finally, we revise the annotation based on the de-
fined parent-child relationship tree, ensuring that each ob-
ject in videos is exhaustively annotated as all corresponding
object categories. For instance, a ”race car” is also assigned
to the corresponding parent label ”car”. With the aforemen-
tioned pipeline, we address the annotation issues of equiv-
alent categories, parent-child categories, and partially over-
lapping categories. The category partition and the number
of instances per category of the LV-VIS dataset are shown
in Tab. 7, where the 1,196 categories are divided into 641
base categories and 555 novel categories. All the base cat-
egories in LV-VIS are inherited from frequent/common cat-
egories in LVIS [20]. While conducting the evaluation, the
categories in Youtube-VIS2019 are divided into 33 base cat-
egories and 7 novel categories. The categories in Youtube-
VIS2021 are divided into 34 base categories and 6 novel
categories. We show the category partitions of Youtube-
VIS2019 and Youtube-VIS2021 [50] in Tab. 8.

Annotation Details. We develop a video segmentation
annotation platform based on Labelme, which is released
here https://github.com/haochenheheda/segment-anything-
annotator. We first manually annotate all object masks in
the first frame by polygons and propagate the object masks
to the second frame with STCN [14]. After that, we correct
the propagated masks, add masks for newly appeared ob-
jects, and then repeat the propagation to the next frame. We
manually recognize and assign category names to each an-
notated mask sequence. Finally, we include cross-revision
to ensure the annotation quality.

B. Visualizations of Annotated Frames

Examples of annotated videos in LV-VIS are shown in
Fig. 9.



Basic Train Val/Test

Dataset Category Length(h) Mask/Frame Video Instance Ann. Frame Mask Video Instance Ann. Frame Mask

VOT [27] - 10.7 1 0 0 0 0 62 62 19,903 19,903
KITTI-MOTS [44] 2 39 5.4 21 748 8,008 38,197 28 961 11,095 61,904
MOTS-Chal. [44] 1 34.4 10 4 228 2,864 26,894 4 328 3,044 32,369
BDD [54] 7 40 11.4 154 17,838 30,745 347,442 32 4,873 6,475 77,389
DAVIS17 [38] - 2.9 2.6 60 144 4,219 10,238 90 242 6,240 16,841
YT-VOS19 [49] - 4.5 1.6 3741 6,459 94,400 12,918 1,048 2,115 28,825 4,310
UVO [45] 80∗ 3 12.3 5,641 76,627 39,174 416,001 5,587 28,271 18,966 177,153

YT-VIS19 [50] 40 4.5 1.7 2,238 3,774 61,845 103,424 645 1,092 17,415 29,431
OVIS [39] 25 3.2 4.7 607 3,579 42,149 206,092 297 1,644 20,492 89,841
BURST [4] 482 28.9 3.1 500 2,645 107,144 318,200 2,414 13,444 88,569 281,957

LV-VIS (Ours) 1196 6.2 4.9 3,083 16,060 70,242 339,533 1,745 9,526 41,253 204,918

Table 6. Detailed Statistic Comparison between our LV-VIS and other video-level datasets. Category: The number of the overall category
set in each dataset. The - in the Category column means the dataset does not provide the category label or take the category into account
during evaluation. Length: The total length of videos. Mask/Frame: Average annotated masks per frame. Statistics for Val/Test on
YT-VIS2019, YT-VOS2019, and DAVIS2017 are estimated from the training set, which may not be exact.

Split Length(h) Mask/Frame Video Instance Ann. Frame Mask

Train 3.9 4.8 3,083 16,060 70,242 339,533
Val 1.1 4.0 838 3,646 19,176 76,916
Test 1.3 5.7 908 5749 22,096 124,834
Total 6.2 4.9 4,828 25,588 111,495 544,451

Table 7. Dataset Split of the LV-VIS.

Figure 7. The instance per category on LV-VIS dataset. The blue bars indicate the base categories (frequent/common categories in LVIS)
and the orange bars indicate the novel categories (disjointed with base categories).

C. Visualization and Failure Case Analysis

We demonstrate the result of OV2Seg on our proposed
LV-VIS, Youtube-VIS [50] and OVIS [39] in Fig. 11.
OV2Seg shows a strong generalization ability on those
video instance segmentation datasets, even in some hard
cases, to be specific, (b) large perspective change, (c) blurry
video, (f) long video, (a, g) occlusion, and (g) a large num-
ber of objects.

The failure cases are demonstrated in Fig 11 (h)-(i). The
major failure case is category confliction, which means the
classification of objects from novel categories is usually
dominated by their visually similar base categories. To be
specific, as demonstrated in Fig 11 (i), The ”wolf” in the

figure is recognized as a ”dog” because of the apparent sim-
ilarity. As the objects of ”dog” are shown in the training
set while the objects from ”wolf” are not, the model learns
better alignments between the object embedding and the
word embedding of ”dog,” which makes the model tend
to recognize an object as ”dog” instead of a ”wolf.” We
consider the category confliction as a fundamental chal-
lenge for all the open-vocabulary tasks, which could be im-
proved by including a large vocabulary set during training
or some training protocol to transfer the information from
the image domain, such as knowledge distillation or self-
training. Another failure case is the miss segmentation of
some common categories, such as the ”person” in Fig. 11
(b), (h), (i). This is because the LVIS is not a densely an-
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Figure 8. Category and object instance distributions. To avoid overlap, categories from MS-COCO are excluded in common/frequent LVIS
to draw the figures. A significant proportion of categories and objects in the LV-VIS are distinct from the commonly used datasets.

Figure 9. Sample videos in LV-VIS.

notated dataset. Only a part of the objects are annotated,
especially for the most common objects such as ”person.”
Specifically, LVIS only annotated 13,439 ”persons” out of
262,465 (annotated in MS-COCO [29]) in total. Therefore
most of the ”person” objects in the training set are regarded
as background, which leads to a low recall of the person
category. This could be relieved by involving some semi-
supervised training methods or combining the LVIS with
the MS-COCO [29] dataset to fill the miss annotations of
the common categories in LVIS. We hope to inspire future
works by giving analyses of the failure cases.



Datasets Type Categories

Youtube-VIS2019 Base

airplane bear boat cat cow deer dog
duck eagle elephant fish frog giant panda giraffe
horse lizard monkey motorbike mouse owl parrot
person rabbit shark skateboard snowboard surfboard tennis racket
tiger train truck turtle zebra

Novel earless seal fox leopard snake ape hand sedan

Youtube-VIS2021 Base

airplane bear boat car cat cow deer
dog duck eagle elephant fish frog giant panda
giraffe house lizard monkey motorbike mouse owl
parrot person rabbit shark skateboard snowboard surfboard
tennis tiger train truck turtle zebra

Novel earless seal fox leopard snake flying dsic whale
Table 8. Base and novel categories in Youtube-VIS2019 and Youtube-VIS2021 datasets.
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Figure 10. A screenshot of annotated frames in LV-VIS. The full videos and annotations will be released upon publication.
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Figure 11. Predictions of OV2Seg on Video Instance Segmentation datasets. Figures (a), (b), and (i) are from the LV-VIS dataset. Figures
(c), (d), (e), and (h) are from Youtube-VIS2019/2021 datasets. Figures (f) and (g) are from the OVIS dataset. Figures (h) and (i) are failure
cases.


