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Abstract

Current high-performance semantic segmentation models
are purely data-driven sub-symbolic approaches and blind
to the structured nature of the visual world. This is in stark
contrast to human cognition which abstracts visual percep-
tions at multiple levels and conducts symbolic reasoning with
such structured abstraction. To fill these fundamental gaps,
we devise LOGICSEG, a holistic visual semantic parser that
integrates neural inductive learning and logic reasoning with
both rich data and symbolic knowledge. In particular, the
semantic concepts of interest are structured as a hierarchy,
fromwhich a set of constraints are derived for describing the
symbolic relations and formalized as first-order logic rules.
After fuzzy logic-based continuous relaxation, logical formu-
lae are grounded onto data and neural computational graphs,
hence enabling logic-induced network training. During in-
ference, logical constraints are packaged into an iterative
process and injected into the network in a form of several
matrix multiplications, so as to achieve hierarchy-coherent
prediction with logic reasoning. These designs together make
LOGICSEG a general and compact neural-logic machine
that is readily integrated into existing segmentation models.
Extensive experiments over four datasets with various seg-
mentation models and backbones verify the effectiveness and
generality of LOGICSEG. We believe this study opens a new
avenue for visual semantic parsing.

1. Introduction

Interpreting high-level semantic concepts of visual stimuli
is an integral aspect of human perception and cognition, and
has been a subject of interest in computer vision for nearly
as long as this discipline has existed. As an exemplar task of vi-
sual semantic interpretation, semantic segmentation aims to
group pixels into different semantic units. Progress in this
field has been notable since the seminal work of fully convo-
lution networks (FCNs)[ 1] and been further advanced by the
recent launch of fully attention networks (Transformer) [2].

Despite these technological strides, we still observe cur-
rent prevalent segmentation systems lack in-depth reflection
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Figure 1: (a) We humans abstract our perception in a structured
manner, and conduct reasoning through symbol manipulation over
such multi-level abstraction. (b) We aim to holistically interpret
visual semantics, through the integration of both data-driven sub-
symbolic learning and symbolic knowledge-based logic reasoning.

on some intrinsic nature of human cognition. First, standard
segmentation systems simply assume the semantic concepts
in the set of interest have no underlying relation and predict
all these concepts exclusively. By contrast, humans interpret
a scene by components. For example in Fig. 1, we can ef-
fortlessly recognize many pieces of furniture, such as
chairsand tables, and identify various utensils, e.g.,
bottles, and plates. Such capacity of structured under-
standing of visual semantics is an innate aspect of human
perception [3], complies with our way of the organization
of knowledge [4, 5], and has a close relation to many meta-
cognitive skills including compositional generalization (i.e.,
making infinite use of finite means) [0], systematicity (i.e.,
cognitive capacity comes in groups of related behaviours) [7],
and interpretability (i.e., interpreting complex concepts with
simpler ones) [8, 9]. Despite its significance and ubiquity,
surprisingly little has been done on the computational mod-
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eling of structured visual perception in the segmentation
literature. Though exceptions exist [ ], in general they
are scattered, lacking systematic study. Second, the latest
semantic segmentation systems, label structure aware or not,
have developed a pure sub-symbolic learning approach. They
enjoy the advantages of robust distributed representation of
concept entities, but struggle with explicit reasoning with
the relations among entities by discrete symbolic represen-
tations [15]. Nevertheless, studies in cognition suggest that
our perception works at multiple levels of semantic abstrac-
tion [16], intertwined with logical reasoning through manip-
ulation of symbolic knowledge/concepts[!7]. For example,
after recognizing many utensils from Fig. 1, we know the
scene is more likely a kit chen, rather than a bathroom
or gym. This judgement comes as a result of reasoning with
some abstract knowledge, such as “utensils typically appear
in the kitchen” and “‘utensils are seldom seen in the bath-
room,” which are generalized from our daily experience. The
judgement of the scene type may become a belief and in turn
cause reallocation of our visual attention [ 18], hence driving
us to find out more relevant details, such as small forks.

Filling the gaps identified above calls for a fundamental
paradigm shift: i) moving away from pixel-wise ‘flat’ clas-
sification towards semantic structure-aware parsing; and ii)
moving away from the extreme of pure distributed repre-
sentation learning towards an ambitious hybrid which com-
bines both powerful sub-symbolic learning and principled
symbolic reasoning. To embrace this change, we develop
LOGICSEG, a structured visual parser which exploits neural
computing and symbolic logic in a neural-symbolic frame-
work for holistic visual semantic learning and reasoning. In
particular, given a set of hierarchically-organized semantic
concepts as background knowledge and parsing target, we
first use first-order logic, a powerful declarative language, to
comprehensively specify relations among semantic classes.
After fuzzy logic based relaxation, the logical formulae of hi-
erarchy constraints can be grounded on data. During training,
each logical constraint is converted into a differentiable loss
function for gradient descent optimization. During inference,
the logical constraints are involved into an iterative process,
and calculated in matrix form. This not only ensures the obser-
vance of the compositional semantic structure but also binds
logic reasoning into network feed-forward prediction.

By accommodating logic-based symbolic rules into net-
work training and inference, our LOGICSEG i) blends sta-
tistical learning with symbolic reasoning, ii) obtains better
performance, and iii) guarantees its parsing behavior com-
pliant with the logically specified symbolic knowledge. We
also remark that our study is relevant to a field of research
called neural-symbolic computing (NSC) [19-21]. With the
promise of integrating two critical cognitive abilities [22]:
inductive learning (i.e., the ability to learn general principles
from experience) and deductive reasoning (i.e., the ability to

draw logical conclusions from what has been learned), NSC
has long been a multi-disciplinary research focus and shown
superiority in certain application scenarios, such as program
generation [23-25], and question answering [26, 27]. This
work unlocks the potential of NSC in visual semantic parsing
— a fundamental, challenging, and large-scale vision task.
LOGICSEG is a principled framework. It is fully compati-
ble with existing segmentation network architectures, with
only minor modification to the classification head and a plug-
and-play logic-induced inference module. We perform experi-
ments on four datasets covering wide application scenarios,
including automated-driving (Mapillary Vistas 2.0 [28], City-
scapes [29]), object-centric (Pascal-Part[30]), and daily (ADE-
20K [31]) scenes. Experimental results show that, on the top of
various segmentation models (i.e., DeepLabV3+ [32], Mask-
2Former [33]) and backbones (i.e., ResNet-101 [34], Swin-
T [35]), LOGICSEG yields solid performance gains (1.12%-
3.29% mloU) and suppresses prior structured alternatives. The
strong generalization and promising performance of LOG-
ICSEG evidence the great potential of integrating symbolic
reasoning and sub-symbolic learning in machine perception.

2. Related Work

Semantic Segmentation. Since the proposal of fully con-
volutional networks (FCNs) [1], research studies in pixel-
level semantic interpretation have witnessed a phenomenal
growth. Tremendous progress has been achieved by, for exam-
ple, polishing context cues [36—52], investigating boundary
information [53-57], incorporating neural attention [58—70],
adopting data structure-aware learning [71-75], and automat-
ing network engineering [76—79]. More recently, the engage-
ment of advanced Transformer [2] architecture, which spe-
cializes in long-range dependency modeling, is widely viewed
as a promising route for further development [33, 80-85].
Though impressive, existing segmentation solutions are
mainly aware of straightforward prediction for flatten labels.
They are largely blind to the rich structures among semantic
concepts and lack an explicit mechanism for symbol manip-
ulation/logical calculus, which is what distinguishes humans
from other animals [86—88]. This work represents a small yet
solid step towards addressing these fundamental limitations
through an integrated neural-logic machine, and inspects
semantic segmentation from a brand-new standpoint.
Label Structure-aware Semantic Segmentation. Till now,
only a rather small number of deep learning based segmen-
tation models [10, 13, 89-91] are built with structured label
taxonomies. The origin of this line of research can be traced
back to the task of image parsing [89, 90, ] raised in
the pre-deep learning era. Basically, image parsing seeks for
a holistic explanation of visual observation: scenes can be
understood as a sum of novel objects, and the objects can
be further broken down into fine-grained parts. In the deep
learning era, the majority of structured segmentation models
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Figure 2: Tllustration of the (a) class hierarchy 7, and (b-d) abstract relational knowledge specified by first-order logic formulae (§3.1).

are dedicated to human parsing [89, 90, 97, 98], which is
customized to human-part relation understanding. As for the
case of general-purpose segmentation, there are far rare lite-
rature [10—13, 91], and many of them incorporate label tax-
onomies into the network topology, losing generality [ 1 0—12].
As a notable exception, [|3] converts the task as pixel-wise
multi-label classification and exploits the class hierarchy for
training regularization, with only trivial architectural change.

In a nutshell, previous efforts highlight the limits of stan-
dard segmentation models for semantic structures. However,
they typically i) resolve to stand on the side of sub-symbolic
learning, ii) make usage of only fragments of structured re-
lations (for instance, the exclusion relation is neglected by
[13]), iii) lack structure-ware inference, and/or iv) rely on so-
phisticated and specialized neural structures. By contrast, we
formulate the structured task into a neural-symbolic frame-
work. We derive a comprehensive set of symbolic relational
knowledge in the form of first-order logic and deeply embed
logical constraints into network training and inference. Our
algorithm is a general framework that is applicable to exist-
ing standard hierarchy-agnostic segmentation architectures.
Neuro-Symbolic Computing. There has been a line of
research, called neural-symbolic computing (NSC), that pur-
sues the integration of the symbolic and statistical paradigms
of cognition [19-21]. NSC has a long history, dating back
to McCulloch and Pitts 1943 paper [99], even before Al was
recognized as a new scientific field. During 2000s, NSC re-
ceived systematic study [100-103]. Early NSC systems were
meticulously designed for hard logic reasoning, but they are
far less trainable, and fall short when solving real-world pro-
blems. NSC has recently ushered in its renaissance, since
it shows promise of reconciling statistical learning of neu-
ral networks and logic reasoning of abstract knowledge —
which is viewed as a key enable to the next generation of
AI[104, ]. Specifically, recent NSC systems [ 106, ]
show the possibility for modern neural networks to manip-
ulate abstract knowledge with diverse forms of symbolic
representation, including knowledge graph[108—110], propo-
sitional logic[ ! | 1-113], and first-orderlogic[| |4—116]. They
also demonstrate successful application in several domains
and disciplines, e.g., scientific discovery[! 17, ], program
generation [23-25], (visual) question-answering [26, 27],
robot planning[! 19—121], and mathematical reasoning[ 22—

1.

To date, none of NSC systems reports advanced perfor-
mance in large-scale vision, to our best knowledge. In this
work, we take the lead to promote and implement the idea
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of conciliating the methodologies of symbolic and neural
paradigms, in visual semantic interpretation. Moreover, many
previous NSC systems only exploit logical constraints during
network training [ 113, X —128], while our solution is
more favored as logic rules are involved throughout network
training and inference. As a result, impressive performances
across diverse challenging datasets are delivered, and in turn,
provide solid empirical evidence for the power of NSC.

3. Methodology

Task Setup and Notations. In this work we are interested in
structured visual parsing [ 1 3] —a more challenging yet realis-
tic setting for semantic segmentation — where both semantic
concepts and their relations are considered in a form of a tree-
shaped class hierarchy 7 = (V, £). The node set V = UL,V
represents the classes/concepts at L abstraction levels. For
instance in Fig. 2(a), the leaf nodes V); are the finest classes
(e.g., chair, pot), while the internal nodes are higher-
level concepts (e.g., furniture,utensil), andtheroots
V1, are the most abstract ones (e.g., object). The edge set £
encodes relational knowledge among classes. For example, a
directed edge u— v € £ denotes a part-of relation between
classes u, v €V in adjacent levels (e.g.,utensil—pot).
Given T, the target goal is to assign each pixel a valid
root-to-leaf path in 7. For instance, associating a pixel with
object—utensil—pot is valid, yet with object—
furniture—pot is invalid. Thus standard semantic seg-
mentation can be viewed as a specific case of such structured
setting — only assigning pixels with one single class label
from the leaf nodes V; without considering the hierarchy.

Algorithmic Overview. LOGICSEG is a unified, neural-logic

learning and reasoning model for visual parsing, supported

by large-scale data and the structured symbolic knowledge 7.

* From the neural aspect, LOGICSEG is model-agnostic. Af-
ter dense feature extraction, its classification head outputs
a total of |V| sigmoid-normalized scores, i.e., s € [0, 1]|V|,
over all the classes V for each pixel, like [13]. Here | - |
counts its elements. A set of logic rules, derived from 7T, are
injected into network training and inference.

* From the logic aspect, LOGICSEG uses first-order logic
to express the complex and abstract relational knowledge
in 7. The network is learnt as approximation of logic predi-
cates by following the logical specifications. Once trained,
it conducts iterative reasoning on the basis of logic rules.

After introducing our logic based visual relational knowledge
representation (§3.1), we will elaborate on our logic-induced
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Figure 3: Illustration of our logic-induced network training (§3.2). For clarity, the pixel-wise binary cross-entropy loss is omitted.

network training (§3.2) and inference (§3.3) strategies.
3.1. Parsing Visual Semantics with Logic Rules

We formalize our target task — learning and reasoning vi-
sual semantics with logic — as atriple (T, X, II). X is adata
collection, i.e., X = {(zx, yx) } i_,, where zy, is a pixel data
point, and y, € {0, 1}Vl is its groundtruth symbolic descrip-
tion in terms of the semantic hierarchy 7. Il is a set of hierar-
chy rules declaratively expressed by first-order logic, contain-
ing i) constants, e.g., pixel samples x1, x2, - - - ; ii) variables
ranging over constants, e.g., x; and iii) unary predicates, one
for each class v € V, denote the semantics of variables and
return true and false, e.g., bed(x) =true states the fact that
pixel z belongs to a bed. A logic rule/formula is a sequence of
finite predicates with connectives (i.e., A\, V, —, =) and quan-
tifiers (i.e., ¥, 3), and organized in prenex form in our case.

Concretely, II is composed of three types of rules, i.e.,
composition, decomposition, and exclusion, for comprehen-
sively describing the structured symbolic knowledge 7.

e Composition Rule (C-rule) expresses our knowledge about
the composition relations between semantic concepts, such
as “bed and chair are (subclasses of) furniture,” in a form of:

Vz(bed(r) = furniture(z)),
Vz(chair(z) = furniture(z)),

)

where bed, chair, furniture are predicates, and ‘¢ =
0’ indicates ¢ is a logical consequence of antecedence ¢.

Definition 3.1.1 (C-rule). If one class is labeled true, its
superclass should be labeled true (Fig. 2(b)):

@

where p, is the parent node of vin T, i.e., p,— v € £ (the tree
structure of Trestricts each class to possess only one super-
class). C-rule generalizes the famous tree-property[ 129, ].

Va(v(z) = py(z)),

e Decomposition Rule (D-rule) states our knowledge about
the decomposition relations among semantic concepts, such
as “furniture is the superclass of bed, chair, - - -, table,” via:

Vz(furniture(z) =bed(z) V chair(z)V

-+ Vtabel(x)). ©)

Definition 3.1.2 (D-rule). Ifone class is labeled true, at least
one of its subclasses should be labeled true (Fig.2(c)):

Vo (v(z) = ck(z) Vi (z) V- Vel (z)), 4

where ¢} € C, are all the childnodes of vin T, i.e.,v = ¢l € £.
C-rule and D-rule are not equivalent. For instance in Eq. 1,
bed(zx) is sufficient but not necessary for furniture(z):
given the fact “z is furniture”, we cannot conclude “x is bed”.

o Exclusion Rule (E-rule) specifies our knowledge about
mutual exclusion relations between sibling concepts, such as

“a bed cannot be at the same time a chair,” in a form of:
Va(bed(x) = —chair(x)).

®)

Definition 3.1.3 (E-rule). If one class is labeled true, all its
sibling classes should be labeled false (Fig.2(d)):

Va(v(z) = —al(z) A—a?(z) A A-aM(z)), (6)
where a]'€ A, are all the peer nodes of vin 7. Note that E-rule
isignored by many hierarchy-aware algorithms[ 1 3, , ].

3.2. Logic-Induced Training

So far, we shown the logic rules II provide LOGICSEG
aflexible language for comprehensively expressing the com-
plex meronymy and exclusion relations among symbolic con-
cepts in the hierarchy 7. Unfortunately, these rules are logic
formulae working with variables (assuming a boolean value),
and non-differentiable logic symbols (e.g., V¥, =). This pre-
vents the integration with end-to-end network learning.

Inspired by [128, 1, a fuzzy logic based grounding
process is adopted to interpret logic formulae as differentiable
fuzzy relations on real numbers for neural computing (Fig. 3).
Fuzzy relaxation. Fuzzy logic is a form of soft probabilistic
logic. It deals with reasoning that is approximate instead of
fixed and exact; variables have a truth degree that ranges in
[0,1]: zero and one meaning that the variable is false and
true with certainty, respectively[134]. Hence we can ground
predicates onto segmentation network outputs. For instance,
given a pixel sample z, corresponding network prediction
score w.r.t. class bed is a grounded predicate w.r.t. bed(z).
Logical connectives, i.e., A, V, 7, = are approximated with
fuzzy operators, i.e., t-norm, t-conorm, fuzzy negation, and
fuzzy implication. As suggested by [133], we adopt the oper-
ators in Goguen fuzzy logic[135] and Gdodel fuzzy logic[136]:

¢/\§0:¢§07 ¢v§0:max(¢7(p)a

(7
p=1-¢, ¢=>p=1-90+0¢ 0.
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Figure 4: Illustration of our logic-induced inference (§3.3). (a-b) Iterative reasoning is made by exchanging and absorbing messages between
nodes, following the logic rules I1. For clarity, we only show the message creation (Eq. 16) and aggregation (Eq. 17) stages for one single
node. (c) Structured parsing (Eq. 18) is conducted by selecting the top-scoring path P (highlighted in red) after logic-guided iterative

reasoning. (d) With logic-induced inference, LOGICSEG is able to generate more accurate and hierarchy-compliant predictions.

The existential quantifier 3 and universal quantifier V are
approximated in a form of generalized mean:

K 1
Fop(z) = (5 Ljey dlar)V)7,
K 1
Vaog(r) = 1= (%X jmr (L=o(zk)) )7,
where g € Z. Please refer to[ 128, 133] for detailed discussion
regarding the rationale behind such approximation of 3and V.
Logic Loss. With fuzzy relaxation, we are ready to convert
our first-order logic rules II into loss functions.

e C-rule Loss. For a non-root node v € V/Vy, its corres-
ponding C-rule (c¢f. Eq.2) is grounded as:

Go(v) = 1= (% i (sule] = sulo] - slpu)?)", O

where si[v] € [0, 1] refers to the score (confidence) of xy, for
class v. Then the C-rule based training objective is given as:

Lc 1—Ge(v). (10)

®)

1

_ 1
e

e D-rule Loss. For a non-leaf node v € V/V, its corres-
ponding D-rule (cf. Eq.4) is grounded as:

K 1
- (%k;(sk[v] —sp[v]-max({si[cz]}a))") . (A1)
Similarly, our D-rule loss is given as:

1—Gp(v). (12)

Gp(v)=

_ 1
Lp= |V|—|VT|ZUEV/V1

e E-rule Loss. During the grounding of E-rule (cf. Eq.6), we
first translate such one-vs-all exclusion statement to a seman-
tically equivalent expression, i.e., the aggregation of multi-
ple one-vs-one exclusion ({(v(z) = —al(z)),- -, {(v(z) =
—=aM(z))}). Adopting such translation is to avoid the sorites
paradox, i.e., a long chain of only slightly unreliable de-
ductions can be very unreliable [137] (e.g., 0.9' ~ 0.34),
happened during approximating a series of A. Then, for each
node v €V, its corresponding E-rule is grounded as:

Gi() =1- Z5 N (5 (sl sifa]))". (1)

Similarly, our E-rule loss is given as:

1
1-37

Le=p7vey 1 = Gr(v). (14)

In this way, it is possible to backpropagate the gradient from
the logic loss into the network. The network is essentially
learned as neural predicates obeying the logical constraints.
It is worth mentioning that, due to large-scale training, it is
infeasible to compute the full semantics of V; batch-training
can be viewed as sampling based approximation [133].

Our overall training target is organized as:

ﬁ:Oé(ﬁc—FED+£E)+%ZkK:1£BCE(Sk,yk). (15)

Here y € {0,1}Vl1s the groundtruth, Lpcg is the binary cross-
entropy loss, and the coefficient is empirically setas a=0.2.

3.3. Logic-Induced Inference

We just showed that LOGICSEG can approximate the pre-
dicates by integrating symbolic logic constraints into large-
scale network training. However, during inference, there is
no explicit way to ensure the alignment between the class
hierarchy 7 and network prediction, neither sound reasoning
with the logic rules II. We thus put forward logic-induced
reasoning (Fig. 4), where the logic rules IT are encapsulated
into an iterative optimization process. Such process is non-
learnable, based on only matrix operations and thus can be
seamlessly embedded into network feed-forward inference,
yielding an elegant yet compact neural-logic visual parser.

Our solution is built upon the classic message passing
algorithm which is to estimate the marginal likelihood for
a given tree structure by iferatively exchanging messages
between nodes. Specifically, at each iteration, for each pixel
sample zj, node v €V sends different types of messages to
different neighboring nodes, according to the logic rules 1I:

k) = pu(Tr)
:1—sk[v]+8k[v]‘3k[Pv]a
eV vl @) o
=1—sg[v]+sk[v] max({sk[cu]}n)s
E-message: h, am—*l'(v(ﬁ ):>—\a11}(xk)/\- : '/\ﬁaqu\/[(xk))

(lfMZ

C-message : hﬁpv =ov(z

D-message: h” en =0 v(xg

_18k[v] - si[ay]).



Node v is updated by aggregating the received messages:
Sg[v]+ si[v]+ %Zc;:ec“sk [?] ~hg}7v +3k[po) .hﬁ’v

; (7
+ ﬁzag"eAvsk [a’v ] 'haE,L”,v'

Each message (cf. Eq. 16) accounts for the certainty degree
that v satisfies the corresponding logic rule (cf. §3.1) when
being grounded on pixel data point , with fuzzy logic based
approximation (cf. §3.2). Intuitively, the more certainty a node
meets the logic rules, the more message it can propagate to
other nodes. Note that, v creates a negative message hf om tO
“suppress” other peer nodes due to their exclusion relations.
In Eq. 17, the received messages are weighted by the confi-
dence of the source nodes themselves — the grounded predi-
cates, i.e., Si[c'], Sk [po], and s [all']. After each iteration, the
score vector sy, is softmax-normalized per hierarchy level.
Finally, each pixel x, is associated with the top-scoring
root-to-leaf path in the hierarchy 7 (red path in Fig. 4(c)):

Pr={uv},--,vp} =argmax}" pep sklv”] (18)
PCT

where P={v],---, 0T} C T indicates a feasible root-to-leaf

pathin T, ie., VoI, 0] eP=v]—v]  €E.

It is easy to find that all the logic-induced inference steps
(cf-Eq. 16-18) can be formulated in matrix form with only a
couple of matrix multiplications (see corresponding pseudo-
code in the supplementary). Hence it is efficient on GPU
and can be straightforward injected into the network, mak-
ing LOGICSEG a fully-integrated neural-logic machine. In
practice, 2-iteration message passing is enough for robust
prediction. Through logic-induced reasoning (cf. Eq. 17) and
hierarchy-aware parsing (cf. Eq. 18), LOGICSEG is able to i)
obtain improved performance, and ii) guarantee the parsing
results to respect the hierarchy T, with iii) only negligible
speed delay (about 3.8%). See §4.4 for related experiments.

4. Experiment
4.1. Experimental Setup

Datasets. We conduct extensive experiments on four datasets,
i.e., Mapillary Vistas 2.0[28], Cityscapes[29], Pascal-Part-
108[30], and ADE20K [31]. The four datasets are selected
to cover the rich application scenarios of semantic segmen-
tation, including urban street segmentation for automated
driving (i.e., [28, 29]), object part parsing (i.e., [30]), and
fine-grained understanding of daily scenes (i.e., [31]), so as
to comprehensively examine the utility of our algorithm.

* Mapillary Vistas 2.0 is a large-scale urban scene dataset.
It contains 18, 000/2,000/5, 000 images for train/val/
test. A three-level semantic hierarchy, covering 4/16/
124 concepts, is officially provided for dense annotation.

 Cityscapes has 2,975/500/1, 524 finely annotated, urban
street images for t rain/val/test. The label hierarchy
consists of 19 fine-gained concepts and 6 superclasses.

* Pascal-Part-108 is the largest object part parsing dataset.
It consists of 4,998/5, 105 images for train/test. To
establish the class hierarchy, we group 108 part-level la-
bels into 20 object-level categories, as in [138—141].

* ADE20K is a large-scale generic scene parsing dataset. It
is divided into 20, 210/2,000/3, 000 images for train/
val/test. It provides pixel-wise annotations for 150
fine-grained semantic classes, from which a three-layer
label hierarchy (with 3/14/150 concepts) can be derived.

Evaluation Metric. We adopt the standard metric, mean
intersection-over-union (mloU), for evaluation. For detailed
performance analysis, the score is reported for each hierarchy
level [ (denoted as mIoU?), as suggested by [13, 89].

Base Models and Competitors. To demonstrate our wide
benefit, we approach our algorithm on two famous segmenta-
tion architectures, i.e., DeepLabV3+ [32] and Mask2For-
mer [33], with ResNet-101 [34] and Swin-T [35] back-
bones. For performance comparison, we involve several
hierarchy-aware segmentation models |13, s 1], and
view HSSN[13] as our major rival as it is a general frame-
work that reports strong results over several datasets, in-
stead of the others that are dedicated to specific dataset(s)
or task setup(s). For comprehensive evaluations, we include
a group of previous hierarchy-agnostic segmentation algo-
rithms [ 10, 38, 44, 80—82], whose segmentation results on
coarse-grained semantics are obtained by merging the pre-
dictions of the corresponding subclasses.

Training. For the sake of fairness, we follow the standard
training setup in [44, 73, 83, s ]. In particular, we train
240K/80K iterations for Mapillary Vistas 2.0/Cityscapes,
with batch size 8 and crop size 512x1024; 60K/160K itera-
tions for Pascal-Part-108/ADE20K, with batch size 16 and
crop size 512x512. For data augmentation, the images are
horizontally flipped and scaled with a ratio between 0.5 and
2.0 at random. For network optimization, SGD (with initial
learning rate le-2, momentum 0.9, and weight decay le-4)
and Adam (with initial learning rate 6e-5 and weight de-
cay 0.01) are respectively used for CNN-based and neural
attention-based models, where the learning rate is scheduled
by the polynomial annealing rule. For network initialization,
ImageNet[144] pre-trained weights are pre-loaded.
Testing. For Mapillary Vistas 2.0 and Cityscapes, we keep the
original image aspect ratio but resize the short edge to 1024.
Sliding window inference with the identical window shape as
the training size is adopted to save memory. For ADE20K and
Pascal-Part-108, the short edge is resized to 512 so as to enable
one-time inference for the whole image. Asin [44, 66, 83, 98],
performance of all the models is reported at multiple scales
({0.5,0.75,1.0,1.25, 1.5, 1.75}) with horizontal flipping.
Hyperparameters. We set o =0.2 for the loss coefficient
(cf.Eq. 15), and ¢ = 5 for logic quantifier approximation
(cf-Eq.8), as suggested by [128]. For network inference, we
find 2 iterations of message passing are enough.



Method ‘ Backbone ‘ mloU34 mloU?4 mloU'4
Seamless [145] | ResNet-101 84.23 70.24 38.82
OCRNet [44] | HRNet-W48 84.19 69.82 38.26
HMSANet [90] | HRNet-W48 84.63 70.71 39.53
Mask2Former [33] Swin-S 88.81 74.98 43.49
HssN [13] | ResNet-101 85.27 71.40 40.16
HSssN [13] Swin-S 90.02 75.81 43.97
DeepLabV3+ [32] 81.86 68.17 3743
I+) LocicSeg | RONer10 | s o 13.65 71.6913.42 40.7213.29
MaskFormer [83] Swin-S 87.93 73.88 42.16
+ LOGICSEG 90.35 12.42  76.61 12.73 45.12 12.96

Table 1: Urban scene parsing results (§4.2) on Mapillary Vistas 2.0
[28] val with a three-level label hierarchy of 4/16/124 concepts.

Method ‘ Backbone ‘ mloU?t mloUt

PSPNet [146] | ResNet-101 91.67 80.91
DANet [65] | ResNet-101 91.83 81.52
CCNet [66] | ResNet-101 91.70 81.08
OCRNet [44] | HRNet-W438 92.57 82.33
SETR [82] ViT-L 92.86 82.75
SegMentor [81] ViT-L 91.79 81.30
UperNet [10] Swin-S 91.92 81.79
Mask2Former [33] Swin-S 93.68 83.62
SegFormer [80] MiT-B4 93.81 83.90
HsSN [13] | ResNet-101 93.31 83.02
HssN [13] Swin-S 94.39 83.74
DeepLabV3+ [32] 92.16 82.08

+Locicseg | ReNet101 g0 5 1121 83.20 1112
MaskFormer [83] . 92.96 82.57

Swin-S
+ LOGICSEG 94.31 11.35 83.8511.28

Table 2: Urban scene parsing results (§4.2) on Cityscapes [29]
val with a two-level label hierarchy of 6/19 concepts.

4.2. Quantitative Comparison Result

Mapillary Vistas 2.0 [28] val. From Table 1 we can observe
that our approach provides notable performance gains over
the baselines. For example, our algorithm promotes classic
DeepLabV3+ [32] by 3.65%/3.42%/3.29% over the three
semantic levels. On top of MaskFormer [83], our algorithm
further lifts the scores by 2.42%/2.73%/2.96%, suppressing
previous hierarchy-agnostic models, as well as HSSN [13] —
a newly proposed hierarchy-aware segmentation model.
Cityscapes[29] val. Table 2 confirms again our compelling
performance in challenging urban street scenes and wide
benefits for different segmentation models, i.e., 1.21%/1.12%
over DeepLabV3+, and 1.35%/1.28% over MaskFormer.
Though both encoding concept structures into segmentation,
our algorithm greatly outperforms HSSN, suggesting the
superiority of our logic reasoning framework.
Pascal-Part-108 [30] test. As illustrated by Table 3, our
algorithms yields remarkable performance on explaining
the compositionality of object-centric semantic structures.
Specifically, our algorithm not only consistently boosts the
performance of base segmentation models [32, 33], but also
defeats two outstanding hierarchy-agnostic competitors [38,
] as well as three structured alternatives [ 13, s ].

Method  Backbone ‘ mloU?t mloU't

SegNet [38] ResNet-101 59.81 36.42
FCN-8s [I] ResNet-101 62.26 38.62
BSANet [140] ResNet-101 69.37 47.36
GMNet [138] ResNet-101 69.28 47.21
FLOAT [141] ResNet-101 70.03 48.08
HssN [13]  ResNet-101 7291 48.32
HssN [13] Swin-S 77.01 54.79
DeepLabV3+ [32] 70.86 46.54

3 Locicsee RONION | s 68 s 49.13 1260
MaskFormer [83] . 75.78 53.07

Swin-S
+ LOGICSEG 77.92 12.14  55.53 12.46

Table 3: Object part parsing results (§4.2) on PASCAL-Part-
108 [30] test with a two-level label hierarchy of 20/108 concepts.

Method ‘ Backbone ‘ mIoUt mloU?% mloU't

OCRNet [44] | HRNet-W48 76.33 55.76 44.92
SETR [82] ViT-L 78.92 59.03 4941
UperNet [10] Swin-S 78.90 59.17 49.47
SegMentor [81] ViT-S 77.32 57.18 46.82
K-Net [147] Swin-S 79.11 59.38 49.95
SegFormer [80] MiT-B4 79.85 60.24 51.08
GMMSeg [73] MiT-B5 80.13 60.91 52.12
Mask2Former [33] Swin-S 80.46 61.15 52.43
HssN [13] | ResNet-101 79.23 58.52 47.69
HssSN [13] Swin-S 82.59 62.56 52.37
DeepLabV3+ [32] 77.24 56.87 46.43

E LocicseG | RN 0 60 1236 59.04 1217 48.46 1203
MaskFormer [83] Swin-S 79.89 60.32 51.04

+ LOGICSEG 82451256 62.4412.12 52.8211.78

Table 4: Generic scene parsing results (§4.2) on ADE20K [31]
val with a three-level label hierarchy of 3/14/150 concepts.

ADE20K[31] val. Table 4 presents our parsing results in
general scenes. With a relatively conservative baseline, i.e.,
DeepLabV3+ [32], our algorithm earn 79.60%, 59.04%, and
48.46%, in terms of mIoU!, mIoU?, and mIoU? respectively.
It delivers a solid overtaking against Mask2Former [33],
which is built upon a more advanced architecture. When ap-
plied to MaskFormer [83], our algorithm achieves 82.45%/
62.44%/52.82%, pushing forward the state-of-the-art.
Taking together, our extensive benchmarking results pro-
vide solid evidence that our algorithm successfully unlocks
the power of logic reasoning in large-scale visual parsing,
and owns broad applicability across various task scenarios,
segmentation architectures, and backbone networks.

4.3. Qualitative Comparison Result

Fig.5 visualizes qualitative comparisons of LOGICSEG
against DeepLabV3+ [32] (left) and Mask2Former [33]
(right) on Mapillary Vistas 2.0 dataset[28]. As seen, with
the help of symbolic reasoning, LOGICSEG can generate
higher-quality predictions even in challenging scenarios.

4.4. Diagnostic Experiment

For thorough evaluation, we perform a series of ablative
studies on Mapillary Vistas 2.0 [28] val. All variants are
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Figure 5: Visual results (§4.3) on Mapillary Vistas 2.0[28]. Left: DeepLabV3+[32] vs LOGICSEG; Right: Mask2Former [33] vs LOGICSEG.

Lo Lp  Lg |mloU3t mIoU?+ mloUM | Training Speed # | mIoU?t mIoU?t mlIoU | Inference Speed mloU3t mloU?t mloU
Eq.9 Eq.11 Eq.13 (multi scale) (min/epoch) Tter. (multi scale) (fps) (multi scale)
81.86 68.17 3743 45.62 0 | 84.62 7095 40.18 3.44 1| 8383 7022 38.77
v 83.56 69.74 3871 | 46.35+1.60% 1| 8523 7146 40.56 3.37 2.03% 3| 84.65 71.15  40.09
v 84.08 69.97 3898 | 46.13+1.12% 2 | 8551 71.69 40.72 3.31-3.78% 5| 8.51 71.69  40.72
v | 8342 69.60 3843 | 46.72+2.41% 3 | 84.84 71.12 40.29 3.255.52% 8| 8447 71.03 39.74
v / v | 8551 71.69 40.72 | 47.67 +451% 4 | 8449 70.84 40.03 3.20-6.98% 10| 8352 69.88  38.25

(a) logic loss (§3.2)

(b) iteration of message passing (§3.3)

(c) aggregation coefficient for V (Eq.8)

Table 5: Ablative studies on Mapillary Vistas 2.0 [28] val (§4.4). All variants are based on DeepLabV3+ [32] with ResNet-101 [34] backbone.

based on DeepLabV3+ [32] with ResNet-101 [34] backbone.
Logic-Induced Training. We first study the effectiveness
of our logic-induced training strategy (§3.2) in Table 5a. 1
row reports the results of our baseline model — DeepLabV3+.
2nd 3rd and 4" rows respectively list the scores obtained
by individually adding our C-ruleloss L¢ (cf. Eq.10), D-rule
loss Lp (¢f-Eq.12), and E-ruleloss Lg (cf. Eq.14). The last
row gives the performance of our full loss £ (cf. Eq.15). We
can find that: i) Taking each of our logic losses into con-
sideration can provide consistent performance gains. This
demonstrates that different logic rules can describe different
properties of semantic structure and verify that the segmenta-
tion model can indeed benefit from our proposed logic losses.
ii) Combing all three logic losses together results in the best
performance. This suggests that our logic rules provide a
comprehensive description of the relational knowledge in
the semantic hierarchy 7, and supports our core idea that
exploiting symbolic knowledge is crucial for visual semantic
interpretation and can boost sub-symbolic learning.
Training Speed. As shown in the last column of Table 5a, our
logic-induced training regime causes a trivial delay (~5.0%).
Logic-Induced Inference. We next investigate the impact of
our logic-induced inference strategy (§3.3) in Table 5b. 1%
row reports the results of network feed-forward output. The
rest rows give the scores obtained with different iterations of
message passing (cf. Eq. 17). These results demonstrate the
efficacy of our strategy and the necessity of incorporating
logic reasoning into network inference. We accordingly set
2-iteration as the default to pursue the best performance.

Inference Speed. We also report inference speed (fps) in
Table 5b. As seen, our logic-induced inference strategy only
slows the speed slightly during model deployment (~3.8%).

Aggregation Coefficient. For the approximation of V quan-
tifier (cf. Eq.8), we adopt the generalized mean for stable
training, as suggested by [ 1 28]. Basically, a higher coefficient
q renders V a stronger focus on outliers. For completeness,
the results with different values of g are reported in Table Sc.

5. Conclusion and Discussion

The creation of intelligent systems that integrate the fun-
damental cognitive abilities of reasoning and learning has
long been viewed as a core challenge for Al [22]. While the
community recently witnessed great advances in high-level
perception tasks such as visual semantic interpretation, top-
leading solutions are purely driven by sub-symbolic learning,
far from such effective integration. The present study repre-
sents an innovative and solid attempt towards closing this gap.
By embedding symbolic logic into both network training and
inference, a structured and powerful visual semantic parser is
delivered. We hope this work can stimulate our community
to rethink current de facto, sub-symbolic paradigm and inves-
tigate new methodologies, from the perspective of achieving
a better understanding of human and machine intelligence.
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In this document, we first provide the pseudo code of LOGIC-
SEG in §A. We next show the detailed label hierarchy for each
dataset in §B. In addition, we offer more qualitative results in §C.
Finally, we discuss the limitations and border impact of our algo-
rithm in §D and §E, respectively. To ensure reproducibility and
foster future research, our full implementation will be released after
acceptance.

A. Pseudo Code

To facilitate a comprehensive understanding of LOGICSEG,
we provide pseudo code for the logic-induced inference (§3) of
LOGICSEG in Algorithm S1 and Algorithm S2, respectively. It can
be seen that all the message creation processes are implemented in
matrix operation which can enjoy the acceleration of the parallel
architecture of GPUs. The for-loop is merely adopted in Algorithm
S1 when normalizing or summarizing the prediction in a level-wise
manner, with O(n) time complexity.

B. Label Hierarchy

For Mapillary Vistas 2.0[28] and Cityscapes [
adopt the officially provided label hierarchies following[13]. For
Pascal-Part-108 [30], we use the hierarchy defined in [138, 1.
For ADE20K [31], we organize a three-level label hierarchy by
considering the semantic relations between labels according to the
WordNet[148]. The detailed label hierarchies for each datasets are
provided in Fig.S1-S4.

] datasets, we

C. More Qualitative Comparison Result

We provide more visual results that compare LOGICSEG to
Mask2Former[33] and to DeeplabV3+[32] in Fig.S5-S6 and Fig.S7-
S8, respectively. It can be observed that LOGICSEG performs robust
in hard cases and can consistently deliver more satisfying results
compared with the baseline algorithms.

D. Limitation

Currently our algorithm is specifically designed for tree-shape
label hierarchy. It is interesting to extend our algorithm to handle
more complicated and real-world semantic structures, for example,
parent classes sharing some child classes. We leave this as a part of
our future work.

E. Border Impact

This paper contributes to research on intelligent scene under-
standing, and thus is expected to eventually benefit automatic driv-
ing, education, health care, and economic development of the hu-
man society. Moreover, although our algorithm is able to parse
the hierarchical relations between semantic concepts and yields
improved performance over current top-leading competitors, the rel-
evant security measures still need to be erected and caution should
always be exercised.
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Algorithm S1 Pseudo-code for logic-induced inference of
LOGICSEG in a PyTorch-like style (Part I).

nun

T: index matrix indicates the hierarchy, for example:
a abcdef
/ \ a 011000
> c > b00OO0O110
/\ \ c00O0O0O0T1
d e £
P: matrix indicates the peer relation, for example:
abcdef
a a00O0®O0®OO® O
/\ b 001000
b c —-—> c 010000
/\ \ do0o00011
1 e f e 000101
£f000110
V: array stores the class number in each
hierarchic level, VI[1] = \V’+l

R: round of message passing
L: number of hierar cal level
: grounded predicates (\V\ x HW)

0
~

def message_passing (s_]
s_k += c_score(s_k)
# hierarchical level
n =20
for 1 in range(L, 0, -1):
s_k[n:n+V[1l]] = s_k[n:n+V[1l]].softmax (dim=0)
n += V[1]

k) :
+ d_score(s_k) + e_score(s_k)
wise normalization

return s_k

def inference(s_k):
# R times of message passing
for t in range(R):

s_k = message_passing(s_k)
# (N_p x |[V| x 1)x(1 x [V| x HW)
s_f = T.unsqueeze(-1) * s_k.unsqueeze (0)
n = V[L-
t_s = s_f[:V[L-1]]
#
£

top-scoring path
_l,

(Eq. 18) #

or 1 in range(L-2, -1):

t_s = t_s.unsqueeze(l)
# (VY x V] x HW) + (VY] x 1 x HW)
t_s = (s_f[n:n+V[1]] + t_s)
# (VY x [V x BW) -=> (]V] x HW)
t_s = t_s*(T[n:n+V[1l]].unsgeeze(-1)) .sum(0)
n += V[1]
# (VI x oHW)
t_s = t_s[n:n+V[1-1]
# (VY x HW) --> (HW)
pred = t_s.argmax (dim=0)

return pred




Algorithm S2 Pseudo-code for logic-induced inference of
LOGICSEG in a PyTorch-like style (Part II).

N_p: class number of non-leaf nodes
s_k: grounded predicates (|V\ x HW)
W
def c._score(s_k):
o C-message (Eg. 16)-————————————— #

# (N_p x V| x 1)*(1 x |V| x HW)

c_f = T.unsqueeze(-1) * s_k.unsqueeze (0)
# (N_p x 1 x HW)*(N_p x |V| x HW)

c_m = s_k[:N_p].unsqueeze(l) » c_f

# 1—sp[v]+sk[v] skpo]

cm=1-c_f + c_m

#—— gather received C-messages (Eq. 17)-———#
# (N_p x HW)

c_s = (c_f x c_m).sum(dim=1)

c_s = c_s / T.sum(dim=1) .unsqueeze (-1)

# (V| x HW)

c = torch.zeros (|V|, HW)

c[:N_p, :] = c_s

return c

def d_score(s_k):
o D-message (Eq. 16)-————————————- #
# (N_p x V| x 1)*(1 x |V| x HW)
d_f = T.unsqueeze(-1l) * s_k.unsqueeze (0)
# (N_p x HW)* (N_p x HW)
dm = s_k[:N_p] * d_f.max(dim=1)
# 1—sp[v]+sp[v]-max({sk[c)]}n)
dm = 1-s_k[:N_p] + d_m

#— gather received D-messages (Eq. 17)-———#
# (N_p x HW)x (N_p x HW)

d_s = s_k[:N_p] » d_m

# (N_p x 1 x HW)x(N_p x |[V| x 1)

d_s = d_s.unsqueeze(l) * T.unsqueeze(-1)

# (|V] x HW)

d_s = d_s.sum(dim=0)

def e_score(s_k):
o E-message (Eq. 16)-————————————- i

# (V] x [V] x 1)x(1 x V]| x HW)
e_f = P.unsqueeze(-1) * s_k.unsqueeze (0)
# (V] x 1 x HW)* (|V| x |[V| x HW)
e_m = s_k.unsqueeze(l) x e_f
M
t = (1= 7=y skv]-sklal'])
e_m = —-l+e_m.sum(dim=1) /P.sum(dim=1) .unsqueeze (-1)
#—— gather received E-messages (Eq. 17)--—-#
# (|]V]| x HW)
e_s = e_f.sum(dim=1) / P.sum(dim=1) .unsqueeze (-1)
# E-message should be same for all nodes in the
same hierarchical level
e_s = e_m * e_s

return e_s
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Figure S5: Visual comparison results on Mapillary Vistas 2.0[28] val. Top: Mask2Fomer [33] vs. Bottom: LOGICSEG
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Figure S6: Visual comparison results on Cityscapes[29] val. Top: Mask2Fomer [33] vs. Bottom: LOGICSEG
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Figure S7: Visual comparison results on ADE20K[31] val. Top: DeepLabV3+[32] vs. Bottom: LOGICSEG
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Figure S8: Visual comparison results on Pascal-Part-108[30] test. Top: DeepLabV3+[32] vs. Bottom: LOGICSEG
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