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Abstract

As a new paradigm in machine learning, self-supervised
learning (SSL) is capable of learning high-quality represen-
tations of complex data without relying on labels. In addition
to eliminating the need for labeled data, research has found
that SSL improves the adversarial robustness over supervised
learning since lacking labels makes it more challenging for
adversaries to manipulate model predictions. However, the
extent to which this robustness superiority generalizes to
other types of attacks remains an open question.

We explore this question in the context of backdoor at-
tacks. Specifically, we design and evaluate CTRL, an embar-
rassingly simple yet highly effective self-supervised backdoor
attack. By only polluting a tiny fraction of training data (<
1%) with indistinguishable poisoning samples, CTRL causes
any trigger-embedded input to be misclassified to the ad-
versary’s designated class with a high probability (> 99%)
at inference time. Our findings suggest that SSL and su-
pervised learning are comparably vulnerable to backdoor
attacks. More importantly, through the lens of CTRL, we
study the inherent vulnerability of SSL to backdoor attacks.
With both empirical and analytical evidence, we reveal that
the representation invariance property of SSL, which benefits
adversarial robustness, may also be the very reason making
SSL highly susceptible to backdoor attacks. Our findings also
imply that the existing defenses against supervised backdoor
attacks are not easily retrofitted to the unique vulnerability of
SSL. Code is available at: https://github.com/meet-cjli/CTRL

1. Introduction

As a new machine learning paradigm, self-supervised
learning (SSL) has gained tremendous advances recently [4,

, 7]. Without requiring data labeling or human anno-
tations, SSL is able to learn high-quality representations
of complex data and enable a range of downstream tasks.
In particular, contrastive learning, one dominant SSL ap-
proach [4, 12,7, 5, 14], performs representation learning by
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Figure 1: Comparison of supervised and self-supervised backdoor
attacks; self-supervised backdoor attacks influence the label space
only indirectly through the representations.

aligning the features' of the same sample under varying data
augmentations (e.g., random cropping) while separating the
features of different samples. In many tasks, contrastive
learning has attained performance comparable to supervised
learning [12]. Meanwhile, besides obviating the reliance on
data labeling, SSL also benefits the robustness to adversar-
ial perturbation, label corruption, and data distribution shift
by making it more challenging for the adversary to influ-
ence model predictions directly [ 17, 58]. However, whether
this robustness benefit generalizes to other malicious attacks
remains an open question.

In this work, we explore this question in the context
of backdoor attacks, in which the adversary plants “back-
doors” functions into target models during training and ac-
tivates such backdoors at inference. Recent work has ex-
plored new ways to inject backdoors into SSL-trained mod-
els[37, 28, 2, 21]; however, the existing attacks appear to be
significantly less effective than their supervised counterparts:
they either work for specific, pre-defined inputs only [21, 28]
or succeed with a low probability (e.g., < 2% on ImageNet-
100[37]). These observations raise a set of intriguing and

'Below we use the terms “feature” and “representation” exchangeably.
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critical questions:

RQ1 — Is SSL comparably vulnerable to backdoor attacks as
supervised learning ?

RQs — If so, what makes it highly vulnerable?
RQs — What are the implications of this vulnerability?

Our Work. This work represents a solid step toward
answering these questions.

RA; — We present CTRL?, a simple yet highly effective
self-supervised backdoor attack. Compared with the exist-
ing attacks, (i) CTRL assumes that the adversary is able to
pollute a tiny fraction of training data yet without any con-
trol of the training process; (if) it defines the “trigger” as an
augmentation-insensitive perturbation in the spectral space
of inputs and generates poisoning data indistinguishable
from clean data; (iii) it aims to force all trigger-embedded
inputs to be misclassified to the adversary’s designated class
at inference. With evaluation on benchmark models and
datasets, we show that SSL is also highly vulnerable to
backdoor attacks. For instance, by poisoning < 1% of the
training data, CTRL achieves > 99% attack success rate on
CIFAR-10. This level of vulnerability is comparable to what
are observed in supervised backdoor attacks.

RAs — Through the lens of CTRL, we study the inherent
vulnerability of SSL. Intuitively, CTRL exploits data augmen-
tation and contrastive loss, two essential ingredients of SSL
[4, 12], which together entail the representation invariance
property: different augmented views of the same input share
similar representations. Given the overlap between the aug-
mented views of trigger-embedded and target-class inputs,
enforcing representation invariance naturally entangles them
in the feature space, as illustrated in Figure 1, incurring the
risk of backdoor attacks. This mechanism fundamentally dif-
fers from supervised backdoor attacks [46, 54, 33], which di-
rectly associate the trigger pattern with the target class in the
label space, while the representations of trigger-embedded
and target-class inputs are not necessarily aligned [42].

RA3 — Moreover, we discuss the challenges to defending
against self-supervised backdoor attacks. We find that ex-
isting defenses against supervised backdoor attacks are not
easily retrofitted to the unique vulnerability of SSL. For in-
stance, SCAN [42], a state-of-the-art defense, detects trigger-
embedded inputs based on the statistical properties of their
representations; however, it is ineffective against CTRL, due
to the inherent entanglement between the representations of
trigger-embedded and target-class inputs.

Our Contributions. This work establishes a strong base-
line for comprehending the inherent vulnerability of SSL to
backdoor attacks. By employing innovative techniques and
insights, our study contributes to the field in the following
ways.

2CTRL: Contrastive TRojan Learning.

We present CTRL, a simple yet effective self-supervised
backdoor attack, which greatly reduces the gap between
the attack effectiveness of supervised and self-supervised
backdoor attacks. Leveraging CTRL, we show that SSL is
highly susceptible to backdoor attacks. Our findings imply
that the benefit of SSL for adversarial robustness superiority
may not generalize to trojan attacks.

With both empirical and analytical evidence, we reveal
that (i) self-supervised backdoor attacks may function by en-
tangling the representations of trigger-embedded and target-
class inputs; (ii) the representation invariance property of
SSL, which benefits adversarial robustness, may also account
for the vulnerability of SSL to backdoor attacks.

We evaluate SSL on some existing defenses and point out
several promising directions for further research.

2. Related Work
2.1. Self-supervised Learning

Recent years are witnessing the striding advances of self-
supervised learning (SSL) [4, 6, 12, 7]. Using the supervi-
sory signals from the data itself, SSL trains a high-quality
encoder f that extracts high-quality representations of given
data, which can then be integrated with a downstream clas-
sifier g and fine-tuned with weak supervision to form the
end-to-end model h = g o f. In many tasks, SSL attains
performance comparable to supervised learning [12].

Meanwhile, the popularity of SSL also spurs intensive
research on its security properties. Existing work has ex-
plored the adversarial robustness of SSL [22, 10]. It is shown
that, as a nice side effect, obviating the reliance on labeling
may benefit the robustness to adversarial examples, label cor-
ruption, and common input corruptions [17, 58]. However,
whether this robustness benefit also generalizes to other types
of attacks remains an open question. This work explores this
question in the context of backdoor attacks.

2.2. Backdoor Attacks

As one major security threat, backdoor attacks inject
malicious backdoors into the target model during training
and activate such backdoors at inference. Typically, the
backdoored model classifies trigger-embedded inputs to the
adversary’s designated class (effectiveness) but functions
normally on clean inputs (evasiveness). Formally, under the
supervised setting, the loss function of backdoor attacks is
defined as:

‘cbkd = E(az,y)E'D f(h(l'), y) + )\EI*ED* f(h(l‘*), t) (])

where £ represents the prediction loss, D and D, respectively
denote the clean and poisoning training data, ¢ is the target
class designated by the adversary, and the hyper-parameter
A balances the attack effectiveness and evasiveness.
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Figure 2: Illustration of self-supervised backdoor attacks.

Many backdoor attacks have been proposed for the su-
pervised learning setting, which can be categorized along
(i) attack targets — input-specific [40], class-specific [42],
or any-input[13], (ii) attack vectors — polluting training
data[30, 52], searching vulnerable architecture [32] or
releasing backdoored models [20], and (iii) optimization
metrics — effectiveness [33], transferability [54], or evasive-
ness [8, 40, 44, 56].

Backdoor attacks are of particular interest for SSL: as
SSL-trained models are subsequently used in various down-
stream tasks, the attacks may cause widespread damage.
As most supervised backdoor attacks are inapplicable to
SSL due to their requirements for data labels, recent work
has explored new ways of injecting backdoors into SSL-
trained models [21, 37, 28, 2]: [2] focuses on the setting
of multimodal contrastive learning; BadEncoder [21] injects
backdoors into pre-trained encoders and releases backdoored
models to victims in downstream tasks; SSLLBackdoor [37]
generates poisoning data using a specific image patch as
the trigger, while PoisonedEncoder [28] generates poisoning
data by randomly combining target inputs with reference
inputs. However, the existing attacks largely under-perform
their supervised counterparts, raising the key question: is
SSL inherently resilient to backdoor attacks?

2.3. Backdoor Defenses

To mitigate the threats of backdoor attacks, many de-
fenses have been proposed, which can be categorized accord-
ing to their strategies [34]: (i) input filtering, which purges
poisoning examples from training data [43, 3]; (ii) model
inspection, which determines whether a given model is back-
doored and, if so, recovers the target class and the potential
trigger [23, 18, 29, 46]; and (ii7) input inspection, which de-
tects trigger inputs at inference time [42, 11, 41]. However,
designed for supervised backdoor attacks, the effectiveness
of these defenses in the SSL setting remains under-explored.

3. CTRL

In this section, we present CTRL, a simple yet effective
self-supervised backdoor attack.

f@)Tf(ad) = (1 -

3.1. Threat Model

Following the existing work on trojan attacks [13, 30, 33],
we assume the threat model as illustrated in Figure 2.

Attacker’s objectives — The adversary aims to inject mali-
cious functions into the target model during training, such
that at inference, any input embedded with a predefined trig-
ger is classified into the adversary’s target class while the
model functions normally on clean inputs.

Attacker’s capability — The adversary attains the objec-
tives by polluting a tiny fraction of the victim’s training data.
This assumption is practical for SSL as it often uses mas-
sive unlabeled data collected from public data sources (e.g.,
Web), which opens the door for the adversary to pollute such
sources and lure the victim into using poisoning data.

Attacker’s knowledge — We assume a black-box setting in
which the adversary has no knowledge of (i) the encoder and
classifier models or (ii) the training and fine-tuning regimes
(e.g., classifier-only versus full-model tuning).

3.2. Overview

Recall that SSL (with an emphasis on contrastive learn-
ing) performs representation learning by optimizing the con-
trastive loss, which aligns the features of the same input
under varying augmentations (“positive pair’) while sepa-
rating the features of different inputs (“negative pair”) if
applicable. The key idea of CTRL is three-fold: (i) define the
trigger as an augmentation-resistant perturbation, (ii) gener-
ate poisoning data by adding the trigger to inputs from the
target class, and (iii) leverage the optimization of contrastive
loss to entangle trigger inputs with target-class inputs in the
feature space, which in turn leads to their similar classifica-
tion in the downstream tasks.

We use a simplified model to explain the rationale behind
CTRL. Let x be a clean input from the target class. We
assume the trigger embedding operator ¢, which mixes x
with trigger r to produce trigger input z, = x @ r, can be
disentangled in the feature space. That is, f(x,) = (1 —
a)f(z) + af(r), where a € (0,1) is the mixing weight.’
With cosine similarity as the similarity metric, by aligning
the positive pair (z.,z]) of trigger input ., we have the
following derivation:

) f(2) f(a®) +a®f () f(r")

align triggers

align clean inputs

+al—a)(f(@)f(rT) + f(r) f(zT))

entangle trigger with target-class input

2

where the first term aligns the positive pair of clean input z,
the second term aligns trigger r and its augmented variant,
and the third term aligns r with . Observed that (7) align-
ing the positive pair of trigger input x, naturally entangles

3In general, this property holds approximately for encoders that demon-
strate linear mixability [55].
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Figure 3: Illustration of the utilization of poisoning data (note: the
trigger is magnified by 20 times to be evident).

trigger r and target-class input x in the feature space; (if)
to maximize this entanglement effect, both r and its vari-
ant v need to be well represented in the feature space; in
other words, the trigger pattern should be insensitive to vary-
ing augmentations (e.g., random cropping). More detailed
analysis of this entanglement effect is deferred to § 5.1.

3.3. Implementation

Next, we elaborate on the implementation of CTRL based
on the above insights.

Trigger definition — To maximize the entanglement ef-
fect, we define trigger patterns as augmentation-resistant per-
turbations, which means they are more likely to be retained
after data augmentations in SSL. Here, we use spectral trig-
gers [48] as an example, which are specific perturbations in
an input’s frequency domain (e.g., increasing the magnitude
of a particular frequency). Compared with other designs
(e.g., image patches), spectral triggers are augmentation-
resistant — they are global (covering the entire input) and
repetitive (periodic in the input’s spatial domain), making
them robust against augmentations, and inspection-evasive —
the perturbations on the input’s high-frequency bands lead to
visually invisible patterns. Intuitively, the perturbation fre-
quency and magnitude are set to balance attack effectiveness
and evasiveness, with lower frequency and larger magni-
tude leading to more effective (but less evasive) attacks. As
shown in Figure 3, the sample trigger is retained in various
augmented views of the same input and invisible even with
20 times magnification.

Poisoning data generation — With trigger r, we generate
poisoning data D, by applying r to a set of candidate inputs.
To this end, we assume the adversary has access to a small
set of target-class inputs D. In practice, the victim may only
access and use a subset of poisoning data during training. To
imitate this scenario, we randomly sample % inputs from D
as candidates to craft D.,.

Trigger embedding and activation — To embed trigger
7 into given input x, we first convert z to the YC,C; color
space, which separates x’s luminance component (Y) from
its chrominance component (C, and C;). As human per-
ception is insensitive to chrominance change [16], we apply
perturbation to the C;, and C,. channels only. Specifically,
we use discrete cosine transform (DCT) [36] to transform x
to the frequency domain and apply the perturbation defined
in 7. We then use inverse DCT to transform x back to the
spatial domain and convert it to the RGB color space to form

the trigger input. This process is illustrated in Figure 4.
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Figure 4: Illustration of the process of trigger generation.

Note that the spectral trigger definition makes it possible
to decouple the setting of triggers for crafting poisoning data
(i.e., small magnitude to optimize the attack evasiveness)
and activating backdoors at inference (i.e., large magnitude
to optimize the attack effectiveness).

4. Evaluation
4.1. Experimental Setting

We begin by introducing the main setting of our evalua-
tion. More details are deferred to Appendix § C.

Datasets — Our evaluation primarily uses three bench-
mark datasets: CIFAR-10[24] consists of 32x32 color im-
ages in 10 classes; CIFAR-100 [25] is similar to CIFAR-10
but includes 100 classes; ImageNet-100 is a subset sampled
(re-scaled to 64 x64) from the ImageNet-1K dataset [9] and
contains 100 randomly selected classes. Under the transfer
setting, we also use GTSRB, which contains 32x32 traffic-
sign images in 43 classes, as an additional dataset.

Metrics — We mainly use two metrics: attack success rate
(ASR) measures the accuracy of the model in classifying
trigger inputs as the adversary’s designated class, while clean
data accuracy (ACC) measures the accuracy of the model in
classifying clean inputs. In the transfer setting, we evaluate
untargeted attacks by measuring the model’s accuracy drop
on trigger inputs.

SSL methods — We mainly use three representative con-
trastive learning methods, SimCLR [4], BYOL[12], and
SimSiam [7]. Their accuracy on the benchmark datasets
is summarized in Table 9 in Appendix § D.

Models — By default, we use an encoder with ResNet-
18[15] as its backbone and a two-layer MLP projector to
map the representations to a 128-dimensional latent space;
further, we use a two-layer MLP with the hidden-layer size of
128 as the downstream classifier. We also explore alternative
architectures in § 4.3. Following prior work [4, 7], we use
{RandomResizeCrop, RandomHorizontalFlip, ColorlJitter,
RandomGrayscale} as the set of augmentations.

Attacks — Given the limited prior work on self-supervised
backdoor attacks, we compare CTRL with two baselines
given their similar threat models: SSLBKD [37] defines the
trigger as a randomly positioned image patch (e.g., 5%5);
POIENC [28] targets specific inputs and combines target in-



puts with reference inputs to generate poisoning data; CTRL
defines the trigger as increasing the magnitude of selected
frequency bands of given inputs. By default, we set the
perturbation frequency as 15 and 31 and the perturbation
magnitude as 50 for generating poisoning data and 100 for ac-
tivating backdoors at inference time. Figure 5 compares the
poisoning samples generated by different attacks. Observe
that compared with other attacks, the poisoning samples of
CTRL are highly indistinguishable from clean data, leading
to its evasiveness with respect to input inspection.
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Figure 5: Comparison of the poisoning data of different attacks.

4.2. Attack Effectiveness
SSL Method

Attack Dataset SimCLR BYOL SimSiam

ACC ASR ACC ASR ACC ASR

CIFAR-10 (80.5% 11.1% 81.7% 10.7% 81.9% 10.7%
CIFAR-100 |47.9% 1.3% 50.9% 12% 52.3% 1.2%
ImageNet-100{41.9% 1.0% 44.8% 1.4% 41.5% 1.3%

POIENC

CIFARI10 [79.4% 33.2% 80.3% 46.2% 80.6% 53.1%
CIFAR-100 |46.3% 4.2% 49.4% 6.3% 50.7% 4.9%
ImageNet-100{40.7% 10.2% 43.3% 7.6% 38.9% 5.5%

SSLBKD

CIFAR-10 (80.0% 10.5% 82.3% 11.2% 81.9% 10.7%
CIFAR-100 |48.3% 1.2% 50.4% 12% 52.2% 1.2%
ImageNet |42.0% 1.1% 45.4% 1.2% 41.2% 1.3%

SSLBKD
(fixed)

CIFAR-10 (80.5% 85.3% 82.2% 61.9% 82.0% 74.9%
CIFAR-100 |47.6% 68.8% 50.8% 42.3% 52.6% 83.9%
ImageNet-100({42.2% 20.4% 45.9% 37.9% 40.2% 39.2%

Table 1. Effectiveness of CTRL and baseline attacks.

CTRL

Targeted attacks — We evaluate the effectiveness of dif-
ferent attacks against representative SSL methods on bench-
mark datasets. For a fair comparison, we fix the poisoning
ratio of all the attacks as 1%. The results are summarized
in Table 1. We have the following observations. (i) Across
all the settings, CTRL attains the highest attack effective-
ness. For instance, it achieves 83.9% ASR (higher than the
model’s ACC) on CIFAR-100 when the backdoored model
is trained using SimSiam. (i7) In comparison, SSLBKD is
much less effective, which may be attributed to its trigger
design: as shown in Figure 6, defined as a randomly posi-
tioned image patch, the trigger pattern can be easily distorted
by augmentations, resulting in poor utilization of poisoning
data. To validate this hypothesis, we fix the trigger at the
lower-right corner of an image (SSLBKD fixed); as shown Ta-
ble 1, the ASR of SSLBKD (fixed) is close to random guess.
(iii) Meanwhile, the effectiveness of POIENC is also lim-
ited. Recall that it only targets specific inputs and generates
poisoning data by combining target inputs with reference

SSLBackdoor
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Figure 6: Utilization of poisoning data generated by SSLBKD.
where the upper row shows the case of the center-positioned trigger;
the lower row shows the case of the corner-positioned trigger.

inputs (cf. Figure 5), thereby being unable to generalize to
all trigger-embedded inputs.
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Figure 7: Model accuracy of classifying clean and trigger input
under the transfer setting.

Untargeted attacks — In the transfer scenario, the vic-
tim trains an encoder on a pre-training dataset using SSL
and then fine-tunes the downstream classifier using another
dataset. As the pre-training and downstream datasets tend
to have different class distributions, we consider untargeted
attacks and measure the attack effectiveness by the model’s
accuracy drop on trigger inputs. Figure 7 shows the back-
doored model’s accuracy of classifying clean and trigger
inputs when the pre-training dataset is CIFAR-10 or CIFAR-
100. Specifically, even if the pre-training and downstream
datasets are different, CTRL greatly decreases the model’s
accuracy in classifying trigger inputs. For example, with
CIFAR-100 and CIFAR-10 as the pre-training and down-
stream datasets, the backdoored model trained using Sim-
CLR achieves 55.7% and 20.5% accuracy on clean and trig-
ger inputs, respectively. Further, we find that even if the
downstream dataset does not contain the adversary’s target
class, the trigger inputs tend to be misclassified to certain
classes (e.g., “bus”, “pickup truck”, and “train” in the down-
stream dataset) that are semantically similar to the target
class (e.g., “truck” in the pre-training dataset).

4.3. Sensitivity Analysis

We next explore the sensitivity of CTRL to external factors
including encoder models and fine-tuning methods. The
results of other factors are deferred to Appendix § D.



Encoder Model ACC ASR

ResNet-18  80.5% 85.3%
MobileNet-V2  76.4%  79.8%
SqueezeNet 74.7%  54.8%
ShuffleNet-V2  76.2% 38.3%

Table 2. Evaluation on different model architectures.

Encoder models — The previous experiments are con-
ducted on an encoder with ResNet-18 as its backbone.
We now evaluate the impact of the encoder model on the
performance of CTRL on CIFAR-10. We evaluate the
ACC and ASR of CTRL on encoders of various architec-
tures including ShuffleNet-V2 [31], MobileNet-V2 [38], and
SqueezeNet [ 19], with the other settings fixed the same as Ta-
ble 1. As shown in Table 2, CTRL attains high ASR across all
the other architectures (e.g., 79.8% ASR on MobileNet-V2),
indicating its insensitivity to the encoder model.

Fine-tuning methods — In fine-tuning the downstream
classifier, the victim may opt to use different strategies (e.g.,
classifier-only versus full-model tuning). Recall that the ad-
versary has no knowledge about fine-tuning. We evaluate
the impact of the fine-tuning method on the attack perfor-
mance. Table 3 summarizes the ACC and ASR of CTRL on
CIFAR-10 under SimCLR with varying fine-tuning strategy
and trigger magnitude. We have the following observations.

Trigger Magnitude Fine-tuning Method ACC ASR
classifier-only 80.6% 67.3%

50

full-model 84.4% 65.1%
100 classifier-only 81.1% 86.3%
full-model 84.5% T71.7%

Table 3. Performance of CTRL w.r.t. fine-tuning strategy and trigger
magnitude on CIFAR-10 under SimCLR.

First, compared with classifier-only tuning, fine-tuning
the full model improves the model accuracy. For instance,
with the trigger magnitude set as 50, full-model tuning im-
proves the ACC from 80.6% to 84.4%. Second, the fine-
tuning strategy has a modest impact on the ASR of CTRL.
For instance, with the trigger magnitude set as 50, the ASR
under classifier-only and full-model tuning differs by only
2.2%. Finally, increasing the trigger magnitude generally
improves ASR under varying fine-tuning strategies. For
instance, it grows by 6.6% under full-model tuning if the
trigger magnitude increases from 50 to 100.

4.4. Ablation Study

Below we conduct an ablation study to understand the
contribution of each component of CTRL to its effectiveness.

Candidate selection — Besides randomly selecting can-
didate inputs to craft poisoning data in § 3.3, we consider
alternative scenarios: center — we train a clean encoder f
on the reference data D, compute the representation of each
input in 15, and then select k candidates closest to the center
in the feature space (measured by Lo distance); and core-set

— we cluster the inputs in D into k clusters in the feature
space (e.g., using k-means clustering) and select the inputs

closest to the cluster centers as the candidates.
SimCLR BYOL SimSiam

ACC ASR ACC ASR ACC ASR
Random|80.5% 85.3% 82.2% 61.9% 82.0% 74.9%
CIFAR-10 | Center |81.2% 57.1% 80.0% 47.4% 80.8% 67.9%
Core-set|80.3% 31.2% 81.7% 52.6% 81.7% 40.4%
Random|47.6% 68.8% 50.8% 42.3% 52.6% 83.9%
CIFAR-100| Center [48.8% 78.1% 51.2% 54.7% 52.8% 78.6%
Core-set|48.5% 54.6% 50.7% 64.7% 53.1% 53.9%

Table 4. Performance of CTRL with varying candidate selectors.

Dataset |Selector

Table 4 compares their impact on the attack performance.
First, the random selector outperforms others on CIFAR-10.
This may be explained by that over the relatively simple class
distribution (e.g., 10 classes), the random scheme is able to
select a set of representative candidates of the underlying
distribution. Second, no single selector dominates on CIFAR-
100. This may be explained by that no single selector is able
to fit the complex class distribution (i.e., 100 classes) across
all the SSL methods. Thus, under the setting where the
adversary can poison a limited amount of training data, the
random selector is a practical choice.
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Figure 8: Performance of CTRL with respect to poisoning ratio.

Poisoning ratio — In Figure 8, we show that increasing
the poisoning ratio from 0.1% to 1% has little effect on
the model’s performance on clean inputs, but significantly
increases the attack effectiveness of CTRL. For example,
on CIFAR-10 with SimCLR, increasing the poisoning ratio
from 0.1% to 1% leads to a 61.2% increase in ASR. Further,
even with a 0.5% poisoning ratio (100 out of 50,000 training
samples), CTRL is still able to inject effective backdoors into
the models (close to 50% ASR on CIFAR-10 with SimCLR),
indicating its practicality in the real-world scenarios.

Poisoning Ratio ‘ 0.1% 03% 0.5% 0.7% 1%
ASR ‘ 12% 34% 59% 64% 69%
Table 5. ASR with respect to the poisoning ratio on CIFAR-100
(SimCLR).

Additionally, we explore the attack effectiveness of CTRL
with varying poisoning ratios on CIFAR-100. As shown in
Table 5, CTRL attains high ASR under a low poisoning ratio
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Figure 9: ASR of CTRL with respect to activation trigger magnitude
on CIFAR-10 with SimCLR.

on CIFAR-100 (which can be further enhanced by adjusting
the trigger strength at inference). For example, the poisoning
ratio of 0.1% can achieve an ASR of 12%.

Backdoor activation — Recall that CTRL allows the ad-
versary to set triggers of different magnitude for poisoning
trigger and activation trigger. We evaluate the influence of
the activation trigger magnitude (with the poisoning trig-
ger magnitude fixed as 50) on the attack performance, with
results summarized in Figure9. As expected, increasing
the activation trigger magnitude improves the attack effec-
tiveness. For instance, on CIFAR-10 with SimCLR, as the
activation trigger magnitude varies from 50 to 250, the ASR
of CTRL increases from 36% to 99%. Note that as the ac-
tivation trigger is only applied at inference, increasing the
activation trigger magnitude does not affect the ACC.

5. Discussion

Thus far, we show empirically that SSL is highly vulnera-
ble to backdoor attacks. Next, through the lens of CTRL, we
study the potential root of this vulnerability and its implica-
tions for defenses.

5.1. Characterizing Self-supervised Backdoor At-
tacks

In § 3.2, we give an intuitive explanation about how CTRL
leverages the optimization of contrastive loss to entangle
trigger-embedded and target-class inputs in the feature space.
We now quantitatively characterize this entanglement effect.
Specifically, under the alignment and uniformity assump-
tions commonly observed in SSL-trained encoders [49], we
have the following theorem (proof in Appendix § B):

Theorem 5.1. Let £ be a clean input randomly sampled
from a non-target class and = be a clean input randomly
sampled from the target class ¢. The entanglement between
the trigger-embedded input 2, = x @ r and z in the feature
space is lower bounded by: E[f(Z.)Tf(x)] > o — iea)
where « is the mixing weight in Eq(6), and € € [0,1) is a
small non-negative number.

Theorem 5.1 shows that the entanglement is not a mono-
tonic function of a: with overly small «, the influence of
the trigger pattern on the entanglement is insignificant; with
overly large «, the trigger pattern dominates the features of
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Figure 10: Entanglement effect and ASR with respect to trigger
magnitude.

trigger-embedded inputs, which also negatively impacts the
entanglement effect.

To validate our analysis, we empirically measure the en-
tanglement effect between trigger-embedded and target-class
inputs by varying the trigger magnitude in CTRL (cf. § 3.3).
Specifically, we define entanglement ratio (ER), a metric
to measure the entanglement effect, which extends the con-
fusion ratio metric used in [50] to our setting. We sample
n = 800 clean inputs from each class of CIFAR-10 to form
the dataset D; we apply a set of m = 10 augmentation
operators A (sampled from the same distribution used by
SSL) to each input x € D, which generates an augmented set
Dt = {a(x) }4eD,ac 4. Further, we randomly sample 1, 000
clean inputs disjoint with D across all the classes and gener-
ate their trigger-embedded variants D,.. For each x, € D,,
we find its K = 100 nearest neighbors Nk (f(z.)) among
D+ in the feature space and then measure the proportion of
neighbors from the target class ¢:

1
ER(f) = Es.en. Li@neNu (@) ee)=t ()

where t is the target class, 1, is an indicator function that
returns 1 if p is true and O otherwise, ¢(z™) returns z*’s
label. Note that we use the label information here only for
understanding the entanglement effect.

Intuitively, a larger ER indicates a stronger entanglement
effect between trigger-embedded and target-class inputs. We
measure ER under varying trigger magnitude, with results
shown in Figure 10. With the increase of trigger magnitude
(a proxy of «), the entanglement effect first grows from 0
to 100% and then drops gradually to 0, which is consistent
with our theoretical analysis.

Now, we show that this entanglement effect may account
for the effectiveness of CTRL. Figure 10 measures the ASR
of CTRL under varying trigger magnitude (the same mag-
nitude for the poisoning and activation triggers). Observe
that ASR demonstrates a trend highly similar to ER with
respect to trigger magnitude: it first increases to 100% and
then drops to 0. Also notice that the trend of ASR lags be-
hind ER. This may be explained as follows: the classifier
divides the feature space into different classes; only when
trigger-embedded and target-class inputs are separated suf-
ficiently apart, the ASR starts to drop. In comparison, the
ASR of supervised trojan attack increases to around 100%
and maintains at that level, indicating its irrelevance to the



entanglement effect. This observation implies that it is crit-
ical to optimally tune the entanglement effect to maximize
the attack effectiveness.

5.2. Adversarial Robustness versus Backdoor Vul-
nerability

Prior work shows that SSL may benefit the robustness
to adversarial perturbation, label corruption, and data dis-
tribution shift[17, 58, 51, 27, 35]. However, our empirical
evaluation and theoretical analysis suggest that this robust-
ness benefit may not generalize to backdoor attacks. We
speculate that the representation-invariant property of SSL,
which benefits such robustness, may also be the very reason
making SSL vulnerable to backdoor attacks.

Intuitively, representation invariance indicates that differ-
ent augmented views of the same input should share similar
representations. Essentially, data augmentation and con-
trastive loss, two key ingredients of SSL, are designed to
ensure this property [4, 12, 7]. Meanwhile, robustness in-
dicates that some variants of the same input should share
the same label (i.e., label invariance). Thus, these two prop-
erties are aligned in principle; enforcing the invariance of
intermediate representations tends to improve the variance
of classification labels.

On the other hand, due to the entanglement between
the augmented views of trigger-embedded and target-class
inputs, enforcing the representation invariance causes the
trigger-embedded and target-class inputs to generate similar
representations and essentially entangles them in the feature
space, leading to the risk of backdoor attacks. Therefore, the
robustness of SSL to adversarial attacks may be at odds with
its robustness to backdoor attacks.

5.3. Defense Challenges

The entanglement between the representations of trigger
and clean inputs also causes challenges for defenses that rely
on the separability of trigger inputs. Here, we explore such
challenges using several state-of-the-art defenses.

Activation clustering (AC) — Based on the premise that
in the target class, poisoning samples form their own cluster
that is small or far from the class center, AC detects the
target class using the silhouette score of each class [3]. Due
to its reliance on labeling, AC is inapplicable to SSL directly.
Here, we assume labels are available and explore its effec-
tiveness against CTRL on CIFAR-10 with SimCLR. From
Figure 11, observe that AC fails to identify the target class
(class 0), which has a lower score compared to other classes
(e.g., class 5), not to mention detecting poisoning inputs.

Statistical contamination analyzer (SCAn) — It detects
trigger inputs based on the statistical anomaly of their rep-
resentations. Following [42], we randomly sample 1,000
inputs from the testing set to build the decomposition model;
we use it to analyze a poisoning set with 5,000 trigger inputs
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Figure 11: Evaluation results of activation clustering against CTRL.

and 5,000 clean inputs. We use FPR and TPR to evaluate
SCAn. To compare the performance of SCAn against super-
vised and self-supervised backdoor attacks, we also evaluate
SCAn on two supervised backdoor attacks: one with the
same spectral trigger as CTRL and the other with a random
5x5 image patch as the trigger. Table 6 summarizes the
results. We have the following key observations. First, it is
more challenging for SCAn to detect spectral triggers than
patch triggers. For instance, with FPR fixed as 0.5%, the
TPR of SCAn differs by over 34% on the spectral and patch
triggers. The difference may be explained by that compared
with patch triggers, spectral triggers are more evasive by de-
sign (cf. § 3), which can hardly be characterized by a mixture
model. Even if the target class is correctly identified, many
trigger inputs may still fall into the cluster of clean inputs.

FPR TPR
CTRL  Supervised (spectral)  Supervised (patch)
0.5% | 28.0% 63.0% 97.0%
1.0% | 28.0% 66.5% 97.0%
2.0% | 28.0% 68.0% 97.0%

Table 6. Evaluation results of SCAn against CTRL.

Robust training — Adding limited Gaussian noise to the
training data tends to improve the model robustness while
maintaining the performance on the original task [57, 26].
Following [57], we add noise to the training data as a possible
defense. Our results show that CTRL maintains high ASR
with noise levels up to 16/255. When the noise level is further
increased to 25/255, the ASR drops to 16%, leading to 2.1%
accuracy (ACC) drop. We attribute this to the use of a small
magnitude trigger to maintain the attack’s stealthiness, which
can be disrupted by strong Gaussian noise. Nonetheless,
determining the optimal magnitude of defensive noise poses
a challenge as the defender is not privy to the specifics of the
trigger, making it challenging to strike a balance between
ACC and defense effectiveness.

Other defenses — We examine several additional defenses.
MNTD may be infeasible for SSL due to its requirement
of training a large number of shadow models (e.g., 4,096
clean/trojan) [53]. NeuralCleanse [47], a trigger inversion
defense, fails in all trials with an anomaly index averag-
ing 0.72 £ 0.38 (below the threshold of 2). We leave the
exploration on more other defenses as future work.



5.4. Limitations

Next, we discuss the limitations of this work. First, ex-
isting work [37] has already studied self-supervised back-
door attacks. However, this work significantly improves
the SOTA attack success rate of self-supervised backdoor
attacks, suggesting that SSL is comparably vulnerable to
backdoor attacks as supervised learning. Moreover, we iden-
tify the underlying differences between the mechanisms of
SSL and supervised backdoor attacks, enabling us to extend
our approach to other trigger definitions. Second, we define
the trigger based on heuristics, which is not necessarily op-
timal. We mainly use it as an example to study the unique
vulnerability of SSL. How to rigorously optimize the trigger
design of CTRL represents an intriguing question. Finally,
we mainly focus on image classification tasks, while SSL
has been applied in many other domains, such as natural lan-
guage processing and graph learning. We consider extending
CTRL to such domains as ongoing work.

6. Conclusion

This work conducts a systematic study on the vulnera-
bility of self-supervised learning (SSL) to backdoor attacks.
By developing and evaluating CTRL, a simple yet highly
effective self-supervised backdoor attack, which dramati-
cally bridges the gap in the attack effectiveness of backdoor
attacks between SSL and supervised counterparts. Further,
both empirically and analytically, we reveal that the represen-
tation invariance property of SSL, which benefits adversarial
robustness, may also account for this vulnerability. Finally,
we discuss the unique challenges to defending against self-
supervised backdoor attacks. We hope our findings will shed
light on developing more robust SSL methods.
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A. Characterizing Supervised Backdoor At-
tacks

In supervised learning, the backdoor attack associates the
trigger r with the target label ¢ via (implicitly) minimizing
the objective defined in Eq (1). The success of this attack is
often attributed to the model’s excess capacity [39], which
“memorizes” both the function that classifies clean inputs
and that misclassifies trigger inputs. Note that Eq (1) does
not specify any constraints on the representations of trigger
inputs. Thus, while associated with the same class, the
trigger-embedded and target-class inputs are not necessarily
proximate in the feature space.
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Figure 12: t-SNE visualization of the features of trigger-embedded
and clean inputs in the supervised backdoor attack (target-class
input: red; trigger-embedded input: black).

To validate the analysis, we use CTRL to generate the
poisoning data, pollute 1% of the training data across all
the classes, and train the model in a supervised setting for
20 epochs, which achieves 100% ASR and 83% ACC. We
use t-SNE [45] to visualize the representations of trigger-
embedded and clean inputs in the test set, with results shown
in Figure 12. Although the clusters of trigger inputs (black)
and target-class inputs (red) are assigned the same label,
they are well separated in the feature space, indicating that
supervised backdoor attacks do not necessarily associate the
trigger with the target class in the feature space. This finding
also corroborates prior work [42].

For comparison, we perform CTRL against SimCLR on
CIFAR-10 and use ¢-SNE to visualize the features of trigger-
embedded inputs and clean inputs in the test set, with results
shown in Figurel3. Observed that in comparison with the su-
pervised backdoor attack (cf. Figurel2), the cluster of trigger-
embedded inputs (black) and the cluster of target-class clean
inputs (red) are highly entangled in the feature space, indi-
cating that the self-supervised backdoor attack takes effect
by aligning the representations of trigger-embedded inputs
and the target class.

B. Proofs

We first introduce the following two assumptions com-
monly observed in encoders trained using SSL [49]

Assumption B.1. (Alignment) A well-trained encoder f
tends to map a positive pair to similar features. Formally,
for given input z, f(z)7f(z*) > (1 —€), where € € [0,1)
is a small non-negative number. In particular, by design,
the trigger 7 is invariant to the augmentation operator:

fr)Tfrt) = 1.

Assumption B.2. (Uniformity) A well-trained encoder f
tends to map inputs uniformly on the unit hyper-sphere S4~1
of the feature space, preserving as much information of the
data as possible. Thus, as the number of data points is large,
the average angle f between the features of a negative pair
follows the distribution density function [1]:

0€l0,n] 4

As the dimension d is high, most of the angles heavily con-
centrate around /2.

Based on B.1 and B.2, we now prove Theorem5.1.
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Figure 13: t-SNE visualization of the features of trigger-embedded
and clean inputs in the self-supervised backdoor attack (target-class
input: red; trigger-embedded input: black).

Proof of Theorem 5.1. According to AssumptionB.1, we
have

fla)Tf(@f) = (1—¢) (5)
In other words,

(1= a) (@) f(@™) + o f(r)Tf )+
a(l = a)(f(@) f(rT) + f(r)f(@T)) = (1 —e).



Since both f(x)Tf(z™) and f(r)Tf(rT) are no larger than
1, we have

a(l=a)(f(@)"f(r") + f(r) f(=T))

> (1—¢) = (1= a)*f(2) f(a") — *f(r)Tf(T)
>(1—¢€) —(1—a)*—a?

=2a(l —a)—c¢

Then, based on Assumption B.1, we have

€

f@)f(r)=1- 2a(l—a) (6)

For Z.. and z, we have

f@)Tf(2) = (1= a)f(2)7f(2) + af(r)Tf(2)

Since = and z are a negative pair, based on Assumption B.2,
we have
€
2a(1 — @) )
. (7)
= 50— a)

E[f(z.)7f(2)] = (1 —

For a well-trained f, € is a constant. Thus, both Eq (6)
and Eq (7) are functions that first increase and then decrease
with respect to o € (0, 1).

O

C. Details of Experimental Setting

Dataset — For each dataset, we split it as a training set
and a testing set according to its default setting. Specifi-
cally, both CIFAR-10 and CIFAR-100 are split into 50,000
and 10,000 images for training and testing, respectively;
ImageNet-100 is split as 130,000 training and 5,000 test-
ing images; while GTSRB is split into 39,209 training and
12,630 testing images.

Data augmentation — For convenience, we describe the
details of data augmentations in a PyTorch style. Specifically,
following prior work [7, 4], we use geometric augmentation
operators including RandomResizeCrop (of scale [0.2, 1.0])
and RandomHorizontalFlip. Besides, we use ColorJitter
with [brightness, contrast, saturation, hue] of strength [0.4.,
0.4, 0.4, 0.1] with an application probability of 0.8 and
RandomGrayscale with an application probability of 0.2.

Encoder training — We use the training set of each
dataset to conduct contrastive learning. We show the hyper-
parameters setting for each contrastive learning algorithm in
Table 7, which is fixed across all the datasets.

Classifier training — Without explicit specification, we
randomly sample 50 examples from each class of the corre-
sponding testing set to train the downstream classifier. We
show the hyper-parameters of classifier in Table 8.

Hyper-parameter - SSL Method —
SimCLR BYOL  SimSiam
Optimizer SGD SGD SGD
Learning Rate 0.5 0.06 0.06
Momentum 0.9 0.9 0.9
Weight Decay le-4 le-4 Se-4
Epochs 500 500 500
Batch Size 512 512 512
Temperature 0.5 - -
Moving Average - 0.996 -

Table 7. Hyper-parameters of encoder training.

Hyper-parameter Setting
Optimizer SGD
Batch Size 512

Learning Rate 0.2

Momentum 0.9
Scheduler Cosine Annealing

Epochs 20

Table 8. Hyper-parameters of classifier training.

Evaluation — We evaluate ACC using the full testing set.
For ASR, we apply CTRL on the full testing set and measure
the ratio of trigger inputs that are classified to the target class.
All the experiments are performed on a workstation equipped
with Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz, 512GB
RAM, and four NVIDIA A6000 GPUs.

D. More Experimental Results

Here, we show the additional experimental results.

Performance of clean models — The ACC and ASR of
clean models trained by SimCLR, BYOL, and Simsiam are
summarized in Table 9.

SSL Method
Dataset SimCLR BYOL SimSiam
ACC ASR ACC ASR ACC ASR
CIFAR-10 |79.1% 9.93% 82.4% 12.2% 81.5% 11.75%

CIFAR-100 |48.1% 1.14% 51.0% 0.46% 52.0% 0.72%
ImageNet-100(42.2% 1.59% 45.1% 1.41% 41.3% 1.53%

Table 9. Accuracy of different SSL methods under normal training.

Fine-tuning data size — Typically, equipped with the
pre-trained encoder, the victim fine-tunes the downstream
classifier with a small labeled dataset. Here, we evaluate
the impact of this fine-tuning dataset on CTRL. Figure 14
illustrates the performance of CTRL as a function of the
number of labeled samples per class.

Observe that both ACC and ASR of CTRL increase with
the fine-tuning data size, while their variance decreases grad-
ually. For instance, when the number of labeled samples
per class is set as 50, the ASR of CTRL on CIFAR-10 under
SimSiam stably remains around 75%. This may be explained
as follows. Without the supervisory signal of labeling, CTRL
achieves effective attacks by entangling the representations
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Figure 14: Performance of CTRL w.r.t. the fine-tuning data size.

of trigger-embedded and target-class inputs (details in § 5).
During fine-tuning, more labeled samples imply that the rep-
resentations of trigger-embedded inputs are more likely to be
associated with the target-class label, leading to higher and
more stable ASR. In other words, more fine-tuning data not
only improves the model’s performance but also increases
its attack vulnerability.

Batch size — Existing studies show that batch size tends
to impact the performance of contrastive learning [7]. Here,
we explore its influence on the performance of CTRL. Specif-
ically, on the CIFAR-10, we measure the ACC and ASR of
CTRL with the batch size varying from 128 to 512, with
results shown in Figure 15.
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Figure 15: Performance of CTRL w.r.t. the batch size on CIFAR10.

Observe that the model’s accuracy improves with the
batch size, which corroborates the existing studies [7]. More-
over, a larger batch size (e.g., > 512) generally benefits the
ASR of CTRL. This may be explained by that more positive
pairs (also more negative pairs in SimCLR) in the same batch
lead to tighter entanglement between trigger-embedded and
target-class inputs. Meanwhile, for smaller batch sizes (e.g.,
< 256), the three SSL methods show slightly different trends.
This may be attributed to the design of their loss functions:
BOYL and SimSiam only optimize positive pairs, while
SimCLR optimizes both positive and negative pairs, thereby
gaining more benefits from larger batch sizes.

Training epochs — Typically, SSL benefits from more
training epochs [4]. We evaluate the impact of training
epochs on the performance of CTRL. Figure 16 shows the
ACC and ASR of CTRL as the number of epochs varies from
600 to 1,000.

Observe that as the training epoch increases, the ACC
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Figure 16: Performance of CTRL w.r.t. the number of epochs.

of CTRL gradually grows, while the ASR remains at a high
level. For example, on CIFAR-10 with SimCLR, when the
number of epochs increases from 600 to 1,000, the ACC also
increases from 80.52% to 83,94%, and the ASR remains
above 75%. In a few cases, the ASR slightly drops. We
speculate this is caused by the random data augmentations
used in SSL. Side evidence is that on CIFAR-10 with BYOL,
the ASR first slightly decreases and then remains above
80%. In general, the number of training epochs has a limited
impact on the effectiveness of CTRL.



