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Abstract

Recently, physical adversarial attacks have been pre-
sented to evade DNNs-based object detectors. To ensure the
security, many scenarios are simultaneously deployed with
visible sensors and infrared sensors, leading to the failures
of these single-modal physical attacks. To show the poten-
tial risks under such scenes, we propose a unified adversar-
ial patch to perform cross-modal physical attacks, i.e., fool-
ing visible and infrared object detectors at the same time
via a single patch. Considering different imaging mecha-
nisms of visible and infrared sensors, our work focuses on
modeling the shapes of adversarial patches, which can be
captured in different modalities when they change. To this
end, we design a novel boundary-limited shape optimiza-
tion to achieve the compact and smooth shapes, and thus
they can be easily implemented in the physical world. In ad-
dition, to balance the fooling degree between visible detec-
tor and infrared detector during the optimization process,
we propose a score-aware iterative evaluation, which can
guide the adversarial patch to iteratively reduce the pre-
dicted scores of the multi-modal sensors. We finally test
our method against the one-stage detector: YOLOv3 and
the two-stage detector: Faster RCNN. Results show that
our unified patch achieves an Attack Success Rate (ASR)
of 73.33% and 69.17%, respectively. More importantly, we
verify the effective attacks in the physical world when visi-
ble and infrared sensors shoot the objects under various set-
tings like different angles, distances, postures, and scenes.

1. Introduction

Deep Neural Networks (DNNs) are vulnerable to adver-
sarial examples [18], which pose a serious security threat
to DNNs-based object detectors in the physical world[31,
34, 33]. These physical attacks can help to evaluate the
robustness of DNNs deployed in real-life systems, which
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Table 1. Various adversarial attacks in different settings.
Digital world Physical world

Single-modal [28],[4],[30],[8], [20], [17] [10],[6]
[11],[13] etc. [26],[29],[33] etc.

Cross-modal [1],[21]etc. Ours

have important practical values. Recently, RGB sensors
and thermal infrared sensors have been simultaneously used
in many safety-critical tasks such as security monitoring.
When performing object detection tasks, visible images
could provide abundant information on the target’s texture
in the daytime, while infrared images could display the tar-
get’s thermal distribution at night. Thus, combining visible
images and infrared images together will result in a round-
the-clock application. To evade object detectors under such
multi-modal imaging scenarios, a necessary way is to de-
velop a cross-modal physical attack to fool visible object
detectors and infrared object detectors at the same time.

However, current physical attacks are limited in the
single-modal domain. For example, some studies [20, 6, 27]
hide from object detectors in the visible modality, and
some studies [34, 33, 25] hide from object detectors in
the infrared modality. Because visible sensors and infrared
sensors have different imaging mechanisms, these single-
modal physical attacks cannot simultaneously attack multi-
modal object detectors. Specifically, the generated pertur-
bations in the visible modality can not be captured by in-
frared sensors, and in turn, changing the object’s thermal
radiation would not be reflected in the visible light domain.
There also exist some cross-modal attacks in the digital
world [1, 21, 24], but they usually aim to modify the im-
age pixels or point clouds after sensors’ imaging, ignoring
the different imaging mechanisms across sensors, and thus
cannot transfer to physical world well.

Based on these discussions, this paper aims to design a
unified cross-modal attack in the physical world to fill
in the gap of this area, as illustrated in Table 1. Generally
speaking, the lack of features that can operate in different
modalities is the reason to limit the availability of cross-
modal physical attacks. Inspired by [5] and [25], we utilize

ar
X

iv
:2

30
7.

07
85

9v
2 

 [
cs

.C
V

] 
 1

9 
Ju

l 2
02

3



Clean infrared example

Clean visible example

Optimal shape

Crop + paste

Adversarial visible example

Adversarial infrared example

Insulation materials

Figure 1. The generation process for our unified cross-modal ad-
versarial patches. We see the pedestrian cannot be detected after
the patches are pasted on the pedestrian in the physical world.

adversarial patches [2] and further optimize their shapes to
perform attacks. Because patches’ shapes are a universal at-
tribute for different imaging mechanisms, their changes can
be well captured by both visible sensors and infrared sen-
sors, making it an appropriate form to perform cross-modal
attacks. However, there still exist two challenges to meet
our goal: (1) The current shape models are either hetero-
morphic [5] or change-limited [25], leading to the difficulty
of physical implementation or poor attacks because of finite
searching space. So how to design a flexible shape opti-
mization method while keeping shapes’ smoothness is the
first challenge. (2) During the optimization for the unified
physical attacks, the drop speed of visible object detector
and infrared object detector may be inconsistent, which will
result in the successful evasion for one object detector but
failed evasion for another object detector. Therefore, how to
balance the performance of two object detectors from differ-
ent domains is another challenge.

To meet the above challenges, we design a novel
boundary-limited shape optimization method to achieve the
compact and smooth shapes, and thus they can be easily im-
plemented in the physical world. Moreover, the shapes are
flexible, and can provide a huge searching space to find the
optimal shape to achieve a successful cross-modal attack.
In addition, to balance the fooling degree between visible
detector and infrared detector during the optimization pro-
cess, we propose a score-aware iterative evaluation, which
can guide the adversarial patch to iteratively reduce the pre-
dicted scores of the multi-modal sensors. When applying
to physical implements, we only need to print the simulated
results in the digital world and crop them with insulation
materials for patches. An example of our cross-modal ad-
versarial patch against visible and infrared pedestrian detec-
tors is shown in Figure 1.

The contributions of this paper are as follows:

• We propose a unified adversarial patch to perform
cross-modal attacks. To the best of our knowledge, it is
the first work to simultaneously evade visible detectors
and infrared detectors in the physical world.

• We design two novel techniques: boundary-limited
shape optimization and score-aware iterative evalua-
tion, to achieve the feasible patches in the digital world
while balancing the multi-modal detectors.

• We verify our cross-modal patches in the pedestrian
detection task not only in the digital world but also
in the physical world. Experimental results show that
cross-modal patches can work well in various angles,
distances, postures, and scenes.

2. Related Works

2.1. Attacks in the physical world

Since Kurakin et al. [11] verify the feasibility of ad-
versarial attacks in the physical world, many physical at-
tacks have been proposed for more application value, like
Sharif et al. [16].’s adversarial glasses in face recognition
systems, Eykholt et al. [7]’s adversarial graffiti in auto-
matic driving tasks. Among them, adversarial patch [3] is
one of the mainstream physical attacks. Different from Lp-
norm-based adversarial perturbations, the adversarial patch
doesn’t need to restrict the perturbations’ magnitude, which
is always in the form of a patch and thus more suitable to
the physical world. Like Xu et al. [31], they design a spe-
cial adversarial T-shirt, which can apply the deformable ad-
versarial patch on the T-shirts to fool the person detector.
When referring to infrared detectors, Zhu et al. propose ad-
versarial bulbs [34] based on the extra heat source and in-
visible cloth [33] based on QR code pattern that could suc-
cessfully attack infrared detectors, but compared with ad-
versarial patches, they are complicated to implement in the
physical world and lose effects in the visible modality.

2.2. Shape model in adversarial attacks

In addition to generating perturbations for the traditional
adversarial patch, some studies explore the patches’ shapes
to adversarial attacks. For example, Chen et al. [5] pro-
pose a deformable patch representation, but their deforma-
tion shapes mainly rely on an central point and rays, which
causes the shape to be too sharp and not natural enough. In
the meanwhile, their work still needs to optimize the con-
tents on the patch to some extent and mainly focus on tasks
of image classification. Besides, Wei et al. [25] propose a
hotcold block based on Warming Paste and Colding Paste to
attack infrared detectors, but their deformation of patches is
limited by the manually set nine-square-grid states, which
greatly decreases the search space of patches’ shapes.

Overall, none of the above methods can simultaneously
attack the two different modalities. Our work will combine
adversarial patches with cross-modal attacks from the angle
of a natural shape optimization.
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Figure 2. An overview of cross-modal adversarial patches’ generation based on the Differential Evolution (DE) framework. The initial
population is a series of circles. Then, combining mutation, crossover and boundary processing, a child population made up of natural
shapes is generated. With a special cross-modal evaluation, we compare the parent population with the child population and select better
individuals, encouraging the population to become more balanced and more adversarial. Finally, the optimal individual will be printed.

3. Methodology
In this section, we choose the pedestrian detection as the

target task to introduce the details of our method.

3.1. Problem Formulation

In the pedestrian detection task, given a clean visible
image xvis and a clean infrared image xinf , the goal of a
unified cross-modal adversarial attack is to make the visi-
ble detector fvis(·) and infrared detector finf (·) simultane-
ously unable to detect the pedestrian in the perturbed visible
image xadv

vis and perturbed infrared image xadv
inf . The formu-

lation can be expressed as follows:

max(fvis(x
adv
vis ), finf (x

adv
inf )) < thre (1)

where fvis(x
adv
vis ) and finf (x

adv
inf ) represent the confidence

scores of detected pedestrians in the visible modality and
infrared modality, and thre is a pre-defined threshold.

The perturbed visible image xadv
vis and the perturbed in-

frared image xadv
inf with the unified adversarial patch can be

generated as Eq.(2) and Eq.(3).

xadv
vis = xvis ⊙ (1−M) + x̂vis ⊙M, (2)

xadv
inf = xinf ⊙ (1−M) + x̂inf ⊙M, (3)

where ⊙ is Hadamard product, M ∈ {0, 1}h×w is a mask
matrix used to constrain the shape and location of the cross-
modal patches on the target object, x̂vis ∈ Rh×w denotes
a cover image used to manipulate xadv

vis , x̂inf ∈ Rh×w de-
notes a cover image used to manipulate xadv

inf . The values of
these two cover images are obtained by the visible sensor
and infrared sensor versus the unified insulation material in
the physical world. The unified patches can be described as
all the regions where Mij = 1.

In the real application, we use the aerogel material to im-
plement our unified adversarial patch. When infrared sen-
sor shoots, it will show good insulation effects, and thus
can change the thermal distribution of the target pedestrian.
When visible sensor shoots, its color is white and can show
a difference with the pedestrian. Based on this, our method
optimizes a cross-modal M to learn an adversarial shape,
finally working well in both modalities.

3.2. Shape Representation

To model a shape, we need to determine the shape repre-
sentation. For that, we first define some points as the basic
elements. Then we connect these anchor points to construct
the contour, representing our shape. Here are the details.

Multi-anchor Representation: Unlike Chen et al. [5]
using a central point and corresponding rays to form a poly-
gon contour, we only use points, distributing multiple an-
chor points on the patch contour. Then, we can directly
adapt the patch contour’s shape by changing the coordinates
of the points. Owing to the design of multi-anchor repre-
sentation, we can have more flexible shape variations and a
broader search space.

We illustrate this process in Figure 3 (a), where points in
the dotted line denote the initialized location. The arrows
show the changed direction for some points. We can adjust
the coordinates of the points to control the movement of
each point and thus, the direction of our points’ movement
will not be limited to one single direction.

Smooth Spline Connection: To ensure shapes’ natural-
ness, we use centripetal Catmull–Rom spline [22] to con-
nect such anchor points. The process of spline can be for-
mulated as follows:

As shown in Figure 3 (b), to generate a curve segment
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Figure 3. Subfigure (a) shows the process of moving the anchor
points to change the shape, where the dotted line denotes the ini-
tialized location, and arrows show the changed direction. Subfig-
ure (b) is an example of the curve segment Ci’s connection via
Catmull-Rom spline interpolation.

Ci between Pi and Pi+1, we will use four anchor points
Pi−1, Pi, Pi+1, Pi+2 and a centripetal Catmull-Rom spline
function CCRS(·) [22]. With the centripetal Catmull-Rom
spline function, first, we can ensure that a loop or self-
intersection doesn’t exist within a curve segment. Second,
a cusp will never occur within a curve segment. Finally, it
can also follow the anchor points more tightly. Ci can be
formulated as follows:

Ci = CCRS(Pi−1, Pi, Pi+1, Pi+2) (4)

When n curve segments C0, C1, · · · , Cn−1 are com-
bined, the patch contour Mcon can be written as:

Mcon = {Ci|0 ≤ i ≤ n− 1} (5)

With Mcon being closed, we can easily obtain M :

M(x) =

{
1, x inside Mcon

0, x out of Mcon

(6)

After Eq.(6), we can represent the patch’s shape. The de-
tailed formula for this process can be found in Supplemen-
tary Material.

3.3. Shape Optimization for Cross-modal Attacks

In practice, the details of fvis(·) and finf (·) are usually
unknown to the adversary, so it is intractable to optimize
the anchor points via a gradient-based optimization method.
Considering this background, we carry out a score-based
black-box attack by querying the object detector to obtain
the confidence scores of detected pedestrians. From the
above, we formulate the whole unified cross-modal attacks
into the Differential Evolution (DE) framework.

3.3.1 Formulation Overview Using DE

The Differential Evolution (DE) consists of four parts: start-
ing from an initial population, using the crossover and
mutation to generate the offspring population, making the

fittest survive according to the fitness function, and finding
the appropriate solution in the iterative evolution process.

In our case, a population represents the anchor points
{Pj |j = 1, ..., n}. Given the population size Q, the k-th
generation solutions S(k) is represented as:

S(k) = {Si(k)|θLj ≤ Sij(k) ≤ θUj , 1 ≤ i ≤ Q, 1 ≤ j ≤ n}
(7)

where Si(k) is the i-th patch’s shape, and Sij(k) represents
the j-th anchor point of Si(k) in the k-th generation. θLj and
θUj together make up the feasible region Bj , which is the
moving range of the j-th anchor point in each patch shape.

In the k + 1 generation of DE, the solution S(k + 1)
is achieved via crossover, mutation, and selection based on
S(k). A fitness function is applied on Si(k) to evaluate its
attack effectiveness. During this process, the fitness func-
tion only utilizes the confidence scores of object detectors.
We will give the detailed definition of feasible region in Sec-
tion 3.3.2, and fitness function in Section 3.3.3.

3.3.2 Boundary-limited Shape Optimization

Obviously, if there is no boundary restriction for the anchor
points during the crossover and mutation, some bad situa-
tions will occur during shape optimization, as shown in Fig-
ure 4 (d, e, f), such as boundary line crossings (d), anchor
points stuck in narrow places (e), and anchor points outside
the human body region (f). To address these issues, we pro-
pose a novel boundary-limited shape optimization, which
not only ensures the effectiveness of each shape, but also
provides sufficient transformation space.

As shown in Figure 4 (b), the shaded part Bj is exactly
the feasible region of the anchor point Pj . Specifically, the
two adjacent equidistant lines, the inner circle’s edge and
the outer border together make up of our boundary. Figure
4 (c) presents us with an example of effective deformation.
Next, we will give how to construct the boundary and the
method of judging whether a point is inside or not.

We first divide a circle with a given radius r and a circle
center C into n sharp-angled sectors by n equidistant lines
{lj |j = 1, · · · , n}. n equal points {Ej |j = 1, · · · , n} are
the intersection of equidistant lines and the circle, and as
shown in Figure 4 (b), the anchor point Pj is the midpoint
of Ej and Ej+1, which can be formulated as follows:

Pj =
Ej + Ej+1

2
, j = 1, · · · , n (8)

For the anchor point Pj , it lies in the sharp-angled sec-
tor region Bj wrapped by two adjacent lines lj and lj+1.
Lj and Rj represents the directed distance from the an-
chor point Pj to the line lj and lj+1 shown in the Figure
4 (a). Therefore, with the line function lj(x, y) = 0 and
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Figure 4. The solid blue and orange box represents the effective area of the human body and the dashed line means that the part is missing.
The (a) expresses that the product of the directed distances from the point in the sharp-angled sector to the two side lines is less than 0 and
if not, the product is more than 0. The (b) is our initial state and the (c) is an effective deformation. The (d) shows the patch contour will
cross if we don’t fix its relative order. The (e) represents that connecting points will be trapped into a restricted space if we don’t set an
inner circle. The (f) expresses that the patch contour will go beyond the human body if we don’t define an outer boundary.

lj+1(x, y) = 0, we can formulate Lj and Rj as follows:

Lj =
lj(xj , yj)

Dj
, Rj =

lj+1(xj , yj)

Dj+1
(9)

where Dj and Dj+1 are the denominators of the point-to-
line distance formula.

From the Figure 4 (b), we can vividly find that since the
anchor point Pj’s feasible region is a sharp-angled sector,
if Pj is inside its own region, Lj ∗ Rj < 0 for the angle
between them is obtuse and if Pj is outside its own region
or exactly on the boundary line, Lj ∗ Rj ≥ 0. With Pj in-
side its own region, we can effectively avoid boundary line
crossings in Figure 4 (d) caused by spline interpolation’s
need for a given order.

Then, to prevent points from falling into narrow places
in Figure 4 (e), we set an inner circle with a given radius r∗

inside the initial circle, and anchor points are not allowed to
move into the inner circle. Specifically, we can judge by the
distance rj from the anchor point Pj to the center C. When
rj > r∗, the anchor point Pj will not be inside the inner
circle. The rj is computed as follows:

rj =
√
(xj − xC)2 + (yj − yC)2 (10)

After that, we still need to ensure that the generated patch
is not outside the effective area of the human body as shown
in Figure 4 (f), so we scale the detection box output in a
certain proportion as the outer border. The region O inside
the outer border can be represented as follows:

O = {(x, y)|xl ≤ x ≤ xr, yd ≤ x ≤ yu} (11)

where xl, xr, yu, yd are outer border’s vertex coordinates.
Finally, we combine the above limits as follows:

ρj = (Lj ∗Rj < 0) & (rj > r∗) & (Pj ∈ O) (12)

where ρj = 1 means that the anchor point Pj is inside the
feasible region Bj and ρj = 0 means that the anchor point
Pj is outside the boundary.

3.3.3 Score-aware Iterative Evaluation

In cross-modal attacks, a good attack effect of a single
modality is ineffective, while it is common to have unbal-
anced attack effects in the two modalities. If this situation
is not improved, it may give the attacker false signals about
the progress of the attack. Thus, to balance the fooling de-
gree between visible detector and infrared detector during
the optimization process, we propose a score-aware itera-
tive evaluation, guiding the adversarial patch to iteratively
reduce predicted scores of the multi-modal sensors.

For the sake of simplicity of expression, here we denote
Sij(k) as s. To evaluate the fitness value of s, we first use
methods in Section 3.2 to transform s into a patch mask M ,
then xadv

vis , xadv
inf are produced based on Eq.(2), Eq.(3). J(s)

can be formed as follows:

J(s) = eλ∗min(dis(xadv
vis ),dis(xadv

inf )) (13)

where λ is a weighted factor, dis(xadv
vis ), dis(x

adv
inf ) reflect

the current progress towards the success of attack (the
larger, the closer to success). dis(xadv

vis ), dis(x
adv
inf ) can be

formalized as:

dis(xadv
vis ) =

fvis(xvis)− fvis(x
adv
vis )

fvis(xvis)− thre
(14)

dis(xadv
inf ) =

finf (xinf )− finf (x
adv
inf )

finf (xinf )− thre
(15)

where fvis(xvis) is the confidence score of xvis in the vis-
ible pedestrian detector, finf (xinf ) is the confidence score
of xinf in the infrared pedestrian detector. fvis(x

adv
vis ) and

finf (x
adv
inf ) are similar to fvis(xvis) and finf (xinf ).

From Eq.(14) and Eq.(15), we can easily know
dis(xadv

vis ) and dis(xadv
inf ) measure the progress to success

of the cross-modal patch attack in the visible and infrared
modality respectively. Both of them can help patches evolve
in the corresponding modality. However, if we only make
use of a single one, it will be certain to cause unbal-
anced phenomena, not an effective cross-modal attack. To



solve this issue, we use Eq.(13) to combine dis(xadv
vis ) and

dis(xadv
inf ). Based on our J(·), the good performance only

in a single modality will not achieve a high value of fitness
because we take the worse one of dis(xadv

vis ) and dis(xadv
inf )

as a standard. Additionally, considering the difference of at-
tack difficulty in the initial stage and later stage, we use e(·)

instead of a linear function. Based on the above settings,
we will eventually encourage it to iteratively evolve in the
direction of reducing confidence scores as much as possible
while maintaining the balance of cross-modalities.

The overall algorithm for generating cross-modal adver-
sarial patches is summarized in Algorithm 1.

Algorithm 1: Shape-based Cross-modal Attack

Input: Clean visible image xvis, clean infrared
image xinf , fitness function J(·), population
size Q, max iteration number T

1 Initialize a collection of shapes S(0)
/* Optimize patch shape with DE */

2 for k = 0 to T − 1 do
3 Sort S(k) in descending order based on J(S(k))
4 if S0(k) makes the attack successful then
5 stop = k; break;
6 end
7 Generate S(k + 1) based on crossover and mutation
8 Limit boundaries of S(k + 1) according to Eq.(12)
9 for i = 1 to Q do

10 Evaluate Si(k), Si(k + 1) according to Eq.(13)
11 Si(k + 1)← the better one in Si(k), Si(k + 1)

12 end
13 end
14 Sort S(stop) in descending order according to J(·)

/* Model patch shape from points */
15 Anchor points{Pi=1,··· ,n} ← S0(stop)
16 Curve segments {Ci=1,··· ,n} ← connect {Pi=1,··· ,n}

according to Eq.(4)
17 Mcon ← combine {Ci=1,··· ,n} according to Eq.(5)
18 M ← fill the Mcon according to Eq.(6)
19 xadv

vis , x
adv
vis ← according to Eq.(2),Eq.(3)

20 return M , xadv
vis , xadv

inf

Output: Mask M , adversarial visible example xadv
vis and

adversarial infrared example xadv
inf

3.4. Physical Implementation

After obtaining the optimal shape, we start to transform
algorithm-generated digital patches into physical patches
with the aerogel material. Specifically, we first scale the
obtained patch according to its size in the real world and
print it. Then, we use scissors to equally cut out the optimal
shape on the material. And in the last, we use the velcro
sticker to fix it in the corresponding position of the human
body for performing a physical attack. The whole process
is demonstrated in Figure 5.

cut paste
(Velcro)(Scissor)

Figure 5. The physical implementation process of transforming
digital cross-modal patches into physical patches in the real world.

4. Experiments
4.1. Simulation of Physical Attacks

Dataset: We use the LLVIP [9] dataset to simulate the phys-
ical attacks. Images from LLVIP are perfectly synchronized
in both visible modality and infrared modality. Similar to
[34] and [33], we customize the parts containing pedestri-
ans from images in LLVIP. There are 1220 photos in the
test set and 3784 images in the training set. As the final
samples to be attacked, we pick 120 images from the test
set that the target model can recognize successfully with a
high probability. The clean AP is therefore 100%.
Target detector: For the pedestrian detection task, we se-
lect two mainstream detectors: YOLOv3 [14](one-stage)
and Faster RCNN [15](two-stage) here. About model train-
ing, we choose the officially pre-trained weights as the ini-
tialized weights and then retrain the model on the train-
ing dataset. Results of some other detectors like YOLOv5,
YOLOv7 [23], SSD [12], and EfficientDet[19] are shown in
the Supplementary Material.
Metrics: Attack Success Rate (ASR) and Average Preci-
sion drop (AP drop) are used to evaluate the attack perfor-
mance. Here, we adopt a unique cross-modal ASR, which
denotes the ratio of both successfully attacked images under
two modalities out of all the test images, highlighting the ef-
fectiveness of simultaneously attacking two modalities. AP
drop is to show the AP’s variation before and after attacks.
Implementation: As we use the DE algorithm, we set the
number of the initial population as 30, the epoches of evo-
lution as 200. Other parameters, formulas and comparative
experiments are presented in the Supplementary Material.

4.1.1 Performances in Different Detection Systems

We first evaluate the effectiveness of attacks in the digital
world. Considering the differences between detection sys-
tems, we choose two typical detectors: YOLOv3 and Faster
RCNN. The results are shown in Table 2. We use ASR and
AP drop to evaluate the attack performance.

Table 2. Attack performances in different detection systems.
YOLOv3 Faster RCNN

ASR 73.33% 69.17%
AP drop (Visible) 99.19% 89.38%
AP drop (Infrared) 74.31% 83.94%



From the above results, we can see that our method
is equally useful despite the distinctions between the one-
stage and two-stage detection models. For the typical one-
stage detection model YOLOv3, we achieve an ASR of
73.33%, an AP drop of 99.19% in the visible modality and
74.31% in the infrared modality. Similarly, for the two-
stage detection model Faster RCNN, we achieve an ASR
of 69.17%, an AP drop of 89.38% in the visible modality
and 83.94% in the infrared modality.

Figure 6. Visual examples of adversarial samples with cross-modal
patches in the digital world.

4.1.2 Effects of Optimized Shapes

Here, we provide the ablation study to investigate the out-
comes of our optimized shapes. Specifically, we first gener-
ate cross-modal adversarial patches to achieve the optimal
shapes for a given pedestrian. Some examples of the opti-
mal shapes in the digital world are shown in Figure 6. Then,
we fix the patches’ locations and sizes while changing their
shapes. These shapes can be circles, squares, rectangles and
triangles, etc. Then we compute the ASR and AP drop un-
der these five shapes. This setting tests the effects of op-
timal shapes on the attacks. The results are listed in Table
3, where we can see that random shapes barely work with
an average ASR of 5.23%, an average AP drop of 20.73%
in the visible modality and 11.65% in the infrared modality.
The results for each of the five shapes and compared with
[25] are shown in the Supplementary Material.
Table 3. Ablation study for unified adversarial patches’ shapes.

Our shape Other shapes
ASR 73.33% 5.23%

AP drop (Visible) 99.19% 20.73%
AP drop (Infrared) 74.31% 11.65%

4.1.3 Effects of Score-aware Iterative Fitness Function

To verify the impact of the Cross-modal Fitness Function,
we design a set of comparative experiments. As mentioned
in Section 3.3.3, our method can combine the visible modal-
ity and infrared modality into a whole, which helps balance
attack performances between different modalities. Here, we
use a simple sum of Eq.(14) and Eq.(15) instead of Eq.(13)
as the not-combined fitness function.

Table 4. Ablation study for score-aware iterative fitness function.
Ours Sum

ASR 73.33% 50.83%
AP drop (Visible) 99.19% 85.37%
AP drop (Infrared) 74.31% 66.99%

From Table 4, we can find that although a simple sum
fitness function can have an AP decrease of 85.37% in the
visible modality and 66.99% in the infrared modality, it suf-
fers a decline in ASR under a cross-modal standard.

4.1.4 Hyperparameters Tuning

Patch number. As one of the most directly adjustable hy-
perparameters, patch number may have an impact on the
attack performance. Therefore, we need to explore whether
and how it is related to the attack performances. Figure 7 (a)
vividly shows that as the number of patches rises, both ASR
and AP drop increase with our expectation. However, con-
sidering that our attack method has achieved acceptable re-
sults with two patches, and three patches would bring larger
physical implementation errors, we finally decide to choose
the patch number 2 as the main evaluation option.
Hyperparameter λ. The λ in Eq.(13) affects the variabil-
ity of the final fitness of the individual, the larger the λ, the
greater the difference between different individuals, but this
does not mean that the greater the difference, the better the
attack effects. As shown in Figure 7 (b), the attack effective-
ness of cross-modal patches increases when λ equals from
1 to 2, but drops dramatically when λ equals 3. As a result,
we set λ = 2 to obtain the optimal effect.

(a) (b)
Figure 7. The ASR(%) and AP drop(%) of unified adversarial
patches with different patch numbers and hyperparameter λ.

4.1.5 Robustness to Implementation Errors

Since the patch is in general generated digitally by consider-
ing the optimal shape and fixed location, when it is applied
to real scenarios, it is natural to see how sensitive it would
be to the attack success rate if we do not cut and paste the
patch in 100% exact shape and location on the clothes.

Therefore, we simulate the possible position shifts and
clipping errors when doing physical experiments. Table 5
demonstrates our cross-modal patches’ robustness to trans-
lation errors and incompleteness.



       (a) 0°        (b) -15°        (c) +15°        (d) -30°        (e) +30°        (f) dis        (g) sit        (h) outdoor
Figure 8. Visual examples of physical attacks with cross-modal patches under various angles, distances, postures, and scenes.

Table 5. ASR of simulating implementation errors.
Translation Incompleteness

3pix 5pix 5% 10%

ASR
64.17%

(↓9.16%)
55.00%

(↓18.33%)
68.83%

(↓5.00%)
60.83%

(↓2.50%)

4.2. Attacks in the physical world

To test the effectiveness of our method in the real world,
we build a series of scenarios and record actual videos un-
der corresponding physical settings to compute their ASR.
By default, the recordings of interior scenes are conducted
4 meters away from a standing person in frontal perspective
(0◦), and we record each scenario for 20 seconds at a rate of
10 frames per second (about 200 frames in total). Similar to
[33], we set the threshold of pedestrian detection as 0.7. For
different settings, in the angle issue, we use ±15◦ and ±30◦

for verification. In the distance issue, we change the cam-
era’s default setting from 4 meters to 6 meters. In the pos-
ture issue, the pedestrian’s posture is replaced by a sitting
one. In the scene issue, we switch from the default indoor
to the outdoor. Figure 8 lists the concrete illustrations of
various scenarios. Besides, the pedestrian is asked to move
the body within the range of 5◦ of the current posture to take
videos while shooting. Quantitative results are shown in Ta-
ble 6. It is clear that from the frontal perspective, our uni-
fied adversarial patches could obtain a high ASR (73.50%).
The ASR still maintains a high value (67.00% and 46.50%)
when the shooting angle varies. The ASR drops to 71.00%
when the distance is increased to 6 meters from 4 meters.
The ASR drops to 61.50% when the posture is changed
from standing to sitting, and to 57.00% at exterior scenes.
These findings demonstrate that our patches are not signif-
icantly impacted by various shooting scenarios. In other
words, the effects of adversarial attacks can be maintained
as long as the camera can capture the whole shape of our

cross-modal patches on the object.

Table 6. ASR in the physical world when changing angles, dis-
tances, postures and scenes captured by multi-modal sensors.

0◦ ±15◦ ±30◦ dist. pos. outdoor
ASR 73.50% 67.00% 46.50% 71.00% 61.50% 57.00%

4.3. Defenses against Unified Adversarial Patches

To verify the robustness towards adversarial defense, we
utilize two common methods in the digital world: spatial
smoothing [32] as a pre-processing defense and adversarial
training [8] as a post-processing defense. The original ASR
is 73.33% and the results in Table 7 shows that:(1) ASR
only decreases by 9.16% after spatial smoothing. This is
reasonable since our cover image have the same value that
could not be altered by smoothing. (2) In the second case,
ASR drops by 23.33%, which is still within an acceptable
range. The whole results prove our method’s robustness.

Table 7. Results against the defense methods.
Defense Methods ASR Error

Spatial Smoothing [32] 64.17% 9.16%
Adversarial Training [8] 50.00% 23.33%

5. Conclusion

In this paper, we propose a unified adversarial patch in
the physical world. For that, we uncover the property that
can react both in the visible and infrared modalities: shape.
Then, combining the boundary-limited shape optimization
with the score-aware iterative fitness evaluation, we guaran-
tee an efficient exploration of the adversarial shape and the
balance between different modalities. Experiments on the
pedestrian detection in the digital world and physical world
verify the effectiveness of our method.
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