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Abstract

Adversarial examples derived from deliberately crafted
perturbations on visual inputs can easily harm decision pro-
cess of deep neural networks. To prevent potential threats,
various adversarial training-based defense methods have
grown rapidly and become a de facto standard approach
for robustness. Despite recent competitive achievements,
we observe that adversarial vulnerability varies across tar-
gets and certain vulnerabilities remain prevalent. Intrigu-
ingly, such peculiar phenomenon cannot be relieved even
with deeper architectures and advanced defense methods.
To address this issue, in this paper, we introduce a causal
approach called Adversarial Double Machine Learning
(ADML), which allows us to quantify the degree of adver-
sarial vulnerability for network predictions and capture the
effect of treatments on outcome of interests. ADML can
directly estimate causal parameter of adversarial pertur-
bations per se and mitigate negative effects that can po-
tentially damage robustness, bridging a causal perspective
into the adversarial vulnerability. Through extensive exper-
iments on various CNN and Transformer architectures, we
corroborate that ADML improves adversarial robustness
with large margins and relieve the empirical observation.

1. Introduction
Along with the progressive developments of deep neu-

ral networks (DNNs) [17, 10, 2], an aspect of AI safety
comes into a prominence in various computer vision re-
search [45, 64, 12, 19]. Especially, adversarial exam-
ples [50, 15, 30] are known as potential threats on AI sys-
tems. With deliberately crafted perturbations on the visual
inputs, adversarial examples are hardly distinguishable to
human observers, but they easily result in misleading deci-
sion process of DNNs. Such adversarial vulnerability pro-
vokes weak reliability of inference process of DNNs and

*Equal contribution. † Corresponding author.

(a) Network Architectures

(b) Adversarial Defense Methods
Figure 1. The comparison of adversarial robustness along target
classes with respect to (a) Network Architectures and (b) Adver-
sarial Defense Methods on CIFAR-10 [27]. Note that, the distri-
bution of adversarial robustness is consistent along both criteria.

discourages AI adoption to the safety critical areas [54, 44].
In order to achieve robust and trustworthy DNNs from

adversarial perturbation, previous methods [33, 28, 3, 62,
55, 58, 8] have delved into developing various adversarial
attack and defense algorithms in the sense of cat-and-mouse
game. As a seminal work, Madry et al. [33] have paved the
way for obtaining robust network through adversarial train-
ing (AT) regarded as an ultimate augmentation training [52]
with respect to adversarial examples. Based on its effective-
ness, various subsequent works [62, 55, 58, 63, 39, 25] have
investigated it to further enhance adversarial robustness.

Although several AT-based defense methods have be-
come a de facto standard due to their competitive adver-
sarial robustness, we found an intriguing property of the
current defense methods. As in Figure 1, we identify that
the adversarial robustness for the each target class signifi-
cantly varies with a large gap, and this phenomenon equally
happens in the course of (a) network architectures and (b)
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Adversarial Training

Robust Network

(a) AT Causal Diagram (b) Training Robust Network
Figure 2. Overview of canonical adversarial training procedure for
robust network and its causal diagram.

various AT-based defense methods. In addition, we would
like to point out that the robustness of particular target is
still severely vulnerable than others even with advanced ar-
chitectures [10, 51, 31] and defense methods [62, 55, 58].
We argue that such phenomenon is derived from the cur-
rent learning strategies of AT-based defense methods that
lacks of understanding causal relations between the visual
inputs and predictions. When considering AT methods as
the ultimate augmentation [52], current methods rely solely
on strengthening the correlation between adversarial exam-
ples and target classes through canonical objectives that im-
prove robustness. To fundamentally address such vulnera-
bility and understand the causal relation, we need to quan-
tify the degree of vulnerability (i.e., causal parameter) and
should mitigate its direct effects to the network predictions.

Accordingly, we investigate the AT-based defense meth-
ods in a causal viewpoint and propose a way of precisely
estimating causal parameter between adversarial examples
and their predictions, namely Adversarial Double Machine
Learning (ADML). We first represent a causal diagram of
AT-based methods and interpret it as a generating process
of robust classifiers as illustrated in Figure 2. Regarding
standard adversarial training [33] as an optimizing proce-
dure for the robust network parameters f with respect to
the worst perturbations t, we can instantiate a generation
g1 as an adversarial attack of projected gradient descent
(PGD) [33] for the given clean examples x.

Then, our research question is how to quantitatively
compute the causal parameter θ between the perturbations
t and target classes y, and identify the causal effects on
outcome of our interests. Through double machine learn-
ing (DML) [5], widely studied as a powerful causal estima-
tor [4, 7, 13, 20, 21] for the given two regression models, we
can establish an initial research point of estimating causal
parameter of adversarial perturbation with theoretical back-
ground. However, it is difficult to directly estimate θ in the
high-dimensional manifolds, especially for DNNs. In this
paper, we shed some lights on identifying causal parameter
of the perturbations while theoretically bridging the gap be-

1Selecting g as proper perturbations varies according to domain specific
tasks (e.g., rotations, translations [11], or spatial deformations [59]).

tween causal inference and adversarial robustness. Then, by
minimizing the magnitude of the estimated causal parame-
ter, we essentially lessen negative causal effects of adversar-
ial vulnerability, and consequently acquire robust network
with the aforementioned phenomenon alleviated.

To corroborate the effectiveness of ADML on adversarial
robustness, we set extensive experiments with four publicly
available datasets [27, 29, 9]. Our experiments include var-
ious convolutional neural network architectures (CNNs), as
well as Transformer architectures that have drawn great at-
tention in both vision and language tasks [53, 10, 66, 65]
yet relatively lack of being studied in adversarial research.

Our contributions can be summarized as follows:
• We present an empirical evidence that despite the re-

cent advances in AT-based defenses, fundamentally
adversarial vulnerability still remains across various
architectures and defense algorithms.

• Bridging a causal perspective into adversary, we pro-
pose Adversarial Double Machine Learning (ADML),
estimating causal parameter in adversarial examples
and mitigating its causal effects damaging robustness.

• Through extensive experiments and analyses on vari-
ous CNN and Transformer architectures, we corrobo-
rate intensive robustness of our proposed method with
the phenomenon alleviated.

2. Background and Related Work
Notation. We deal with DNNs for classification as in Fig-
ure 2, represented by f : X → Y , where X and Y de-
notes image and probability space, respectively. Let x ∈ X
denote clean images and y ∈ Y indicate (one-hot) target
classes corresponding to the images. Adversarial examples
xadv are generated by adversarial perturbations t through
DNNs, such that xadv = x + t. Here, the perturbations
are carefully created through the following formulation:

max
∥t∥∞≤γ

LCE(f(x+ t), y), (1)

where LCE represents a pre-defined loss such as cross-
entropy for classification task. We regard adversarial pertur-
bations t as l∞ perturbation within γ-ball (i.e., perturbation
budget). Here, ∥·∥∞ describes l∞ perturbation magnitude.

2.1. Adversarial Training

After several works [50, 15, 24] have found that human-
imperceptible adversarial examples easily break network
predictions, Madry et al. [33] have thrown a fundamental
question: “How can we make models robust to adversar-
ial examples with security guarantee?”. To answer it, they
have introduced the concept of empirical risk minimization
(ERM) serving as a recipe to obtain classifiers with small
population risk. Thanks to its reliable guarantee, they have
consolidated it on the purpose of adversarial defense and



accomplished the yardstick of adversarial training. The key
factor of its achievement is regarding adversarial training as
min-max optimization in a perspective of saddle point prob-
lem, which can be written as follows:

min
f

E(x,y)∼D

[
max

∥t∥∞≤γ
LCE (f(x+ t), y)

]
, (2)

where D denotes a set of data samples (x, y). Here, they
have presented an adversarial attack based on PGD to pow-
erfully behave inner-maximization on Eq. (2), which is an
ultimate first-order adversary with a multi-step variant of
fast gradient sign method [28] by adding a random pertur-
bation around the clean images x.

According to its impact, various adversarial training
methods [33, 62, 55, 58] have grown exponentially and be-
come de facto standards robustifying DNNs against adver-
sarial perturbation. Zhang et al. [62] have pointed out
the trade-off between clean accuracy and adversarial ro-
bustness, and reduced the gap between clean errors and
robust errors. Wang et al. [55] have claimed that all of
clean images are used to perform both inner-maximization
and outer-minimization process in Eq. (2), irrespective of
whether they are correctly classified or not. Thus, they
have focused on misclassified clean images prone to be eas-
ily overlooked during adversarial training and demonstrated
their significant impacts on the robustness by incorporat-
ing an explicit regularizer for them. Wu et al. [58] have
studied loss landscapes with respect to network parame-
ters and shown a positive correlation between the flatness
of the parameter loss landscapes and the robustness. In the
end, they have presented a double-perturbation mechanism
where clean images are perturbed, while network parame-
ters are simultaneously perturbed as well.

On the other hand, we plunge into investigating where
adversarial vulnerability comes from and observe that the
vulnerability varies along target classes, and it significantly
deteriorates network predictions. Further, we find that this
phenomenon commonly happens across various network ar-
chitectures and advanced defense methods. To relieve such
peculiarity, we deploy double machine learning (DML) that
helps to capture how treatments (i.e., adversarial perturba-
tions) affect outcomes of our interests (i.e., network predic-
tions), which is one of the powerful causal inference meth-
ods. After we concisely explicate the necessary background
of DML, we will bridge it to the adversary in Sec. (3).

2.2. Double Machine Learning

In data science and econometrics, one of the fundamental
problems is how to measure causality between treatments
t and outcomes of our interest y among high-dimensional
observational data samples (see Figure 2) to identify data
generating process. At a first glance, it seems simple to
compute their causality, but we should keep in mind the

possibility for the existence of covariates x affecting both
treatments and outcomes. In other words, for example, if
one may want to know the causal effects of drug dosage t to
blood pressure changes y, one needs to collect observational
data with respect to a variety of patients characteristics and
their clinical histories x, so as not to fall into biased envi-
ronment. In reality, though, it is impossible to collect obser-
vational data including all covariates concerning treatments
and outcomes, so it is not an easy problem to catch genuine
causality under the unknown covariates x. Therefore, there
has been a growing demand for robustly predicting the unbi-
ased causal relation, despite with the limited data samples.

Recently, the advent of double machine learning
(DML) [5] enables us to clarify the causality between treat-
ments t and outcomes y, when two regression models are
given. The formulation of initial DML can be written as:

y = f(x) + θt+ u, (E[u | x, t] = 0)

t = g(x) + v, (E[v | x] = 0)
(3)

where θ ∈ R denotes causal parameter representing causal
relation between t ∈ Rd and y ∈ Rd. In addition, f in-
dicates one regression model projecting covariates to out-
come domain, and g denotes another regression model gen-
erating treatments t. In the sense that two regression mod-
els f and g are not main interest of DML, they are called
as nuisance parameters to estimate the causal parameter θ.
Note that, early DML assumes the problem setup is pro-
ceeded in partially linear settings as a shape of Robinson-
style [42] described in Eq. (3), where “partially” literally
means that treatments t ∈ Rd are linearly connected to out-
come y ∈ Rd, while covariates x are not. In addition, it is
supposed that the conditional expected error of u ∈ Rd and
v ∈ Rd equals to zero vector 0 ∈ Rd.

To obtain the causal parameter θ, Chernozhukov et
al. [5] have provided a solution of estimating the causal
parameter such that θ̂ = (y − E[y | x]) · v/∥v∥2 which
satisfies Neyman-orthogonality [35, 34]. It makes θ̂ invari-
ant to their erroneous of two nuisance parameters with the
variance of causal parameter reduced. Furthermore, they
have addressed a chronic problem that θ is only accessi-
ble when the two nuisance parameters are in a class of
Donsker condition, where deep neural networks are not in-
cluded in that condition. They have theoretically demon-
strated sample-splitting plus cross-fitting can effectively re-
lax Donsker condition and allow a broad array of modern
ML methods [5] to compute unbiased causal parameter θ.

Following the principle, they first split the data samples
{D1,D2} ∼ D and divided the process of causal infer-
ence into two steps: (a) training two nuisance parameters
f and g with D1, (b) estimating unbiased θ with D2. Here,
data samples D2 used to estimate unbiased causal parame-
ters should not be overlapped with D1 utilized to train the
nuisance parameters. To make copious combinations, they



swapped the role of partitioned data samples D1 ⇋ D2

or repeatedly split D. Subsequently, they have performed
cross-fitting (e.g., k-fold cross validation) by averaging the
estimated causal parameters from various split samples.

Along with the success of initial DML in partially linear
settings, numerous variants [4, 7, 32, 14, 13, 26, 6] have
emerged, and they have extended its initial nature to non-
parametric settings with continuous treatments t in order
to capture more complicated non-linear causal relations in a
debiased state. A non-parametric formulation [4] represents
a more general problem setup of DML as follows:

y = f(x, t) + u, (E[u | x, t] = 0)

t = g(x) + v, (E[v | x] = 0)
(4)

where there is no explicit term for causal parameter θ ex-
hibiting causal relation between treatments t and outcomes
y, compared to Eq. (3). Colangelo et al. [7] have intro-
duced a way of estimating causal parameter θ applicable to
non-parametric settings with high-dimensional continuous
treatments t ∈ T , which can be written as:

θ̂ =
∂

∂t
E[y | do(T =t)]. (5)

They have utilized do-operator [37] commonly used in
graphical causal models and intervened on treatments t to
compute an interventional expectation E[y|do(T =t)]. It
represents the expected outcome averaged from all the pos-
sible covariates for the given fixed treatments t, such that
E[y|do(T =t)] =

∑
x∈X E[y|x, t]p(x). Specifically, they

have estimated causal parameter θ by measuring how much
the interventional expectation shifted, once they change the
treatments slightly. Since the most important property of
DML is Neyman-Orthogonality helping to robustly esti-
mate the causal parameter, the interventional expectation
should be also modified to satisfy the property [7, 23] of its
invariance to nuisance parameters f and g. Its formulation
can be written as follows (see details in Appendix A):

E[y | do(T =t)] = EDt

[
f(x, t) +

y − f(x, t)

p(T =t | x)

]
, (6)

where Dt denotes a set of observational covariates and out-
come samples for a fixed t ∈ T such that (x, y) ∼ Dt,
a sub-population of D. Note that, p(T =t|x) is related to
treatment generator g. Here, differentiating Eq. (6) enables
us to acquire unbiased causal parameter in non-parametric
settings with non-linear causal relation.

In brief, DML captures unbiased causal relation between
treatments t and outcomes y even with finite data samples,
of which theoretical ground is (a) Neyman-Orthogonality
for robustly estimated causal parameter despite undesirable
outputs of nuisance parameters, and (b) sample-splitting
plus cross-fitting for debiased causal parameters.

3. Adversarial Double Machine Learning
3.1. Adversarial Data Generating Process

In general deep learning schemes, we have clean visual
images x ∈ Rhwc and their corresponding target classes
y ∈ Rd in our hand as a format of dataset, where h, w, c
denotes image resolution of height, width, channel, repec-
tively, and d denotes the number of classes. Thus, we do
not need additional data generating process. For adversar-
ial training, on the other hand, we need another data, which
are adversarial perturbations generated from data samples
(x, y) as in Eq. (1). They are normally created by PGD [33]
at every training iteration to make DNNs f robust through
min-max optimization game according to Eq. (2).

Though, the more iterations of adversarial training, the
fewer perturbations that impair network predictions. In
other words, not all of the perturbations can corrupt network
predictions among newly generated perturbations. Hence,
we do not consider all of the perturbations as treatments
but selectively define them as worst perturbations t break-
ing network predictions, such that it satisfies y ̸= f(x+ t),
where we call xadv = x + t as worst examples. This is be-
cause our major goal is to catch actual adversarial vulnera-
bility of DNNs, so that we do not tackle the perturbations
incapable of harming network predictions.

To access such worst perturbation, we choose perturba-
tion generator g as an adversarial attack of PGD accord-
ing to standard adversarial training [33]. In addition, we
pick the worst perturbations t damaging network predic-
tions among adversarial perturbations from the generator g.
In this way, we perform adversarial data generating process.

3.2. Adversarial Problem Setup

In the nature of adversarial training, the worst perturba-
tions t are explicitly injected to clean images x such that
xadv = x + t, and these combined images are propagated
into DNNs f . Here, through this formulation as: f(x+t) =
f(x, t), we connect DNNs for adversarial training and a nui-
sance parameter f for non-parametric DML in Eq. (4). For-
tunately, once we use Taylor expansion (with scalar-valued
function for better understanding) and decompose f by its
input component as: f(x+ t) = f(x)+

∑∞
i=1 t

if (i)(x)/i!,
where f (i) indicates i-th order derivative function, we can
also express partially linear settings described in Eq. (3).
That is, since adversarial examples start from the concept
of “additive noise”, both settings can exist at the same time
in the scheme of adversarial training. From this reason, we
build Adversarial Double Machine Learning (ADML):

y = f(x+ t) = f(x) + θt̄+ u, (E[u | x, t] = 0)

t = g(x) + v, (E[v | x] = 0)
(7)

where t indicates Taylor-order matrix: [t, t2, · · · ]T and θ rep-
resents Taylor-coefficient matrix [ f

(1)(x)
1!

, f(2)(x)
2!

, · · · ] (see



strict mathematical verification in Appendix B).
Here, we explain what the conditional expected error of

u and v in Eq. (7) means in adversarial training. The for-
mer E[u|x, t] = 0 implies the nature of adversarial training,
which can be viewed as an ultimate augmentation robus-
tifying DNNs, when infinite data population of x and t is
given. Thus, it means network predictions become invari-
ant in the end, despite the given worst perturbations. To
implement it practically, we replace it with a mild assump-
tion as E[u|x, g(x)] = 0 (see Appendix C) that signifies
PGD-based perturbations are used to perform adversarial
training. This is because we cannot always acquire worst
perturbations t using only PGD. For the latter E[v|x] = 0,
it represents PGD has capability of producing worst pertur-
bations deviating network predictions during the training.

3.3. Estimating Adversarially Causal Parameter

Aligned with Eq. (3), an explicit term of θ is regarded as
the causal parameter in our problem setup of ADML. We
can now interpret that θ is a causal factor to spur adversarial
vulnerability, since its magnitude easily catalyzes the devi-
ations from network predictions of clean images. Here, if it
is possible to directly compute θ over all data samples, we
can finally handle adversarial vulnerability.

Favorably, ADML follows both partially linear and non-
parametric settings due to the concept of additive noise, thus
we can employ the way of estimating causal parameter as in
Eq. (5). The following formulation represents the estimated
causal parameter θ̂ in ADML (see Appendix D). Note that,
as we emphasized, sample-splitting plus cross-fitting must
be applied to estimate unbiased causal parameter.

θ̂ = EDt

[
−
(

1

p(T =t | x)
− 1

)
∂

∂t
f(x+ t)

]
, (8)

where ∂
∂tf(x + t) indicates an input gradient for network

predictions with respect to t, and p(T =t|x) represents a dis-
tribution of worst perturbation given clean images x. Here,
we cannot directly handle this distribution due to the pres-
ence of multiple unknown parameters required to define it.
For that reason, we instead approximate it with the sharpen-
ing technique by incorporating the information on attacked
confidence such that p(T =t|x) ≈ Et′|x[p(ya|x, t′)] (see
Appendix E), where ya denotes attacked classes for the
given worst perturbations t. It implicitly means that the
higher the attacked confidence, the higher the probability
of finding worst perturbations.

Aligned with the previous analysis [47] that show in-
creasing magnitude of input gradient increases adversarial
vulnerability, the magnitude of our causal parameter |θ̂| also
becomes huge due to |θ̂| ∝ | ∂∂tf(x + t)|. In parallel, Qin
et al. [38] show the more ambiguous confident, the lower
robustness (high vulnerability), and interestingly, the mag-

Algorithm 1 ADML
Require: Data Samples D, Network f

1: for (x, y) ∼ D do ▷ Cross-Fitting
2: t′ ← g(x) ▷ PGD Attack
3: (x1, y1, t

′
1), (x2, y2, t

′
2) ∼ Split(x, y, t′)

4: La ← LDefense(x1, y1, t
′
1; f) ▷ Mild Assumption

5: (xt2 , yt2 , t2)← Select(y2 ̸= f(x2 + t′2)) ▷ Worst
6: j∗ ← argmaxj fj(xt2 + t2) ▷ j : Class Index
7: τ ← 1

fj∗ (xt2+t2)
− 1 ▷ Balancing Ratio

8: Lb ← τLCE(f(xt2 + t2), yt2) + LCE(f(xt2), yt2)
9: LADML ← La + Lb ▷ ADML Loss

10: wf ← wf − α ∂
∂wf
LADML ▷ Weight Update (α: lr)

11: end for

nitude of our causal parameter also |θ̂| becomes large due to
|θ̂| ∝ |1/Et′|x[p(ya|x, t′)]|.

Bringing such factors at once, θ̂ represents a weighted
measurement of attacked confidence and their input gradi-
ents. Comprehensively, we can revisit that the network pre-
dictions of worst examples are easily flipped due to the fol-
lowing adversarial vulnerability: (a) ambiguous confidence
around classification boundaries, or (b) high gradient mag-
nitude amplifying the leverage of the perturbations. To im-
prove the adversarial robustness of DNNs, it is essential to
minimize the negative effects of causal parameters, which
are combinatorial outcomes of the gradient and confidence.

3.4. Mitigating Adversarial Vulnerability

By deploying ADML, we propose a way of estimating
causal parameter representing the degree of adversarial vul-
nerability that disturbs to predict the target classes. Then,
our final goal is essentially to lessen its direct causal ef-
fect from adversarial perturbations in order to achieve ro-
bust networks. In detailed, alleviating their causal effect
derived from θ̂ is the process of comprehensive reconstruc-
tion to focus more on vulnerable samples as we reflect their
attacked confidence and gradients effects altogether.

Accordingly, the very first way is naively reducing the
magnitude of θ̂ to suppress adversarial vulnerability dam-
aging the robustness. However, calculating θ̂ and min-
imizing its magnitude at every iteration is computation-
ally striking because input gradient has huge dimension of
Rdhwc and getting its gradient inevitably needs to compute
second-order gradient with its tremendous dimension. We
instead approximate the partial derivative ∂

∂tE[y|do(T =t)]
and minimize its magnitude, which can be written as:

min
f
|θ̂| ≈

∣∣∣∣E[y | do(T =t)]− E[y | do(T =0)]

t− 0

∣∣∣∣ , (9)

where network parameters of DNNs f are only dependent
on the numerator, thus we engross the numerator only.
Lastly, we redesign E[y|do(T =t)] into the form of loss



Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Clean BIM PGD CW∞ AP DLR AA Clean BIM PGD CW∞ AP DLR AA Clean BIM PGD CW∞ AP DLR AA
V

G
G

-1
6

AT 78.8 49.4 48.1 46.8 46.4 46.4 46.3 53.9 26.0 25.0 24.1 23.7 23.8 23.7 56.5 26.6 25.4 25.5 24.7 24.6 24.6
+ADML 80.9 61.8 61.7 59.8 55.0 54.8 54.5 52.2 31.0 30.8 29.9 27.8 27.6 27.3 55.4 35.5 34.9 32.9 32.7 32.4 32.2

TRADES 79.5 48.6 47.6 45.7 46.4 46.3 46.3 53.3 25.5 24.8 23.5 23.6 23.7 23.2 56.1 28.3 27.3 26.2 25.8 25.8 25.7
+ADML 81.0 62.6 62.4 59.0 55.3 55.1 54.9 52.2 31.2 31.1 29.8 27.6 27.3 27.3 55.4 36.6 36.0 34.0 33.6 33.4 33.3

MART 78.3 51.9 50.6 48.8 48.9 48.8 48.7 52.6 26.6 26.0 24.4 24.3 24.3 24.2 55.7 27.8 26.6 26.0 25.7 25.7 25.6
+ADML 80.4 62.4 62.2 60.3 55.7 55.3 55.2 51.6 31.6 31.0 29.6 27.8 27.5 27.3 55.1 36.2 35.8 34.9 34.3 33.9 33.7

AWP 77.2 53.9 52.6 50.1 51.4 51.1 51.0 52.1 30.2 29.3 27.5 28.7 28.5 28.3 56.9 31.6 31.0 29.4 29.9 29.8 29.7
+ADML 80.2 64.7 64.6 61.8 58.0 57.7 57.5 52.3 33.8 33.5 31.3 29.7 29.5 29.0 54.5 36.6 36.1 34.6 34.5 33.8 33.7

R
es

N
et

-1
8

AT 83.1 53.3 51.9 50.8 49.9 49.7 49.5 59.1 27.1 26.3 25.4 25.3 25.3 25.1 61.5 31.0 30.1 29.5 28.8 28.9 28.8
+ADML 84.5 61.1 60.8 58.5 56.7 56.2 55.6 56.4 31.6 30.9 29.5 28.4 28.2 27.8 57.3 35.9 35.5 33.5 34.7 34.7 34.6

TRADES 83.3 53.0 52.0 50.9 50.9 50.8 50.7 58.5 27.6 26.8 26.2 25.9 25.9 25.8 60.4 32.0 31.0 30.2 29.7 29.6 29.5
+ADML 84.0 62.3 61.9 59.5 56.7 56.6 55.9 57.3 31.7 31.6 30.0 28.8 28.5 28.0 58.4 37.0 36.0 33.3 35.0 34.1 34.0

MART 82.5 54.1 52.8 51.3 51.5 50.8 50.8 58.1 27.7 26.7 25.5 25.4 25.1 25.0 60.6 31.0 30.2 29.8 29.0 29.0 29.0
+ADML 84.1 63.3 62.9 58.7 56.8 56.4 56.2 57.4 32.1 31.7 30.2 28.9 28.8 28.5 57.1 36.6 36.0 33.6 35.1 33.9 33.8

AWP 81.3 56.3 55.5 53.6 54.2 54.0 54.0 57.9 31.4 30.7 29.0 30.0 30.0 29.8 61.4 34.7 34.1 32.4 33.3 33.2 33.1
+ADML 84.0 64.6 64.5 61.4 60.5 59.9 59.7 56.2 33.9 32.9 30.7 31.1 30.5 30.3 59.8 38.6 38.1 35.9 37.7 36.7 36.6

W
id

eR
es

N
et

-2
8-

10

AT 86.7 55.4 53.4 53.4 51.3 51.3 51.2 61.9 28.8 27.4 27.1 26.0 26.0 25.9 64.8 32.7 31.2 31.1 30.1 30.1 30.0
+ADML 87.5 61.7 60.7 58.8 56.4 56.3 55.8 58.9 32.9 32.6 31.3 29.6 29.2 29.1 62.1 43.5 43.1 41.1 41.9 40.4 40.2

TRADES 86.0 55.3 53.7 53.6 51.6 51.6 51.4 61.9 29.1 28.5 27.8 26.7 26.8 26.7 64.2 32.5 31.6 31.4 30.0 29.9 29.8
+ADML 88.5 62.9 61.9 59.6 57.6 57.6 56.6 61.6 33.3 33.0 31.5 30.0 30.1 29.6 63.1 43.5 42.9 41.0 41.4 40.3 40.2

MART 86.4 56.0 54.3 53.4 51.6 51.6 51.5 61.6 28.3 26.7 26.4 25.3 25.4 25.3 64.2 32.9 31.8 31.8 30.7 30.5 30.5
+ADML 88.3 62.1 60.9 59.6 56.7 56.6 56.2 59.6 33.0 32.9 31.6 30.3 29.9 29.6 61.8 42.8 42.6 40.3 40.7 39.0 38.9

AWP 85.9 60.2 58.9 57.2 56.9 56.9 56.8 62.4 33.0 32.2 31.1 30.9 30.9 30.8 65.4 36.9 36.0 35.1 34.8 34.8 34.7
+ADML 88.2 67.5 67.4 64.2 63.5 63.2 63.1 62.5 39.7 39.3 36.9 37.6 37.1 36.8 64.9 44.6 44.2 41.9 43.3 42.1 42.0

W
id

eR
es

N
et

-7
0-

10

AT 88.1 56.6 54.8 55.0 52.8 53.0 52.8 64.1 28.4 27.3 27.4 26.0 26.4 25.6 65.3 34.9 33.4 33.9 32.2 32.2 32.1
+ADML 88.9 61.5 61.4 61.0 56.5 56.3 56.0 63.3 30.0 29.2 28.8 26.9 26.7 26.4 61.0 37.7 37.4 36.9 33.8 33.0 32.9

TRADES 87.7 56.3 54.7 55.0 53.4 53.3 53.3 63.3 28.7 27.8 27.9 26.6 26.2 26.0 65.7 34.4 32.6 33.0 31.5 31.5 31.4
+ADML 89.1 63.9 63.3 62.7 59.0 59.6 59.0 63.4 31.2 30.8 30.3 27.5 27.1 27.0 61.8 40.2 39.5 38.8 36.1 35.5 35.4

MART 88.0 57.4 55.5 55.4 52.8 52.8 52.6 63.2 28.7 27.5 27.5 25.8 26.3 25.6 65.4 33.8 32.5 32.4 31.3 31.3 31.2
+ADML 88.5 61.7 61.3 60.8 56.7 56.8 56.6 62.3 30.1 30.0 29.4 29.3 29.1 28.7 63.2 41.8 41.0 40.2 37.7 36.6 36.5

AWP 86.6 61.8 60.6 59.9 59.1 59.4 59.2 65.2 33.3 33.3 31.7 31.5 30.3 30.0 66.7 40.7 40.0 40.0 39.1 39.0 38.9
+ADML 89.4 67.0 66.9 66.1 63.4 63.6 63.1 65.3 41.9 41.8 40.9 38.9 38.0 37.6 65.8 45.0 44.5 43.3 43.5 43.1 42.8

Table 1. Comparing adversarial robustness of various defence methods whether to the inclusion of ADML for CIFAR-10 [27], CIFAR-
100 [27], Tiny-ImageNet [29] trained with VGG-16 [48], ResNet-18 [17], WideResNet-28-10 [61], and WideResNet-70-10 [61].

function used in deep learning and finally construct the ob-
jective function for ADML, of which formulation can be
written as follows (see details in Appendix F):

min
f

EDt [τLCE(f(x+ t), y)] + ED0 [LCE(f(x), y)], (10)

where we denote τ = 1
p(T =t|x) − 1 as balancing ratio. The

current AT-based defenses use an equal weight “1/n” to loss
for all data samples: 1

n

∑n
i=1 LDefense(xi, yi, ti; f) because

they presume all of perturbations have equal causal effect
(successful attack) to change targets without realizing vul-
nerable samples. Whereas, ADML uses the balancing ratio
τ to adaptively focus on vulnerable samples by reweight-
ing the loss. To realize ADML, we describe Algorithm 1 to
explain further details, where LDefense(x, y, t; f) indicates a
main body of the loss function for AT-based defenses.

4. Experiment
4.1. Implementation Details

Datasets & Networks. We conduct comprehensive ex-
periments on various datasets and networks. For datasets,
we use CIFAR-10 [27], CIFAR-100 [27], and two larger
datasets: Tiny-ImageNet [29] and ImageNet [9]. For net-
works, four CNN architectures: [48, 17, 61] and four Trans-
former architectures: [10, 51] are used.

Adversarial Attacks. We adaptively set perturbation bud-
get γ of adversarial attacks depending on the classification
difficulty of the four datasets: 8/255 equally for CIFAR-
10 [27] and CIFAR100 [27], 4/255 for Tiny-ImageNet [29],
and 2/255 for ImageNet [9]. We prepare three standard at-
tacks: BIM [28], PGD [33], CW∞ [3], and three advanced
attacks: AP (Auto-PGD: step size-free), DLR (Auto-DLR:
shift and scaling invariant), AA (Auto-Attack: parameter-
free), all of which are introduced by Francesco et al. [8].
PGD, AP, DLR have 30 steps with random starts, where
PGD has step size 2.3× γ

30 , and AP, DLR both have momen-
tum coefficient ρ = 0.75. CW∞ uses PGD-based gradient
clamping for l∞ with CW objective [3] on κ = 0.
Adversarial Defenses. We use four defense baselines with
a standard baseline: AT [33] and three advanced defense
baselines: TRADES [62], MART [55], AWP [58]. To fairly
validate experiments, a perturbation generator, PGD [33]
is equivalently used to generate adversarial examples for
which we use the budget 8/255 and set 10 steps with
2.3× γ

10 step size in training. Especially, adversarially train-
ing Tiny-ImageNet [29] and ImageNet [9] is a computa-
tional burden, thus we employ fast adversarial training [57]
with FGSM [15]. For training CNNs, we use SGD [43]
with a learning rate of 0.5 scheduled by Cyclic [49] in 120
epochs and use early stopping to prevent overfitting [41].
For training Transformers, we use SGD [43] with a learn-



Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Clean BIM PGD CW AP DLR AA Clean BIM PGD CW∞ AP DLR AA Clean BIM PGD CW∞ AP DLR AA
V

iT
-S

/1
6

AT 83.5 49.9 47.3 46.6 44.9 44.8 44.7 59.9 26.6 25.8 25.1 24.6 24.5 24.5 73.8 35.8 34.1 33.5 31.9 31.9 31.8
+ADML 88.1 56.8 55.1 53.8 51.3 50.7 50.7 62.7 32.4 30.7 29.4 28.4 27.9 27.7 75.6 47.7 46.6 45.6 45.3 42.7 42.6

TRADES 85.0 51.0 49.4 48.6 48.1 48.0 47.8 59.5 27.3 26.6 26.3 25.8 25.9 25.7 72.9 38.8 37.8 37.4 36.1 36.1 36.0
+ADML 87.9 57.6 56.2 55.1 52.7 52.0 51.9 63.2 35.0 34.7 33.8 31.6 31.3 31.2 75.3 49.1 48.0 47.1 45.6 43.0 43.0

MART 85.7 52.4 49.7 48.9 46.7 46.7 46.6 60.9 28.6 27.9 27.5 26.5 26.5 26.4 77.6 38.6 37.2 36.8 35.2 35.2 35.2
+ADML 88.0 57.5 56.1 54.7 51.9 51.4 51.4 62.7 34.4 32.7 31.7 30.0 29.3 29.2 76.5 48.9 47.7 46.3 46.0 42.9 42.9

AWP 84.9 54.2 52.3 51.6 50.1 49.9 49.9 61.1 29.6 29.0 28.1 27.7 27.7 27.6 78.1 41.0 39.3 38.7 37.3 37.3 37.2
+ADML 88.0 57.0 54.3 53.3 50.1 49.6 49.5 64.4 34.8 34.1 33.0 31.3 30.6 30.5 76.6 47.5 46.4 44.9 44.7 42.5 42.4

V
iT

-B
/1

6

AT 87.0 52.8 50.8 50.4 47.8 47.7 47.7 63.3 30.4 29.6 29.2 28.6 28.3 28.3 72.4 40.1 37.7 37.8 34.4 34.3 34.5
+ADML 89.9 56.1 54.9 54.1 51.6 51.4 51.2 67.1 38.1 36.1 35.4 34.3 33.4 33.1 79.0 50.2 49.7 48.4 48.5 46.9 46.8

TRADES 85.3 53.8 52.4 51.6 50.9 50.8 50.8 65.7 32.6 31.5 31.0 29.9 30.0 30.0 73.2 43.3 41.2 41.8 39.1 39.0 39.4
+ADML 88.9 58.6 57.3 56.1 54.7 54.4 54.3 69.4 38.9 37.9 37.0 34.8 34.6 34.7 79.4 54.0 52.2 51.6 48.2 47.3 47.2

MART 87.4 53.3 50.6 50.5 48.3 48.4 48.2 65.7 31.9 30.8 30.2 29.2 29.2 29.1 79.3 41.7 40.0 39.6 36.8 36.8 37.1
+ADML 89.6 57.0 55.6 54.3 51.8 51.5 51.3 68.9 35.4 33.5 32.9 30.5 30.1 30.2 80.1 50.7 50.1 49.0 48.9 47.4 47.0

AWP 87.4 54.9 52.9 51.9 49.8 49.8 49.7 66.8 33.4 31.7 31.3 30.3 30.2 30.2 78.7 45.0 42.2 42.2 39.5 39.4 39.7
+ADML 90.4 59.1 56.7 56.6 53.8 53.6 52.8 70.0 37.7 36.1 35.6 33.3 32.8 32.9 79.3 50.8 49.7 48.0 48.0 46.0 45.8

D
ei

T-
S/

16

AT 83.5 49.3 47.8 46.7 45.3 45.3 45.2 59.5 29.2 28.5 27.6 27.5 27.5 27.4 75.7 37.4 35.6 34.7 33.1 33.0 33.0
+ADML 87.7 56.8 56.0 54.9 52.3 51.9 51.9 63.7 34.4 32.9 31.7 31.4 30.5 30.4 74.7 44.9 43.6 42.2 40.8 39.5 39.4

TRADES 84.1 50.6 49.3 48.8 48.0 48.0 48.0 61.8 29.4 28.8 27.8 28.1 28.0 28.0 74.8 39.0 38.0 37.4 36.4 36.4 36.3
+ADML 87.9 57.8 56.5 55.3 53.7 53.0 53.2 66.2 37.2 36.4 35.5 33.2 32.3 32.3 76.3 45.2 44.9 43.8 39.5 38.7 38.4

MART 84.2 52.3 50.0 49.1 47.8 47.6 47.5 59.8 31.0 30.6 29.3 29.7 29.6 29.6 74.6 40.1 39.1 38.4 37.7 37.6 37.6
+ADML 87.5 57.5 55.6 55.0 52.6 52.3 52.2 65.3 37.0 35.6 34.7 32.4 30.7 30.7 75.2 45.3 44.2 43.3 42.8 38.4 38.4

AWP 82.3 53.5 52.3 51.5 50.5 50.4 50.4 60.7 31.8 31.4 30.2 31.0 30.0 30.0 75.4 41.7 40.9 39.8 39.0 39.1 39.0
+ADML 86.7 55.9 53.2 52.6 50.6 50.5 50.5 64.7 39.4 38.1 36.8 35.7 34.5 34.5 75.4 49.4 47.6 46.5 45.7 42.8 42.8

D
ei

T-
B

/1
6

AT 84.6 51.5 49.5 48.4 47.2 47.1 47.0 64.9 30.3 29.1 28.4 27.5 27.4 27.4 79.1 38.6 36.3 36.1 34.4 34.3 34.0
+ADML 89.7 55.7 54.8 53.8 50.0 49.7 49.7 65.7 35.4 34.4 33.4 32.2 30.3 30.3 77.6 46.9 45.6 44.7 44.9 40.5 40.5

TRADES 85.4 52.8 51.7 50.6 50.2 50.2 50.2 64.8 30.0 29.3 28.6 28.4 28.3 28.3 78.3 43.1 41.6 40.5 40.5 40.5 40.4
+ADML 90.2 61.4 60.4 59.4 58.3 57.6 57.6 68.6 40.5 39.9 38.4 37.4 36.8 36.7 80.8 45.4 43.5 42.7 43.2 42.9 42.7

MART 83.9 54.7 53.2 52.0 51.0 50.9 50.7 64.5 31.9 31.1 30.5 30.2 30.1 30.0 75.8 44.6 43.3 42.6 42.6 42.6 42.5
+ADML 89.6 60.3 60.2 58.9 55.1 55.0 55.0 65.3 39.6 38.5 37.1 35.4 34.6 34.6 77.8 47.7 46.1 44.6 45.5 44.8 44.7

AWP 83.3 54.1 53.1 52.4 51.8 51.6 51.5 65.4 32.3 31.5 30.4 30.2 30.1 30.1 76.6 42.8 41.4 40.7 42.8 42.8 42.7
+ADML 88.9 59.0 57.3 56.4 54.0 53.8 53.7 69.7 39.4 38.3 37.3 35.2 34.4 34.4 80.3 51.2 50.2 48.9 49.4 48.1 48.0

Table 2. Comparing adversarial robustness of various defence methods whether to the inclusion of ADML for CIFAR-10 [27], CIFAR-
100 [27], Tiny-ImageNet [29] trained with ViT-S/16 [10], ViT-B/16 [10], DeiT-S/16 [51], and DeiT-B/16 [51].

CIFAR-10 Tiny-ImageNet

SS+CF Worst Non-Worst PGD CW∞ DLR AA PGD CW∞ DLR AA

V
G

G
-1

6 ✓ ✓ ✗ 61.7 59.8 54.8 54.4 34.9 32.9 32.4 32.2
✓ ✓ ✓ 52.3 49.4 48.9 48.8 25.4 24.9 24.2 24.2
✓ ✗ ✓ 48.0 47.1 45.8 45.8 26.0 25.8 24.5 24.4
✗ ✓ ✗ 52.6 50.0 49.4 49.4 28.1 27.0 26.4 26.4

R
es

N
et

-1
8 ✓ ✓ ✗ 60.8 58.5 56.2 55.6 35.5 33.5 34.7 34.6

✓ ✓ ✓ 51.7 50.1 49.5 49.2 34.9 32.4 32.7 32.7
✓ ✗ ✓ 50.8 50.5 49.4 49.1 30.0 29.5 29.0 28.9
✗ ✓ ✗ 53.6 51.7 51.4 51.0 31.7 29.7 30.2 30.1

Table 3. Ablation study for the effects of sample-splitting plus
cross-fitting (SS+CF) and Worst/Non-Worst examples.

ing rate of 0.001 on the equal experimental setup of CNNs,
where 224 × 224 resolution is applied for all datasets and
pretrained parameters on ImageNet-1k models are utilized.

Training ADML. After the completion of standard adver-
sarial training [33], we apply AT-based defense methods to
line 4 in Algorithm 1 for ADML. We then optimize adver-
sarially trained CNNs in 10 epochs using SGD [43] with a
learning rate of 0.001 scheduled by Cyclic [49], which al-
lows empirically sufficient convergence to robustness. In
addition, adversarially trained Transformers are also op-
timized with ADML using a learning rate of 0.0001 on
the equal experimental setup of CNNs. Note that, we set
sample-splitting ratio in half (see Appendix G) for each
batch, and cross-fitting is satisfied during training iterations.

PORT +ADML Gowal +ADML HAT +ADML SCORE +ADML Wang +ADML

C
-1

0 Clean 87.0 88.1 86.0 87.4 88.2 89.5 88.0 89.9 91.4 91.8
AA 60.6 66.4 60.7 66.8 61.0 67.5 61.1 68.0 64.0 70.5

C
-1

00 Clean 65.9 65.8 59.2 59.9 62.2 62.4 62.0 62.3 68.1 68.2
AA 31.2 37.9 30.8 37.7 31.2 37.3 31.2 37.1 35.7 41.1

Table 4. Comparing adversarial robustness of TRADES [62] using
synthetic images: DDPM [18] and EDM [22] whether to the inclu-
sion of ADML for CIFAR-10/100 with WRN-34-10: PORT [46]
and WRN-28-10: Gowal [16], HAT [39], SCORE [36], Wang [56].

4.2. Robustness Validation on ADML

Adversarial Robustness. Based on our experimental se-
tups, we have conducted enormous validations of adver-
sarial robustness on CNNs in Table 1 and Transformers
in Table 2. As shown in these tables, employing ADML
on AT-based defense methods: AT [33], TRADES [62],
MART [55], AWP [58] enables to largely improve adversar-
ial robustness, compared with that of each defense method
baseline. Bai et al. [1] have argued that Transformers can-
not show noticeable adversarial robustness than CNNs, but
we want to point out that the robustness of Transformers can
be remarkably improved, especially in larger datasets.
Ablation Study. In Table 3, we conduct ablation studies
on the effect of sample-splitting plus cross-fitting on ro-
bustness and the effect of considering treatments as worst
examples, non-worst examples, or both on robustness, ei-
ther. According to the results, only considering treatments



(a) CIFAR-10 [27] (b) CIFAR-100 [27] (c) Tiny-ImageNet [29] (d) ImageNet [9]
Figure 3. Cumulative distribution with averaged adversarial robustness for bottom-k classes against PGD [33] on four benchmark datasets.
Note that, 10%, 30%, and 50% of k values are applied, and perturbation budget is set to [8/255, 8/255, 4/255, 2/255] on each dataset.

Figure 4. Distribution of adversarial robustness across whole
classes on CIFAR-10. Four methods: AT [33], TRADES [62],
MART [55], AWP [58] are integrated on each architecture.

as worst examples can catch actual adversarial vulnerabil-
ity, thereby improving robustness much more than others.
Utilizing Synthetic Images. Recently, several works [46,
16, 39, 36, 56] have employed TRADES [62] utilizing syn-
thetic images: DDPM [18] and EDM [22] to improve ad-
versarial robustness based on the insight that data augmen-
tation such as CutMix [60] can improve robustness [40]. To
further investigate the benefits of ADML, we experiment
ADML combined with TRADES on the synthetic images.
Table 4 shows ADML can further improve the robustness
even on synthetic images, demonstrating its efficacy.

4.3. Causal Analysis on ADML

Adversarial Vulnerability. To validate the alleviation of
adversarial vulnerability existing in certain classes as in Fig-
ure 1, we evaluate the averaged adversarial robustness for
the cumulative distribution of bottom-k classes with respect
to the network prediction. We set the k value as 10%, 30%,
and 50%. As in Figure 3, we can observe that AT shows
noticeable vulnerability in bottom-k classes, and such ten-
dency pervades in four different datasets and architectures.
If we successfully mitigate direct causal parameter of ad-
versarial perturbations on each class, we expect apparent
improvements of robustness for bottom-k classes. As in the
figure, we can observe the notable robustness of ADML in
the vulnerable bottom-k classes and corroborate its effec-
tiveness to alleviate aforementioned phenomenon existing

Networks CIFAR10 Tiny-ImageNet

ρ10 ρ30 ρ50 ρAvg ρ10 ρ30 ρ50 ρAvg

ResNet-18 53.98 56.89 52.97 67.33 4.93 5.39 5.54 6.49
WRN-28-10 63.60 68.70 68.27 77.86 6.72 5.91 6.60 10.74
ViT-B/16 76.78 85.45 80.03 84.33 1.54 1.73 1.91 3.08
DeiT-B/16 69.36 74.46 68.63 69.71 1.15 1.13 1.22 2.05

Table 5. Relative ratio of causal parameter (%) in CIFAR-10 and
Tiny-ImageNet with four architectures. Note that k is set to 10, 30,
50, and Avg indicates average on whole classes in each dataset.

in current AT-based defenses. Further infographic is illus-
trated in Figure 4 for the integrated distribution of base-
lines [33, 62, 55, 58] and their corresponding ADML adop-
tions on each architecture, and it shows further adversarial
robustness in general (Additional results in Appendix H).
Causal Parameter. By deploying ADML, we present a
way of mitigating the magnitude of causal parameter |θ|.
To numerically calculate |θ|, we employ Eq. (8) and mea-
sure the average of |θADML| for ADML with respect to
the bottom-k and whole classes, respectively. By dividing
|θADML|with |θAT|, we can obtain relative ratio of causal pa-
rameter, ρk := 100×|θADML|/|θAT| of adversarial examples
in bottom-k classes. This ratio indicates that relative inten-
sity of causal parameter compared to that of AT [33]. As
in Table 5, we can observe that ADML shows less intensity
of the causal parameter than AT, which means less causal
effects of adversarial perturbations on target classes. From
combinatorial results of preceding robustness comparison
in Sec. 4.2, we corroborate that ADML indeed mitigate the
intrinsic causal parameter and alleviate empirical observa-
tion in Figure 1, thus results in adversarial robustness.

5. Conclusion
In this paper, we observe adversarial vulnerability varies

across targets and still pervades even with deeper architec-
tures and advanced defense methods. To fundamentally ad-
dress it, we build causal perspective in adversarial examples
and propose a way of estimating causal parameter repre-
senting the degree of adversarial vulnerability, namely Ad-
versarial Double Machine Learning (ADML). By minimiz-
ing causal effects from the vulnerability, ADML can miti-
gate the empirical phenomenon as well as solidly improve
adversarial robustness. Through intensive experiments, we
corroborate the effectiveness of ADML for robust network.
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Indian Journal of Statistics, Series A, pages 1–21, 1979.

[35] Jerzy Neyman and Elizabeth L Scott. Asymptotically op-
timal tests of composite hypotheses for randomized experi-
ments with noncontrolled predictor variables. Journal of the
American Statistical Association, 60(311):699–721, 1965.

[36] Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and Shuicheng
Yan. Robustness and accuracy could be reconcilable by
(proper) definition. In International Conference on Machine
Learning, pages 17258–17277. PMLR, 2022.

[37] Judea Pearl. Causality. Cambridge university press, 2009.
[38] Yao Qin, Xuezhi Wang, Alex Beutel, and Ed Chi. Improving

calibration through the relationship with adversarial robust-
ness. Advances in Neural Information Processing Systems,
34:14358–14369, 2021.

[39] Rahul Rade and Seyed-Mohsen Moosavi-Dezfooli. Reduc-
ing excessive margin to achieve a better accuracy vs. robust-
ness trade-off. In International Conference on Learning Rep-
resentations, 2022.

[40] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian,
Florian Stimberg, Olivia Wiles, and Timothy A Mann. Data
augmentation can improve robustness. Advances in Neural
Information Processing Systems, 34:29935–29948, 2021.

[41] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in ad-
versarially robust deep learning. In International Conference
on Machine Learning, pages 8093–8104, 2020.

[42] Peter M Robinson. Root-n-consistent semiparametric regres-
sion. Econometrica: Journal of the Econometric Society,
pages 931–954, 1988.

[43] Sebastian Ruder. An overview of gradient descent optimiza-
tion algorithms. arXiv preprint arXiv:1609.04747, 2016.

[44] Y. E. Sagduyu, Y. Shi, and T. Erpek. Iot network security
from the perspective of adversarial deep learning. In Inter-
national Conference on Sensing, Communication, and Net-
working, pages 1–9, 2019.

[45] Pouya Samangouei, Maya Kabkab, and Rama Chellappa.
Defense-gan: Protecting classifiers against adversarial at-
tacks using generative models. In International Conference
on Learning Representations, 2018.

[46] Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui
Dai, Chong Xiang, Mung Chiang, and Prateek Mittal. Ro-

bust learning meets generative models: Can proxy distribu-
tions improve adversarial robustness? In International Con-
ference on Learning Representations, 2022.

[47] Carl-Johann Simon-Gabriel, Yann Ollivier, Leon Bottou,
Bernhard Schölkopf, and David Lopez-Paz. First-order ad-
versarial vulnerability of neural networks and input dimen-
sion. In International Conference on Machine Learning,
pages 5809–5817. PMLR, 2019.

[48] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In Inter-
national Conference on Learning Representations, 2015.

[49] Leslie N Smith. Cyclical learning rates for training neural
networks. In IEEE Winter Conference on Applications of
Computer Vision, pages 464–472. IEEE, 2017.

[50] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In International Con-
ference on Learning Representations, 2014.

[51] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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