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Abstract

Visual recognition models are not invariant to viewpoint
changes in the 3D world, as different viewing directions can
dramatically affect the predictions given the same object.
Although many efforts have been devoted to making neural
networks invariant to 2D image translations and rotations,
viewpoint invariance is rarely investigated. As most models
process images in the perspective view, it is challenging to
impose invariance to 3D viewpoint changes based only on
2D inputs. Motivated by the success of adversarial train-
ing in promoting model robustness, we propose Viewpoint-
Invariant Adversarial Training (VIAT) to improve viewpoint
robustness of common image classifiers. By regarding view-
point transformation as an attack, VIAT is formulated as a
minimax optimization problem, where the inner maximiza-
tion characterizes diverse adversarial viewpoints by learn-
ing a Gaussian mixture distribution based on a new attack
GMVFool, while the outer minimization trains a viewpoint-
invariant classifier by minimizing the expected loss over
the worst-case adversarial viewpoint distributions. To fur-
ther improve the generalization performance, a distribution
sharing strategy is introduced leveraging the transferability
of adversarial viewpoints across objects. Experiments val-
idate the effectiveness of VIAT in improving the viewpoint
robustness of various image classifiers based on the diver-
sity of adversarial viewpoints generated by GMVFool.

1. Introduction

The ability of learning invariant representations is highly
desirable in numerous computer vision tasks [0, 17] and is
conducive to model robustness under semantic-preserving
image transformations. Previous works [15, 58, 9, 45] have
striven to make visual recognition models invariant to im-
age translation, rotation, reflection, and scaling. However,
they mainly consider invariances to 2D image transforma-
tions, leaving the viewpoint transformation [56] in the 3D
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Figure 1. An illustration of viewpoint changes on model perfor-
mance. We show the loss landscape w.r.t. yaw and pitch of the
camera, which demonstrates multiple regions of adversarial view-
points (We use ResNet-50 as the target model [21]).

world less explored. It has been shown that visual recogni-
tion models are susceptible to viewpoint changes [2, 5, 13],
exhibiting a significant gap from the human vision that can
robustly recognize objects under different viewpoints [7].
Due to the naturalness and prevalence of viewpoint varia-
tions in safety-critical applications (e.g., autonomous driv-
ing, robotics, surveillance, efc.), it is thus imperative to en-
dow visual recognition models with viewpoint invariance.

Despite the importance, it is extremely challenging to
build viewpoint-invariant visual recognition models since
typical networks take 2D images as inputs without inferring
the structure of 3D objects. As an effective data-driven ap-
proach, adversarial training augments training data with ad-
versarially generated samples under a specific threat model
and shows promise to improve model invariance/robustness
to additive adversarial perturbations [35, 57, 54], image
translation and rotation [15], geometric transformations
[28], etc. However, it is non-trivial to directly apply ad-
versarial training to improving viewpoint robustness due to
the difficulty of generating the worst-case adversarial view-
points. A pioneering work [13] proposes ViewFool, which
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Figure 2. An overview of our VIAT framework. We first train the NeRF representation of each object given multi-view images. The inner
maximization learns a Gaussian mixture distribution of adversarial viewpoints by maximizing the expectation of classification loss and
entropy regularization. The outer minimization samples adversarial viewpoints from the optimized distributions and renders 2D images
from adversarial viewpoints, which are fed into the network along with clean samples to train viewpoint-invariant classifiers.

encodes real-world 3D objects as Neural Radiance Fields
(NeRF) [36] given multi-view images and performs black-
box optimization for generating a distribution of adversarial
viewpoints. Though effective, ViewFool only adopts a uni-
modal Gaussian distribution, which is inadequate to char-
acterize multiple local maxima of the loss landscape w.r.t.
viewpoint changes, as shown in Fig. 1. We verify that this
can lead to overfitting of adversarial training to the specific
attack. Besides, ViewFool is time-consuming to optimize,
making adversarial training intractable.

To address these problems, in this paper, we propose
Viewpoint-Invariant Adversarial Training (VIAT), the
first framework to improve the viewpoint robustness of vi-
sual recognition models via adversarial training. As shown
in Fig. 2, VIAT is formulated as a distribution-based min-
imax problem, in which the inner maximization aims to
optimize the distribution of diverse adversarial viewpoints
while the outer minimization aims to train a viewpoint-
invariant classifier by minimizing the expected loss over the
worst-case adversarial viewpoint distributions. To address
the limitations of ViewFool, we propose GMVFool as a
practical solution to the inner problem, which generates a
Gaussian mixture distribution of adversarial viewpoints for
each object, with increased diversity to mitigate overfitting
of adversarial training. To accelerate training, we adopt a
stochastic optimization strategy to reduce the time cost of
training and adopt Instant-NGP [38], a fast variant of NeRF,
to improve the efficiency of the optimizing process. In
outer maximization, to further improve generalization, we
propose a distribution-sharing strategy given the observa-
tion that adversarial viewpoint distributions are transferable
across objects within the same class. We fine-tune classi-
fiers on a mixture of natural and sampled adversarial view-
point images to improve their viewpoint invariance.

To verify VIAT’s ability of training a viewpoint-invariant
model, a multi-view dataset is required. However, previous
datasets [16, 29, 41, 10] usually have limited realism and
viewpoint range, posing challenges when applying them to
this topic. To address this, we devoted significant effort to
creating a new multi-view dataset—IM3D, which contains
1k typical synthetic 3D objects from 100 classes, tailored
specifically for ImageNet categories. IM3D has several no-
table advantages compared to previous datasets, as shown
in Table 1: (1) It covers more categories. (2) It utilizes
physics-based rendering (PBR) technology' to produce re-
alistic images. (3) It has accurate camera pose annotations
and is sampled from a spherical space, leading to better re-
construction quality and exploration of the entire 3D space.
Thus, we mainly use it for training and further evaluating
our method on other multi-view datasets. We will release
our IM3D dataset, which includes multi-view images, 3D
source files, and corresponding Instant-NGP weights.

We conduct extensive experiments to validate the effec-
tiveness of both GMVFool and VIAT for generating adver-
sarial viewpoints and improving the viewpoint robustness of
image classifiers. Experimental results show that GMVFool
characterizes more diverse adversarial viewpoints while
maintaining high attack success rates. Based on it, VIAT
significantly improves the viewpoint robustness of image
classifiers ranging from ResNet [21] to Vision Transformer
(ViT) [14] and shows superior performance compared with
alternative baselines. Moreover, we construct a new out-of-
distribution (OOD) benchmark—ImageNet-V+, containing
nearly 100k images from the adversarial viewpoints found
by GMVFool. It is 10x larger than the previous ImageNet-
V benchmark [13]. We hope to serve it as a standard bench-
mark for evaluating viewpoint robustness in the future.

TA3D modeling and rendering technique that enables physically realistic effects.



Dataset [ #0Objects [ #Classes [ PBR [ Full 3D [ Spherical Pose

ALOI [16] 1K - X X v
MIRO [29] 120 12 X X v
OOWL [25] 500 25 X X X
CO3D [41] 18.6K 50 X X X
ABO [10] 8K 63 v v X
Dong et al. [13] 100 85 v v v
IM3D (Ours) 1K 100 v v v

Table 1. Comparison of our multi-view dataset with others.

2. Related Work

2.1. Robustness to Viewpoint Transformation

Since deep learning models have been applied in numer-
ous safety-critical fields, it is necessary to study the robust-
ness of visual recognition models to 3D viewpoint transfor-
mations. The ObjectNet [5], OOD-CV [59], and ImageNet-
R [22] datasets introduce images including various uncom-
mon camera viewpoints, object poses, and object shapes
to evaluate out-of-distribution (OOD) generalization under
viewpoint changes. But they are unable to evaluate the per-
formance under the worst-case viewpoint transformation.
Alcorn et al. [2] generate adversarial perspective samples
for 3D objects using a differentiable renderer and find that
the model is highly susceptible to viewpoint transformation.
Hamdi et al. [19] demonstrate the effect of viewpoint per-
turbation on the model performance of 3D objects and use
integral boundary optimization to find robust viewpoint re-
gions for the model. Madan et al. [34] introduces diverse
category-viewpoint combination images through digital ob-
jects and scenes to improve the model’s generalization to
OOD viewpoints. However, these methods all require 3D
models. Dong et al. [13] further proposes ViewFool, which
uses NeRF to build 3D representations of objects within
multi-view images and optimizes the adversarial viewpoint
distribution under an entropy regularizer. But it lacks the
ability to discover diverse adversarial viewpoints. Our work
differs from them mainly in that we focus on improving the
viewpoint robustness of models rather than attacking them
and then design a more efficient method to generate diverse
adversarial viewpoints for this purpose.

2.2. Adversarial Training

The concept of adversarial training (AT) is introduced
by Goodfellow et al. [18] and is widely recognized as the
most effective way to enhance the robustness of deep learn-
ing models [3, 4]. Based on the classical AT frameworks
such as PGD-AT [35], previous studies have proposed im-
provement strategies from different aspects [52, 44, 62,

, 40, 27]. Adversarial training is being widely adopted
for various deep learning tasks, such as visual recogni-
tion [18, 35, 57, 60], point cloud recognition [32, 61, 53],
and text classification [37, 39]. For viewpoint robustness,
Alcorn et al. [2] demonstrate that adversarial training can
have an effect. They generate adversarial viewpoint images

by the renderer. However, it only improves the robustness
of known objects, while the generalization for unseen could
be better. The difference from our work is that we don’t rely
on traditional renderers and 3D information of objects and
can significantly improve the model’s adversarial viewpoint
generalization ability for unseen objects.

3. Methodology

The proposed Viewpoint-Invariant Adversarial Training
(VIAT) is given here. We first introduce the background of
NeRF in Sec. 3.1 and the problem formulation in Sec. 3.2,
and then present the solutions of VIAT to the inner maxi-
mization in Sec. 3.3 and outer minimization in Sec. 3.4. An
overview of VIAT is shown in Fig. 2.

3.1. Preliminary on Neural Radiance Fields (NeRF)

Given a set of multi-view images, NeRF [36] has the
ability to implicitly represent the object/scene as a contin-
uous volumetric radiance field F' : (x,d) — (c, 7), where
F maps the 3D location x € R? and the viewing direction
d € S? to an emitted color ¢ € [0, 1]® and a volume density
7 € RY. Then, using the volume rendering with stratified
sampling, we can render a 2D image from a specific view-
point. Given a camera ray r(t) = o + td emitted from
the camera center o through a pixel on the image plane, the
expected color C (r) of the pixel can be calculated by a dis-
crete set of sampling points {t,, }}/_, as

M
C(r)=> T(tm) a(r(tm) - 6m) - cltm), (1)
m=1

where T(ty,) = exp(— Y 7" 7(t5) - 6;). 7(tm) and ¢(tm,)
denote the volume density and color at point r(t,,), 6, =
tm+1 — tm is the distance between adjacent points, and
a(z) =1 —exp (—x). F is approximated by a multi-layer
perceptron (MLP) network and optimized by minimizing
the Lo loss between the rendered and ground-truth pixels.

Although NeRF can render photorealistic novel views,
both training and rendering are extremely time-consuming.
Instant-NGP [38] proposes a fast implementation of NeRF
by adaptive and efficient multi-resolution hash encoding.
Therefore, in this paper, we adopt Instant-NGP to accelerate
the training and volumetric rendering of NeRF.

3.2. Problem Formulation

In visual recognition, viewpoint invariance indicates that
a model f(-) can make an identical prediction given two
views of the same object as follows:

fI(v1)) = f(I(v2)), V(vi,v2) (2)

where I(v1) and I(v3) are two images taken from arbitrary
viewpoints v and vo of the object. However, recent stud-
ies [5, 13, 2] have revealed that typical image classifiers are



susceptible to viewpoint changes. As viewpoint variations
in the 3D space cannot be simply simulated by 2D image
transformations, it remains challenging to improve view-
point invariance/robustness. Motivated by the success of
adversarial training in improving model robustness, we pro-
pose Viewpoint-Invariant Adversarial Training (VIAT)
by learning on worst-case adversarial viewpoints.

Formally, viewpoint changes can be described as rotation
and translation of the camera in the 3D space [13]. We let
v = [R, T] € R® denote the viewpoint parameters bounded
in [Viin, Vimax), Where R = [1), 0, ¢] is the camera rota-
tion along the z-y-x axes using the Tait-Bryan angles, and
T = [A;, Ay, A, ] is the camera translation along the three
axes. Given a dataset {obj, }Y.; of N objects and the corre-
sponding ground-truth labels {y; }; withy; € {1,...,C},
we suppose that a set of multi-view images is available for
each object. With these images, we first train a NeRF model
for each object using Instant-NGP to obtain a neural ren-
derer that can synthesize new images from any viewpoint of
the object. Rather than finding an adversarial viewpoint v;
for each object obj;, VIAT characterizes diverse adversar-
ial viewpoints by learning the underlying distribution p(v;),
which can be formulated as a distribution-based minimax
optimization problem:

N

3)
where W denotes the parameters of the classifier fw,
R(v;) is the rendered image of the i-th object given the
viewpoint v;, L is a classification loss (e.g., cross-entropy
loss), and H(p(v;)) = —Ep(v,)[log p(v;)] is the entropy of
the distribution p(v;) to avoid the degeneration problem and
help to capture more diverse adversarial viewpoints [ 3].

As can be seen in Eq. (3), the inner maximization aims
to learn a distribution of adversarial viewpoints under an
entropic regularizer, while the outer minimization aims to
optimize model parameters by minimizing the expected loss
over the worst-case adversarial viewpoint distributions. The
motivation of using a distribution instead of a single adver-
sarial viewpoint for adversarial training is two-fold. First,
learning a distribution of adversarial viewpoints can effec-
tively mitigate the reality gap between the real objects and
their neural representations [ | 3]. Second, the distribution is
able to cover a variety of adversarial viewpoints to alleviate
potential overfitting of adversarial training, leading to better
generalization performance.

To solve the minimax problem, a general algorithm is to
first solve the inner problem and then perform gradient de-
scent for the outer problem at the inner solution in a sequen-
tial manner based on the Danskin’s theorem [ 1 1]. Next, we
introduce the detailed solutions to the inner maximization
and outer minimization problems, respectively.

3.3. Inner Maximization: GMVFool

The key to the success of VIAT in Eq. (3) is the solution
to the inner maximization problem. A natural way to solve
the problem is to parameterize the distribution of adversarial
viewpoints with trainable parameters. The previous method
ViewFool [13] adopts a unimodal Gaussian distribution and
performs black-box optimization based on natural evolution
strategies (NES) [55]. However, due to the insufficient ex-
pressiveness of the Gaussian distribution, ViewFool is un-
able to characterize multiple local maxima of the loss land-
scape w.r.t. viewpoint changes, as shown in Fig. 1. Thus,
performing adversarial training with ViewFool is prone to
overfitting to the specific attack and leads to poor gener-
alization performance, as validated in the experiment. To
alleviate this problem, we propose GMVFool, which learns
a Gaussian mixture distribution of adversarial viewpoints to
cover multiple local maxima of the loss landscape for more
generalizable adversarial training.

For the sake of simplicity, we omit the subscript ¢ in this
subsection since the attack algorithm is the same for all ob-
jects. Specifically, we parameterize the distribution p(v) by
a mixture of K Gaussian components and take the trans-
formation of random variable approach to ensure that the
support of p(v) is contained in [Vinin, Vimax] as:

K
v =a-tanh(u) + b, p(u|¥) =Y " wiN (ulpy, o71),

k=1

“)
where & = (Vinax — Vmin)/2, b = (Vimax + Vmin)/2, ¥ =
{wk, g, o}, are the parameters of the mixture Gaus-
sian distribution with weight wy, € [0, 1] (Zszl wp = 1),
mean g, € R® and standard deviation o), € R of the k-th
Gaussian component. Note that in Eq. (4), u actually fol-
lows a mixture Gaussian distribution while v is obtained by
a transformation of u for proper normalization.

Now the probability density function p(u|¥) is in the
summation form, which is hard to calculate the gradients.
Thus, we introduce a latent one-hot vector I' = [y, ..., Yk ]
determining which Gaussian component the sampled view-
point belongs to, and obeying a multinomial distribution
with probability wy, as p(T|¥) = [[r_, w)*. With the
latent variables, we represent p(u|¥) as a multiplication
form with T as p(u, T|¥) = [[r_, wl* N (ulpy, o21)*
and p(u|¥) = > 1 p(u, I'|¥), which is convenient for tak-
ing derivatives w.r.t. distribution parameters .

Given the parameterized distribution p(v) defined in
Eq. (4), the inner maximization problem of Eq. (3) be-

comes:
max By rpw) [£(fw(R(a - tanh(u) + b)), y) )
— X-logp(a- tanh(u) + b)],

where the second term is the negative log density, whose ex-



pectation is the distribution’s entropy (proof in Appendix).

To solve this optimization problem, we adopt gradient-
based methods to optimize the distribution parameters W.
To back-propagate the gradients from random samples to
the distribution parameters, we can adopt the low-variance
reparameterization trick [8, 31]. Specifically, we repa-
rameterize w as u = [[;_, pl* + [[r_ 07" - r, where
r ~ N(0,I). With this reparameterization, the gradients of
the loss function in Eq. (5) w.r.t. ¥ can be calculated. How-
ever, similar to ViewFool, although the rendering process of
NeReF is differentiable, it requires significant memory over-
head to render the full image. Thus, we also resort to NES
to obtain the natural gradients of the classification loss with
only query access to the model. For the entropic regular-
izer, we directly compute its true gradient. Therefore, the
gradients of the objective function in Eq. (5) w.r.t. wy,
and o, can be derived as (proof in Appendix):

[ 1
Vu, = En(rlo,n {’Yk | Las - — — A} } ;
L Wk

[ oLr
Vi, = Ex@lon {’yk N Les - w—i — A-2tanh(p,, + akr)]};

or(r? —1)

2w

vak = E,’\/’(r\O,I) {’Yk | Las -

(1 — 2r - tanh(p,, + okr) - o
O

)

A

K K
Las = L(fw(R(a- tanh(HuZ"‘ + Hdzk -1T) +b)),y).
k=1 k=1

(6)
In practice, we use the Monte Carlo method to approximate
the expectation in gradient calculation and use iterative gra-
dient ascent to optimize the distribution parameters of each
Gaussian component. In addition, we normalize wy, after
each iteration to satisfy Zszlwk = 1. Algorithm 1 out-
lines the overall algorithm of GMVFool.

3.4. Outer Minimization

In outer minimization of Eq. (3), our goal is to minimize
the loss expectation over the learned adversarial viewpoint
distributions. However, there are two problems of adversar-
ial training: inefficiency and overfitting. We next detail how
we address these two problems with the stochastic update
strategy and distribution sharing strategy, respectively.

Although we introduce the efficient Instant-NGP, the in-
ner maximization still needs many gradient steps to con-
verge for rendering images from new viewpoints. This pro-
cess is typically unacceptable for adversarial training, as
each optimization step of outer minimization needs to solve
the inner maximization problem for a batch of objects. To
accelerate adversarial training, we propose a stochastic up-
date strategy for the inner problem. First, we perform full
inner optimization to generate adversarial viewpoint distri-
butions for all objects given a pre-trained image classifier.

Algorithm 1 GMVFool

Input: Image classifier fyw, rendering function R, true la-
bel y, number of iterations 7', number of Monte Carlo
samples ¢, learning rate 1, number of Gaussian compo-
nents K, and balance hyperparameter \.

1: Initialize the Gaussian mixture distribution parameters
of the object W0 = {w?, u? oV}

2: fort =1to T do

3: Sample {r;}7_, from N(0,1);

Sample {T';}7_, from the multinomial distribution

with probability w}.;

Calculate {u;}7_;;

Calculate Vyr = {V:, V.1,V } by Eq. (6);

Update the parameters:

Uitl « Wt 4. Ve
9:  Normalize wi « w?l/z,f:lw?l;
10: end for

Output: Parameters of adversarial viewpoint distribution:

VT — (T T, 0T,

»

® W

At each fine-tuning epoch, we only update the distribution
parameters for one randomly selected object in each cate-
gory while keeping those for other objects unchanged. Note
that all objects can be sufficiently optimized within multi-
ple epochs. The rationale is that GMVFool is able to learn
a sufficiently wide range of adversarial viewpoints, mak-
ing the distribution effective for adversarial training over an
extended period. This strategy can significantly improve ef-
ficiency and make adversarial training feasible.

Besides, we find that as the training epochs increase, the
learned adversarial viewpoint distributions would degener-
ate, i.e., in the late stage of training, the diversity of ad-
versarial viewpoints decreases, leading to overfitting of ad-
versarial training and inferior results. To alleviate this prob-
lem, we propose a distribution sharing strategy, in which we
share the distribution parameters of different objects within
the same category. It is based on our finding that the ad-
versarial viewpoint distributions of objects within the same
class are highly similar, as shown in Fig. 3. For each ob-
ject in training, we choose its own distribution parameters
or randomly select other distribution parameters of another
object for sampling based on a probability 7.

The training process of VIAT can be summarized as fol-
lows: at each fine-tuning epoch, the parameters of the ad-
versarial viewpoint distribution are updated using GMV-
Fool. In particular, all objects’ parameters are initially op-
timized at the first epoch, while in each subsequent epoch,
the object’s parameters within each class are randomly up-
dated. Next, the adversarial viewpoints are sampled from a
distribution based on the sharing probability. Then the cor-
responding adversarial examples are generated by Instant-
NGP. These examples are fed to the network with the clean



Method R(?sNet-SO YiT—B/ 16
ImageNet | ViewFool [ GMVFool | ImageNet | ViewFool | GMVFool
Standard-trained - 85.60 8.28 8.98 92.88 25.70 29.10
Augmentation Natural 85.76 16.52 19.30 92.78 43.32 46.48
Random 85.82 34.80 33.52 92.78 62.03 67.34
VIAT ViewFool 85.66 55.12 58.75 92.70 79.53 82.03
GMVFool 85.70 59.84 59.61 92.56 82.81 83.13

Table 2. The classification accuracy (%) from evaluation protocols with ResNet-50 and ViT-B/16, which are trained via ImageNet subset
only (standard-trained), data augmentation by natural and random viewpoint images, and VIAT framework with ViewFool and GMVFool.
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Figure 3. The adversarial viewpoint regions of objects within the
same class are similar. We show the loss landscape w.r.t. 1) and
¢ of four different sofas based on ResNet-50, in which we keep
0, Az, Ay, AL]as [0,0,0,0].

samples from ImageNet to calculate the cross-entropy loss.
Finally, the network parameters are optimized to obtain a
viewpoint-invariant model.

Moreover, VIAT boasts acceptable time costs, which can
be attributed to three factors: (1) It optimizes the mixture
distribution of adversarial viewpoints instead of individ-
ual ones, allowing for the generation of diverse adversarial
viewpoints through distribution sampling instead of multi-
ple optimizations. (2) Using the efficient Instant-NGP ac-
celerates the optimization of adversarial viewpoint distribu-
tion and rendering of viewpoint samples. (3) The stochas-
tic optimization strategy based on distribution transferabil-
ity further reduces time consumption in adversarial training.

4. Experiments
4.1. Performance of VIAT

Experimental settings. (A) Datasets: To address
the lack of multi-view images in ImageNet, we construct
IM3D: a dataset composed of 1K typical synthetic 3D ob-
jects from 100 ImageNet categories, each category con-
taining 10 objects. We acquire the multi-view images on
the upper hemisphere with the corresponding camera poses
for each object, and then we learn the NeRF representa-
tion using Instant-NGP. Objects of each type are divided
into a training set and a validation set with a ratio of 9:1,
which are utilized for adversarial training and validation of
viewpoint invariance. (B) Model: Two classifiers are con-
sidered to perform experiments, including the CNN-based
ResNet-50 [21] and the Transformer-based ViT-B/16 [14].
We train the classifiers on the subset of ImageNet, which

corresponds to our 3D synthetic object’s category, achiev-
ing 85.60%, 92.88% Top-1 accuracy on the ImageNet sub-
set. (C) VIAT Setting: Following [13], we initialize the
camera at [0, 4, 0], the range of rotation parameters are set as
1 € [—180°,180°], 8 € [—30°,30°], ¢ € [20°,160°], the
range of translation parameters are set as A, € [—0.5,0.5],
A, € [-1,1], A, € [-0.5,0.5], and the balance hyperpa-
rameter A = 0.01. Based on the results of the ablation stud-
ies, we set the components number K=15, and distribution
sharing probability 7=0.5. For the inner maximization step,
we approximate the gradients in Eq. (6) with ¢=100 MC
samples and use the Adam [30] optimizer to update ¥ for
50 iterations in the first epoch, then iterate 10 times under
the previous W for subsequent epochs. After obtaining the
model trained on the ImageNet subset, we continue to train
the model for 60 epochs with the adversarial viewpoints and
ImageNet clean samples, with a ratio of 1:32.

Evaluation metrics. To fully explore the viewpoint in-
variance of models, we use Top-1 accuracy as the evaluation
metric and set up four evaluation protocols: (a) ImageNet:
the accuracy is calculated under the validation set of Ima-
geNet. (b) ViewFool: the accuracy is calculated under ren-
derings of adversarial viewpoints generated by ViewFool.
(c) GMVFool: the accuracy is calculated under renderings
of adversarial viewpoints generated by our GMVFool.

Experimental results. The experimental results are
shown in Table 2. We compare VIAT with three baselines:
(a) Data augmentation with the most common viewpoint
renderings from training objects’ natural states. For this, we
define a range of views frequently appearing in ImageNet
for each class (e.g. hotdogs are usually in the top view). (b)
Data augmentation with random viewpoint rendering of ob-
jects in the training set. (c) VIAT uses ViewFool as the inner
maximization method. To be fair, we also use Instant-NGP
for accelerating ViewFool in the adversarial training. From
the table, we can draw the following conclusions:

(1) VIAT significantly improves the viewpoint invari-
ance of the model. Under the adversarial viewpoint gener-
ated by GMVFool and ViewFool, the accuracy of ResNet-
50 is improved by 50.63% and 51.56%, while that of ViT-
B/16 is improved by 54.03% and 57.11%, respectively,
compared to the standard-trained model.
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Figure 4. The prediction examples of Standard-trained and VIAT-trained ResNet-50 under natural and adversarial viewpoint images. Green
and red text represent correct and incorrect predictions, respectively, and the corresponding number is the confidence value.
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Figure 5. The probability density curves of the adversarial distri-
bution under viewpoint parameters 6 and ), which are optimized
by GMVFool (K = 5) and ViewFool, respectively.

(2) Adopting GMVFool as VIAT’s inner maximization
method results in higher accuracy than adopting ViewFool
under the adversarial viewpoint images. The smaller ac-
curacy gap between the two attack methods means that
VIAT+GMVFool can better generalize to different view-
point attacks. We think it benefits from the Gaussian mix-
ture modelling of GMVFool which can generate diverse ad-
versarial viewpoints to be learned by the network.

(3) Data augmentation methods using natural and ran-
dom viewpoint images have great limitations in improving
the model’s performance under adversarial viewpoints.

(4) ViT-B/16 is better than ResNet-50 in resisting ad-
versarial viewpoint attacks. This phenomenon may benefit
from its transformer structure, which is also confirmed by
the benchmark results of ImageNet-V+ in Sec. 4.4.

Visualization. Fig. 4 shows the visualization results of
the natural and adversarial viewpoints rendering of objects,
as well as the output and confidence of the standard-trained
and VIAT-trained ResNet-50. The results demonstrate that
VIAT-trained model can still predict the correct labels when
facing the adversarial viewpoint. Additional examples will
be presented in the Appendix.

4.2. Additional Results and Ablation Studies
The effects of K and 7. We further conduct ablation ex-
periments to investigate the impact of the number of Gaus-

sian components (K') and distribution sharing probability
(). Fig. 6 presents the classification accuracy of the model

against GMVFool attacks after VIAT training with differ-
ent settings. We observe a positive correlation between the
model’s ability to resist viewpoint attacks and the number of
components used by VIAT. Additionally, a suitable sharing
probability benefits the model in achieving better viewpoint
invariance. However, a high component number and shar-
ing probability will lead to the opposite situation.
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Figure 6. The accuracy (%) of
VIAT-trained ResNet-50 against
adversarial viewpoints, using var-
ious sets of K and 7.

40 60
Epoch
Figure 7. The accuracy (%) of
VIAT-trained ResNet-50 against
GMVFool attack with different

training iterations.

Convergence discussion. As a distribution-based adver-
sarial training framework, the convergence of VIAT is guar-
anteed in theory [12]. Furthermore, We study the conver-
gence of VIAT with learning rate 0.001, K = 15, 7 = 0.5.
The accuracy under adversarial viewpoints generated by
GMVFool is presented in Fig. 7, indicating that VIAT can
converge well under experimental setting.

The superiority of GMVFool. Contributed by the mix-
ture distribution design, we can control K to balance view-
point diversity and attack performance in different tasks.
Specifically, for adversarial training, GMVFool with larger
K is used to improve the adversarial viewpoint diversity,
which is crucial for achieving better robustness via adver-
sarial training. As depicted in Fig. 5, GMVFool (K =5)
captures more comprehensive and diverse adversarial view-
points than ViewFool. Table 3 quantitatively confirms this
observation through the entropy #H(p*(v)). For viewpoint
attacks, GMVFool can be more effective with a smaller
K. Table 3 compares the attack performance of GMVFool
(K =1, 3, and 5, respectively) with previous methods. It
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Figure 8. The accuracy of different classifiers on natural viewpoint and on ImageNet-V+. <
Method ResNet-50 [21] EN-BO [49] DeiT-B [51] Swin-B [33]
Rp* () T[HE" W) T[RE" W) T[HE" (V) T[RE" (V) T[HE (V) TIRE" (W) T[HE (V) T
Random Search 64.12 - 79.18 - 32.25 - 19.88 -
ViewFool 91.50 -10.14 95.64 -10.38 80.37 -10.41 73.85 -10.71
GMVFool (K=1) 92.13 -10.17 95.78 -10.38 80.61 -10.44 74.02 -10.62
GMVFool (K=3) 89.20 -3.75 95.78 -3.94 79.65 -3.92 72.48 -4.05
GMVFool (K=5) 91.56 -0.69 95.62 -0.85 78.91 -1.00 70.16 -1.07

Table 3. The attack success rate (%) and the entropy of methods against various classifiers. R(-) denotes the rendering process.

shows that GMVFool (K=1) performs best on the optimal
distribution of adversarial viewpoints p*(v) and GMVFool
(K=3 and 5) maintains good performance under p*(v).

4.3. Evaluation on Other Datasets

Performance on real-world adversarial viewpoints.
We conduct evaluation experiments on objectron [ ], which
contains object-centric videos in the wild.. The accuracy
of standard-trained and VIAT-trained ResNet-50 is pre-
sented in Table 4, demonstrating that VIAT enhances the
model’s performance in unnatural viewpoints. Some cases
are shown in Fig. 4. Furthermore, we conduct experiments
on other OOD datasets that contain viewpoint perturbations,
the results in Table 5 demonstrate the VIAT-trained model’s
ability to resist different natural perturbations.

‘ shoe ‘ camera ‘ mug ‘ chair ‘ computer
Standard 76.28 | 81.42 | 97.67 | 38.82 60.19
VIAT (Ours) | 76.73 | 86.93 | 99.07 | 39.75 63.40

Table 4. The accuracy (%) of standard-trained and VIAT-trained
ResNet-50 in the real-world images from the objectron dataset.

Performance on multi-view datasets. We conduct eval-
uation experiments on other multi-view datasets, for which
we obtain the categories that overlap with our training cat-
egories. Table 5 presents the accuracy of the model under
various viewpoints, indicating the improved robustness of
the VIAT-trained model against viewpoint transformations.

4.4. ImageNet-V+ Benchmark

We utilize GMVFool to construct a larger benchmark
dataset, ImageNet-V+, to evaluate the viewpoint robustness
of visual recognition models. It comprises 100K adversarial

Dataset [ Standard Aug VIAT (Ours)
00D ObjectNet [5] 3592  36.02 37.39
Datasets ImageNet-A [24] | 19.03  18.65 20.32
ImageNet-R [22] | 45.06 45.09 46.51
ImageNet-V [13]| 28.15 32.83 38.96
Multi-view MIRO [29] 57.41 58.78 65.86
Datasets OOWL [25] 51.41 51.24 52.13
CO3D [41] 64.68 64.90 66.04

Table 5. The accuracy (%) of standard-trained, Augmentation
with random renderings (Aug) and VIAT-trained ResNet-50 in var-
ious OOD and multi-view datasets.

viewpoint images of 1K synthetic objects belonging to the
100 ImageNet classes. The details and visualizations will be
included in the Appendix. We adopt ImageNet-V+ to evalu-
ate 40 different models pre-trained on ImageNet, including
models with different structures (the CNN-based VGG [46],
ResNet [21], Inception [48, 47], DenseNet [20], Effi-
cientNet [49], MobileNet-v2 [43], the transformer-based:
ViT [14], DeiT [51], Swin Transformer [33], and the MLP
Mixer [50]), different training paradigms (adversarial train-
ing [42] and mask-autoencoder [20]), different augmenta-
tion methods (AugMix [23], DeepAugment [22]). For com-
parison, we also evaluate the model trained with VIAT.
Fig. 8 illustrates the accuracy of various models on nat-
ural viewpoint images and ImageNet-V+. When exposed
to adversarial viewpoints, the accuracy of all models de-
creases significantly. We observe that the model’s perfor-
mance with the same architectures is positively related to its
size, with transformer-based models outperforming CNN-
based models. Among them, MAE with ViT-H performs
best in ImageNet-V+, achieving 29.37% accuracy. Models



using data augmentation and adversarial training, which is
robust to adversarial examples and image corruption in pre-
vious work, perform poorly from the adversarial viewpoint.
Finally, ViT-B/16 trained with VIAT outperform all models
using standard training, achieving an accuracy of 75.49%.

5. Conclusion

This paper proposed the VIAT framework to obtain
viewpoint invariance for visual recognition via adversar-
ial training and contributed GMVFool, an efficient method
for generating diverse adversarial viewpoints. We also pro-
vided a new multi-view dataset—IM3D and conducted ex-
tensive experiments to verify the effectiveness of VIAT in
enhancing viewpoint invariance. Moreover, we introduced
ImageNet-V+, a large viewpoint OOD benchmark includ-
ing 100K adversarial viewpoint images of 1K synthetic ob-
jects, and provided the accuracy on various models.
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