
Towards Robust Model Watermark via Reducing Parametric Vulnerability

Guanhao Gan1, Yiming Li1,4, Dongxian Wu2,*, Shu-Tao Xia1,3,∗
1Tsinghua Shenzhen International Graduate School, Tsinghua University, China

2The University of Tokyo, Japan
3Research Center of Artificial Intelligence, Peng Cheng Laboratory, China

4Ant Group, China
{ggh21,li-ym18}@mails.tinghua.edu.cn;

d.wu@k.u-tokyo.ac.jp; xiast@sz.tsinghua.edu.cn

Abstract

Deep neural networks are valuable assets considering
their commercial benefits and huge demands for costly an-
notation and computation resources. To protect the copy-
right of DNNs, backdoor-based ownership verification be-
comes popular recently, in which the model owner can
watermark the model by embedding a specific backdoor
behavior before releasing it. The defenders (usually the
model owners) can identify whether a suspicious third-
party model is “stolen” from them based on the pres-
ence of the behavior. Unfortunately, these watermarks are
proven to be vulnerable to removal attacks even like fine-
tuning. To further explore this vulnerability, we investigate
the parameter space and find there exist many watermark-
removed models in the vicinity of the watermarked one,
which may be easily used by removal attacks. Inspired
by this finding, we propose a mini-max formulation to find
these watermark-removed models and recover their water-
mark behavior. Extensive experiments demonstrate that our
method improves the robustness of the model watermark-
ing against parametric changes and numerous watermark-
removal attacks. The codes for reproducing our main
experiments are available at https://github.com/
GuanhaoGan/robust-model-watermarking.

1. Introduction
While deep neural networks (DNNs) achieve great suc-

cess in many applications [20, 9, 39] and bring substan-
tial commercial benefits [31, 12, 18], training such a deep
model usually requires a huge amount of well-annotated
data, massive computational resources, and careful tuning
of hyper-parameters. These trained models are valuable as-

*Correspondence to: Dongxian Wu (d.wu@k.u-tokyo.ac.jp) and Shu-
Tao Xia (xiast@sz.tsinghua.edu.cn).

sets for their owners and might be “stolen” by the adversary
such as unauthorized copying. In many practical scenar-
ios, such as limited open-sourcing [55] (e.g., only for non-
commercial purposes) and model trading1, the model’s pa-
rameters are directly exposed, and the adversary can simply
steal the model by copying its parameters. How to properly
protect these trained DNNs is significant.

To protect the intellectual property (IP) embodied inside
DNNs, several watermarking methods were proposed [45,
10, 35, 5, 29, 49]. Among them, backdoor-based ownership
verification is one of the most popular methods [1, 54, 22,
30]. Before releasing the protected DNN, the defender em-
beds some distinctive behaviors, such as predicting a pre-
defined label for any images with “TEST” (watermark sam-
ples) as shown in Figure 4. Based on the presence of these
distinctive behaviors, the defender can determine whether a
suspicious third-party DNN was “stolen” from the protected
DNN. The more likely a DNN predicts watermark samples
as the pre-defined target label (i.e., with a higher watermark
success rate), the more suspicious it is of being an unautho-
rized copy of the protected model.

However, the backdoor-based watermarking is vulnera-
ble to simple removal attacks [34, 41, 16]. For example,
watermark behaviors can be easily erased by fine-tuning2

with a medium learning rate like 0.01 (see Figure A17 in
Zhao et al. [56]). To explore such a vulnerability, consid-
ering that fine-tuning regards the watermarked model as the
start point and continues to update its parameters on some
clean data, we investigate how the watermark success rate
(WSR) / benign accuracy (BA) changes in the vicinity of the
watermarked model in the parameter space. For easier com-
parison, we use the relative distance ∥θ − θw∥2/∥θw∥2 in

1People are allowed to buy and sell pre-trained models on platforms
like AWS marketplace or BigML.

2While many watermark methods were believed to be resistant to fine-
tuning, they were only tested with small learning rates. For example,
Bansal et al. [3] only used a learning rate of 0.001 or even 0.0001.

ar
X

iv
:2

30
9.

04
77

7v
1

 [
cs

.C
R

]
 9

 S
ep

 2
02

3

https://github.com/GuanhaoGan/robust-model-watermarking
https://github.com/GuanhaoGan/robust-model-watermarking

0.2 0.1 0.0 0.1 0.2
dadv

0.2

0.1

0.0

0.1

0.2

d F
T

(a) Watermark Success Rate

0.2 0.1 0.0 0.1 0.2
dadv

0.2

0.1

0.0

0.1

0.2

d F
T

0
10
20
30
40
50
60
70
80
90
100

(b) Benign Accuracy

Figure 1. The performance of models in the vicinity of the wa-
termarked model in the parameter space. dFT is the direction of
fine-tuning and dadv is the adversarial direction. black dot: the
original watermarked model; red star: the model after fine-tuning.

the parameter space, where θw is the original watermarked
model and corresponds to the origin in the coordinate axes
(the black circle), for discussions. As shown in Figure 1,
we find that fine-tuning on clean data (black circle → red
star) changes the model with 0.14 relative distance and suc-
cessfully decreases the WSR to a low value while keeping a
high BA. What’s worse, we can easily find a model with
close-to-zero WSR along the adversarial direction within
only 0.03 relative distance3. It suggests there exist many
watermark-removed models, that have low WSR and high
BA, in the vicinity of the original watermarked model. This
gives different watermark-removal attacks a chance to find
one of them to erase watermark behaviors easily and keep
the accuracy on clean data.

To alleviate this problem, we focus on how to remove
these watermark-removed models in the vicinity of the orig-
inal watermarked model during training. Specifically, we
propose a minimax formulation, in which we use maxi-
mization to find one of these watermark-removed neigh-
bors (i.e., the worst-case counterpart in terms of WSR) and
use minimization to help it to recover the watermark be-
havior. Further, when combing our method with prevailing
BatchNorm-based DNNs, we propose to use clean data to
normalize the watermark samples within BatchNorm dur-
ing training to mitigate the domain shift between defenses
and attacks. Our main contributions are three-fold:

• We demonstrate that there exist many watermark-
removed models in the vicinity of the watermarked
model in the parameter space, which may be easily uti-
lized by fine-tuning and other removal methods.

• We propose a minimax formulation to find watermark-
removed models in the vicinity and recover their wa-
termark behaviors, to mitigate the vulnerability in the
parameter space. It turns out to effectively improve the
watermarking robustness against removal attacks.

3Details about the visualization method can be found in Appendix A.

• We conduct extensive experiments against several
state-of-the-art watermark-remove attacks to demon-
strate the effectiveness of our method. In addition, we
also conduct some exploratory experiments to have a
closer look at our method.

2. Related Works

Model Watermark and Verification. Model watermark
is a common method to design ownership verification for
protecting the intellectual property (IP) embodied inside
DNNs. The defender first watermarks the model by em-
bedding some distinctive behaviors into the protected model
during training. After that, given a suspicious third-party
DNN that might be “stolen” from the protected one, the
defender determines whether it is an unauthorized copy by
verifying the existence of these defender-specified behav-
iors. In general, existing watermark methods can be cat-
egorized into two main types, including white-box water-
mark and black-box watermark, based on whether defend-
ers can access the source files of suspicious models. Cur-
rently, most of the existing white-box methods [4, 44, 45]
embedded the watermark into specific weights or the model
activation [7]. These methods have promising performance
since defenders can exploit useful information contained in
model source files. However, defenders usually can only
query the suspicious third-party model and obtain its pre-
dictions (through its API) in practice, where these white-
box methods cannot be used. In contrast, black-box meth-
ods only require model predictions. Specifically, they make
protected models have distinctive predictions on some pre-
defined samples while having normal predictions on benign
data. For example, Zhang et al. [54] and Adi et al. [1] wa-
termarked DNNs with backdoor samples [23, 27], while Le
et al. [21] and Lukas et al. [35] exploited adversarial sam-
ples [43]. In this paper, we focus on backdoor-based water-
mark, as it is one of the mainstream black-box methods.

Watermark-removal Attack and Defense. While model
owners use many watermark-based techniques to protect
their models, adversaries are aware of these methods and
attempt to remove them before deploying models. For ex-
ample, the adversaries can remove the trigger pattern be-
fore feeding images into the DNNs [32, 52, 28], or ex-
tract the model functionality without inheriting the water-
marks via distillation [14, 41]. Amongst them, model mod-
ification is the most promising method, achieving satis-
factory performance and acceptable computation budgets.
Specifically, some methods eliminated watermark-related
neurons like fine-pruning (FP) [33] and adversarial neuron
perturbation (ANP) [50], while others adapted the model
weights according to separate clean data like neural at-
tention distillation (NAD) [25], fine-tuning (FT) [45], and
mode connectivity repair (MCR) [56]. As a result, the

model owners must enhance the robustness of their wa-
termarks against these powerful watermark-removal attacks
in black-box verification scenarios. Recently, to make the
watermark less sensitive to parameter changes, Namba et
al. [37] proposed exponentially weighting (EW) model pa-
rameters when embedding the watermark. Inspired by the
randomized smoothing [6], Bansal et al. [3] proposed the
certified watermark (CW) by adding Gaussian noise to the
model parameters during training and conducting verifica-
tion in white-box cases, which requires access to model pa-
rameters. Instead, we only apply the same training scheme
and conduct black-box verification for a fair comparison,
which is also applied in Bansal et al. [3].

3. The Proposed Method

3.1. Preliminaries

Threat Model. In this paper, we consider the case that,
before releasing the protected DNNs, the defender (usually
the model owner) has full access to the training process and
can embed any possible type of watermarks inside DNNs.
For verification, the defender is only able to obtain predic-
tions from the suspicious third-party model via its API (i.e.,
black-box verification setting). This setting is more prac-
tical but also more challenging than the white-box setting
where defenders can access model weights.

Deep Neural Network. In this paper, we consider a clas-
sification problem with K classes. The DNN model fθ
with its parameters θ are learned on a clean training dataset
Dc = {(x1, y1), . . . , (xN , yN)}, which contains N inputs
xi ∈ Rd, i = 1, · · · , N , and the corresponding ground-truth
label yi ∈ {1, · · · ,K}. The training procedure tries to find
the optimal model parameters to minimize the training loss
on the training data Dc, i.e.,

L(θ,Dc) = E
x,y∼Dc

ℓ(fθ(x), y), (1)

where ℓ(·, ·) is usually cross-entropy loss.

Embedding Model Watermark. Defenders are able to in-
ject watermark behaviors during training by using a water-
marked dataset Dw = {(x′

1, y
′
1), · · · , (x′

M , y′M)} contain-
ing M pairs of watermark samples and their corresponding
label. For example, if expecting the model to always predict
class “0” for any input with “TEST”, we add “TEST” on a
clean image xi to obtain the watermark sample x′

i, and la-
bel it as class “0” (y′i = 0). If we achieve close-to-zero loss
on the watermarked dataset Dw, DNN successfully learns
the connection between watermark samples and the target
label. Thus, the training procedure with watermark embed-
ding attempts to find the optimal model parameters to mini-
mize the training loss on both clean training dataset Dc and

watermarked dataset Dw, as follows:

L(θ,Dc) + α · L(θ,Dw)

= E
x,y∼Dc

ℓ(fθ(x), y) + α · E
x′,y′∼Dw

ℓ(fθ(x
′), y′). (2)

3.2. Adversarial Parametric Perturbation (APP)

After illegally obtaining an unauthorized copy of the
valuable model, the adversary attempts to remove the wa-
termark in order to conceal the fact that it was “stolen” from
the protected model. For example, the adversary starts from
the original watermarked model fθw

(·) and continues to up-
date its parameters using clean data. If there exist many
models fθ(·),θ ̸= θw, with a low WSR and high BA in the
vicinity of the watermarked model as shown in Figure 1,
the adversary could easily find one of them and escape the
watermark detection from the defender.

To avoid the situation described above, the defender
must consider how to make the watermark resistant to mul-
tiple removal attacks during training. Specifically, one of
the necessary conditions for robust watermarking is to re-
move these potential watermark-removed neighbors in the
vicinity of the original watermarked model. Thus, a ro-
bust watermark embedding scheme can be divided into two
steps: (1) finding watermark-removed neighbors and (2) re-
covering their watermark behaviors.

Maximization to Find the Watermark-removed Coun-
terparts. Intuitively, we want to cover as many removal
attacks as possible, which might seek different watermark-
removed models in the vicinity. Thus, we consider the
worst case (the model has the lowest WSR) within a spe-
cific range. Given a feasible perturbation region B ≜ {δ |
∥δ∥2 ≤ ϵ∥θ∥2}, where ϵ > 0 is a given perturbation budget,
we attempt to find an adversarial parametric perturbation δ,

δ ← max
δ∈B
L(θ + δ,Dw). (3)

In general, δ is the worst-case weight perturbation that can
be added to the watermarked model for generating its per-
turbed version fθ+δ(·) with low watermark success rate.

Minimization to Recover the Watermark Behaviors. Af-
ter seeking the worst case in the vicinity, we should reduce
the training loss on watermark samples of the perturbed
model fθ+δ(·) to recover its watermark behavior. Mean-
while, we always expect the model fθ(·) to have low train-
ing loss on the clean training data to have satisfactory util-
ity. Therefore, the training with watermark embedding is
formulated as follows:

min
θ

[
L(θ,Dc) + α ·max

δ∈B
L(θ + δ,Dw)

]
. (4)

The Perturbation Generation. However, since DNN is
severely non-convex, it is impossible to solve the maxi-
mization problem accurately. Here, we apply a single-step

channels-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

clean watermark

(a) The estimation of running mean

channels0.000

0.005

0.010

0.015 clean watermark

(b) The estimation of running variance

Figure 2. The distribution for clean samples and watermark samples on CIFAR-10.

method to approximate the worst-case perturbation. Be-
sides, the perturbation magnitude varies across architec-
tures. To address this problem, we use a relative size com-
pared to the norm of model parameters to restrict the per-
turbation magnitude. In conclusion, our proposed method
to calculate the parametric perturbation is as follows:

δ ← ϵ∥θ∥2 ·
∇θL(θ,Dw)

∥∇θL(θ,Dw)∥ 2
, (5)

where ∇θL(θ,Dw)
∥∇θL(θ,Dw)∥ 2

is the normalized direction vector
whose length equals 1, and ϵ∥θ∥2 controls the magnitude
of the perturbation in a relative way.

3.3. Estimate BatchNorm Statistics on Clean Inputs

The Assumption of Domain Shift. In preliminary experi-
ments, we find our proposed algorithm cannot improve the
robustness of the watermark (see Table 3). We conjecture
this failure is caused by the domain shift between the de-
fense and attacks. Specifically, we only feed watermark
samples into DNN, and all inputs of each layer are normal-
ized by statistics from them when computing the adversar-
ial perturbation and recovering the watermark behavior. In
other words, the defender conducts the watermark embed-
ding in the domain of watermark samples. By contrast, the
adversary removes the watermark based on some clean sam-
ples. A similar problem about domain shift is also observed
in domain adaption [26].

The Verification of Domain Shift. To verify the aforemen-
tioned assumption, we analyze the estimated mean and vari-
ance inside BatchNorm for clean samples and watermark
samples. We visualize these estimations of different chan-
nels in the 9-th layer of ResNet-18 [13] on CIFAR-10 [19],
and set the images with “TEST” as the watermark samples
for the discussion. As shown in Figure 2, there is a signifi-
cant discrepancy between clean samples (the blue bar) and
watermark samples (the orange bar). Since vanilla APP is
performed using watermark samples while the attacker re-
moves the watermark using clean samples, the discrepancy

Normalize Normalize

Clean sample Watermark sample

Figure 3. The diagram of our c-BN. We use BatchNorm statistics
from the clean inputs to normalize the watermark inputs.

between clean and watermark samples may hinder the ro-
bustness of the watermark behavior.

The Proposed Customized BatchNorm. To reduce the
discrepancy, we propose clean-sample-based BatchNorm
(c-BN). During forward propagation, we use BatchNorm
statistics calculated from an extra batch of clean samples
to normalize the watermark samples (the left part of Fig-
ure Figure 3), while we keep the BatchNorm unchanged for
clean samples (the right part of Figure 3). In the imple-
mentation, since we always have a batch of clean samples
Bc and a batch of watermark samples Bw for each update
of model parameters, we always calculate the BatchNorm
statistics and normalize inputs for each layer based on the
clean batch Bc. Thus, our APP-based watermarking train-
ing with c-BN can be reformulated as follows:

min
θ

[
L(θ,Dc) + α ·max

δ∈B
L(θ + δ,Dw;Dc))

]
, (6)

where L(·, ·;Dc) denotes that, when calculating this loss
term, we use clean samples to estimate batch statistics dur-
ing forward propagation in c-BN.

3.4. The Overall Algorithm

Here, we introduce the final algorithm of our method,
which consists of adversarial parametric perturbation (APP)
and clean-sample-based BatchNorm (c-BN). The pseudo-

Algorithm 1 Training APP-based watermarked model.
Input: Network fθ(·), clean training set Dc, watermarked

training set Dw, batch size n for clean data, batch size
m watermarked data, learning rate η, perturbation mag-
nitude ϵ

1: Initialize model parameters θ
2: repeat
3: Sample mini-batch Bc = {(x1, y1), · · · , (xn, yn)}

from Dc

4: g ← ∇θL(θ,Bc)
5: Sample mini-batch Bw = {(x′

1, y
′
1), · · · , (x′

m, y′n)}
from Dw

6: δ ← ϵ∥θ∥2 ∇θL(θ,Bw;Bc)
∥∇θL(θ,Bw;Bc)∥

7: g ← g +∇θ[αL(θ + δ,Bw;Bc)] // L(·, ·;Dc) de-
notes that, clean samples are used to estimate batch
statistics during forward propagation in c-BN.

8: θ ← θ − ηg
9: until training converged

Output: Watermarked network fθ(·)

code of our method can be found in Algorithm 1. Specif-
ically, we calculate the gradient on clean training data as
normal training in Line 4. In Line 6, we calculate the APP
using clean batch statistics estimated by c-BN. Based on the
APP, we calculate the gradient of the perturbed model on the
watermarked data and add it to the gradient from clean data
in Line 7. We update the model parameters in Line 8, and
repeat the above steps until training converges.

4. Experiments

In this section, we conduct comprehensive experiments
to evaluate the effectiveness of our proposed method, in-
cluding a comparison with other watermark embedding
schemes, ablation studies, and some exploratory experi-
ments to understand our proposed method.

4.1. Experiment Settings

Dataset Preparation. We conduct experiments on CIFAR-
10 and CIFAR-100 [19]. To verify the effectiveness on
more practical scenarios, we also do experiments on a sub-
set of the ImageNet [8] dataset, containing 100 classes with
50,000 images for training (500 images per class) and 5,000
images for testing (50 images per class). Similar to Zhang et
al. [54], we consider three types of watermark samples: 1)
Content: adding extra meaningful content to normal images
(“TEST” in our experiments). 2) Noise: adding a meaning-
less randomly-generated noise into normal images; 3) Unre-
lated: using images from an unrelated domain (SVHN [38]
in our experiments). Figure 4 visualizes samples for differ-
ent watermark types. We set ‘0’ as the target label, i.e., the
watermarked DNN always predicts watermark samples as

class “airplane” on CFIAR-10 and as “beaver” on CIFAR-
100. We use 80% of the original training data to train the
watermarked DNNs and use the remaining 20% for poten-
tial watermark-removal attacks. Before training, we replace
1% of the current training data as the watermark samples.

Settings for Watermarked DNNs. We train a ResNet-18
[13] for 100 epochs with an initial learning rate of 0.1 and
weight decay of 5 × 10−4. The learning rate is multiplied
by 0.1 at the 50-th and 75-th epoch. To train watermarked
DNNs, we use our method and several state-of-the-art base-
lines: 1) vanilla watermarking training [54]; 2) exponen-
tialized weight (EW) method [37]; 3) the empirical veri-
fication4 from certified watermarking (CW) [3]. For our
APP, we set the coefficient for watermark loss α = 0.01
and the maximum perturbation size ϵ = 0.02 on CIFAR-10
and CIFAR-100, and ϵ = 0.01 on ImageNet. Unless other-
wise specified, we always use our c-BN during training.

Settings for Removal Attacks. We evaluate the robust-
ness of the watermarked DNN against several state-of-the-
art watermark-removal attacks, including: 1) fine-tuning
(FT) [45]; 2) fine-pruning (FP) [33]; 3) adversarial neu-
ral pruning (ANP) [50]; 4) neural attention distillation
(NAD) [25]; 5) mode connectivity repair (MCR) [56]; 6)
neural network laundering (NNL) [2]. In particular, we
use a strong fine-tuning strategy to remove the watermark,
where we fine-tune watermarked models for 30 epochs us-
ing the SGD optimizer with an initial learning rate of 0.05
and a momentum of 0.9. The learning rate is multiplied by
0.5 every 5 epochs. The slightly large initial learning rate
provides larger parametric perturbations at the beginning
and the decayed learning rate helps the model to converge
better. More details about FT and other removal methods
can be found in Appendix B.4.

Evaluation Metrics. We report the performance mainly on
two metrics: 1) watermark success rate (WSR) on water-
mark samples, that is the ratio of watermark samples that
are classified as the target label by the watermarked DNN
and 2) benign accuracy (BA) on clean test data. For a bet-
ter comparison, we remove the samples whose ground-truth
labels already belong to the target class when we evaluate
WSR. In general, an ideal watermark embedding method
produces a model with high WSR and high BA, and keeps
the high WSR after watermark-removal attacks.

4.2. Main Results

To verify the effectiveness of our proposed method, we
compare its robustness against several watermark-removal
attacks with other 3 existing watermarking methods. All
experiments are repeated over 3 runs with different random

4There is also a certified verification in [3], which requires full access
to the parameters of the suspicious model. It is out of our scope and we
only consider its empirical verification via API.

(a) Original (b) Content (c) Noise (d) Unrelated

Figure 4. The example of different watermark samples.

Table 1. Performance (average over 3 random runs) of 3 watermark-injection methods and 3 types of watermark inputs against 6 removal
attacks on CIFAR-10. Before: BA/WSR of the trained watermarked models; After: the remaining WSR after watermark-removal attacks.
AvgDrop indicates the average changes in WSR against all attacks.

Type Method
Before After

AvgDrop
BA WSR FT FP ANP NAD MCR NNL

Content

Vanilla 93.86 99.56 56.78 74.58 25.34 48.14 16.56 21.02 ↓ 59.15
EW 92.86 99.17 55.11 63.22 66.24 48.92 25.17 29.15 ↓ 51.20
CW 93.73 99.62 26.98 54.22 27.39 29.18 29.97 19.78 ↓ 68.36
Ours 93.42 99.87 96.63 98.44 99.56 90.76 84.65 68.58 ↓ 10.10

Noise

Vanilla 93.57 99.99 28.38 28.21 14.52 3.88 10.99 1.00 ↓ 85.50
EW 92.99 99.99 5.10 39.35 28.54 0.04 0.07 3.34 ↓ 87.25
CW 93.67 100.00 0.13 10.87 0.18 0.04 1.41 0.30 ↓ 97.84
Ours 93.47 100.00 66.54 75.59 83.73 23.98 68.86 3.22 ↓ 46.35

Unrelated

Vanilla 93.52 100.00 18.82 24.61 22.31 2.76 10.91 67.35 ↓ 75.54
EW 93.02 99.97 71.46 66.59 46.48 12.48 32.44 64.94 ↓ 50.90
CW 93.47 100.00 9.51 14.17 3.20 5.28 5.02 13.41 ↓ 91.57
Ours 93.30 99.95 96.15 95.46 99.60 89.28 87.49 94.49 ↓ 6.20

seeds. Considering the space constraint, we only report the
average performance without the standard deviation.

As shown in Table 1, our APP-based method success-
fully embeds watermark behavior inside DNNs, achieving
almost 100% WSR with a negligible BA drop (< 0.50%).
Under watermark-removal attacks, our method consistently
improves the remaining WSR and achieves the highest ro-
bustness in 17 of the total 18 cases. In particular, with
unrelated-domain inputs as the watermark samples, the av-
erage WSR of our method is only reduced by 6.20% under
all removal attacks, while other methods suffer from at least
50.90% drop in WSR. We find that, although NNL is the
strongest removal attack (all WSRs decrease below 22%)
when watermark samples are those images superimposed
by some content or noise, it has an unsatisfactory perfor-
mance to unrelated-domain inputs as watermark samples5.
Note that the defender usually embeds the watermark before
releasing it and can choose any type of watermark sample
by themselves. Therefore, with our proposed APP method,
the defender is always able to painlessly embed robust wa-

5This is because NNL first reconstructs the watermark trigger (e.g., the
content “TEST” on watermark samples) and then removes watermark be-
haviors. By contrast, when we use unrelated-domain inputs as watermark
samples, there is no trigger pattern, leading to the failure of NNL.

termarks into DNNs and defend against state-of-the-art re-
moval attacks (only sacrificing less than 6.2% of WSR after
attacks). We have similar findings on ImageNet (see Ta-
ble 2) and CIFAR-100 (see Appendix B.6).

4.3. Ablation Studies

In this section, we conduct several experiments to ex-
plore the effect of each part in our proposed methods, in-
cluding different components, varying perturbation magni-
tudes, and various target classes. In the following experi-
ments, we always use the images with the content “TEST”
as the watermark sample unless otherwise specified.
Effect of Different Components. Our method consists
of two parts, i.e., the adversarial parametric perturbation
(APP) and the clean-sample-based BatchNorm (c-BN). we
evaluate the contribution of each component. We train and
evaluate watermarked DNNs without any components (the
Vanilla method), with one of the components, and with both
components (our proposed method). In Table 3, only with
APP, we fail in keeping the average WSR under removal at-
tacks due to the domain shift as mentioned in Sec 3.3. For-
tunately, with c-BatchNorm, APP solves the domain shift
problem and successfully improves the robustness against
removal attacks, e.g., it keeps WSR > 90% against several

Table 2. Performance (average over 3 random runs) of 3 watermark-injection methods and 3 types of watermark inputs against 6 removal
attacks on ImageNet-subset. Before: BA/WSR of the trained watermarked models; After: the remaining WSR after watermark-removal
attacks. AvgDrop indicates the average changes in WSR against all attacks.

Type Method
Before After

AvgDrop
BA WSR FT FP ANP NAD MCR NNL

Content

Vanilla 74.81 98.26 22.18 9.31 43.91 4.40 12.48 28.05 ↓ 78.20
EW 75.15 95.85 8.95 3.82 17.07 3.02 8.82 19.96 ↓ 85.58
CW 74.52 99.05 6.35 0.16 0.26 0.68 2.92 17.91 ↓ 94.34
Ours 72.29 99.54 57.56 21.46 98.57 31.95 71.93 79.39 ↓ 39.40

Noise

Vanilla 74.47 98.65 9.54 2.79 29.00 9.75 8.06 3.60 ↓ 88.20
EW 75.09 95.36 3.58 4.08 1.19 1.62 4.19 1.56 ↓ 92.66
CW 74.11 98.32 15.35 2.57 11.65 5.65 3.41 2.56 ↓ 91.45
Ours 71.48 99.38 33.80 11.69 95.52 32.54 28.40 1.43 ↓ 65.48

Unrelated

Vanilla 74.69 99.97 47.40 36.53 99.66 24.16 54.43 30.87 ↓ 51.13
EW 75.25 99.97 33.64 31.12 94.40 59.91 12.94 56.70 ↓ 51.85
CW 74.97 99.99 38.94 0.86 1.97 43.68 65.74 26.66 ↓ 70.34
Ours 73.55 100.00 93.98 81.97 99.99 88.99 93.97 96.57 ↓ 7.42

Table 3. The effect of the two components in our method.

APP c-BN
Before After

AvgDrop
BA WSR FT FP ANP NAD MCR NNL

93.86 99.56 56.78 74.58 25.34 48.14 16.56 21.02 ↓ 59.15
✓ 93.94 99.75 58.14 74.92 10.26 35.17 19.14 23.37 ↓ 62.91

✓ 93.31 99.69 24.20 38.16 0.91 14.16 19.23 8.03 ↓ 82.24
✓ ✓ 93.42 99.87 96.63 98.44 99.56 90.76 84.65 68.58 ↓ 10.10

0.5 1.0 2.0 4.0
Perturbation Magnitude (×10 2)

80

85

90

95

100

Ra
te

(%
)

BA WSR

0.5 1.0 2.0 4.0
Perturbation Magnitude (×10 2)

20

40

60

80

100

Ra
te

(%
) WSR(FT)

WSR(FP)
WSR(MCR)
WSR(NNL)

Figure 5. The results with various magnitude ϵ. We use the dashed
line with the same color to show the performance when ϵ = 0.
Left: before attacks; Right: after attacks.

removal attacks (FT, FP, ANP, and NAD), and even keeps
WSR 68.58% against the strongest attack NNL. Besides,
we find the watermark with only c-BN fails to improve the
WSR, which indicates the c-BN just helps APP rather than
improving watermark robustness directly. In conclusion,
both are essential components contributing to final robust-
ness against watermark-removal attacks.

Effect of Varying Perturbation Magnitude. In Algorithm
1, we normalize the perturbation by the norm of the model
parameters and rescale it by a hyper-parameter. Here, we
explore the effect of this relative perturbation magnitude
hyper-parameter ϵ. We illustrate the performance of the

MobileNetV2 VGG16 ResNet18 ResNet50
0

20

40

60

80

100

Ra
te

(%
)

Vanilla
EW
CW
Ours

Figure 6. The results of our methods and other baselines with var-
ious architectures against FT attack. Our method consistently im-
proves watermark robustness.

watermarked DNNs before and after removal attacks with
varying perturbation magnitude in Figure 5, and find that,
within a specific region ϵ ≤ 4.0 × 10−2, our method al-
ways improves the robustness against attacks while keeping
BA high in a large range for hyperparameter. Besides, we
find the selection of hyper-parameter ϵ is more related to
the watermark embedding method itself rather than removal
attacks (we have similar trends against FT, FP, MCR and
NNL). This makes the selection of hyper-parameter ϵ quite
straightforward and gives us simple guidance for tuning ϵ
in practical scenarios: Although knowing nothing about the
potential attack (suppose the adversary applies MCR), the

(a) Vanilla (b) EW (c) CW (d) Ours

Figure 7. The t-SNE visualization of hidden feature representations.

0.5 × 1 × 1.5 ×
Size

0

20

40

60

80

100

W
SR

(%
)

Vanilla Ours

(a) Size

0.5 0.75 1
Transparency

0

20

40

60

80

100

W
SR

(%
)

Vanilla Ours

(b) Transparency

Figure 8. Results with various trigger sizes and transparencies. 1×
represents the settings of the original trigger.

defender could tune the hyper-parameter against the FT at-
tacks, and the resulting model also achieves satisfactory re-
sults against MCR. Detailed results against other attacks can
be found in Appendix C.1.

Effect of Various Target Classes. Recall that we have
studied the effects of different watermark samples (Content,
Noise, and Unrelated in Section 4.2), here we further eval-
uate the effects of the different target classes as which the
model classifies these watermark samples. We set the target
class as 1, 2, 3, and 4, respectively. We obtain an aver-
age WSR of 94.87%, 79.81%, 84.36% and 87.76% respec-
tively under all removal attacks, while the vanilla method
only achieves 32.91%, 20.79%, 32.28%, and 10.13% (de-
tails can be found in Appendix C.2). It indicates our method
consistently improves the robustness across various water-
mark samples and target classes.

Effect on Trigger Size and Transparency. To further ver-
ify that our method can apply to triggers with different sizes
and transparencies, we also exploit various sizes and trans-
parencies of the “TEST” trigger and evaluate the robustness
using FT attack. As shown in Figure 8, our method consis-
tently reaches better performance than the baseline across
various trigger sizes and transparencies.

Effect of Different Architectures. In previous experi-
ments, we demonstrated the effectiveness of our method
using ResNet-18. Here, we explore the effect of the
model architectures across different sizes including Mo-

0.2 0.1 0.0 0.1 0.2
dadv

0.2

0.1

0.0

0.1

0.2

d F
T

(a) Watermark Success Rate

0.2 0.1 0.0 0.1 0.2
dadv

0.2

0.1

0.0

0.1

0.2

d F
T

0
10
20
30
40
50
60
70
80
90
100

(b) Benign Accuracy

Figure 9. The performance of models in the vicinity of APP-based
watermarked model in the parameter space. dFT denotes the di-
rection of fine-tuning and dadv denotes the adversarial direction.
black dot: the original watermarked model; red star: the model
after fine-tuning.

bileNetV2 [40] (a tiny model), VGG16 [42], ResNet-18
and ResNet-50 [13] (a relatively large model) with same
hyper-parameters (especially ϵ). As shown in Figure 6, our
method always achieves notable improvements (> 30%)
compared with other baseline methods in all cases.

4.4. A Closer Look at the APP Method

In this section, we further explore the mechanism of our
APP. We visualize the landscape of watermarked model in
the parameter space and the distribution of the clean and
watermark samples in the feature space for discussions.

The Parameter Space. We start by studying the properties
of the watermarked model in the parameter space in the In-
troduction and illustrate how WSR changes in the vicinity
of the watermarked model from the vanilla method in Fig-
ure 1. Here, we use the same visualization method to show
the vicinity of the APP-based method (please see more de-
tails in Appendix A). As shown in Figure 9, we find the
APP-based watermarked model is able to keep WSR high
within a larger range compared to the vanilla one. Espe-
cially, our model is better in robustness against parametric
perturbation along the adversarial direction, which makes it
more difficult for the adversary to find watermark-removed
models in the vicinity of the protected model.

The Feature Space. To dive into APP, we also visualize the
hidden representation of clean samples and watermark sam-
ples using the t-SNE method [46] based on different water-
mark embedding schemes. As shown in Figure 7, in the fea-
ture space of our model, the cluster of watermark samples
in our method has a larger coverage in the feature space.
This may explain why our method is more robust because
moving all these watermark samples back to their original
clusters takes much more effort. Implementation details and
more results can be found in Appendix F.

5. Discussion and Conclusion

In our threat model, we actually limit the parameter per-
turbation size, i.e., the adversary cannot change the model
parameters too much. By contrast, in practice, the adversary
is only required to maintain the high benign accuracy of
DNNs during watermark-removal attacks. We admit the lat-
ter is a better threat model, while it is infeasible to analyze
rigorously. It is mostly because we cannot explicitly de-
scribe the relationship between benign accuracy and model
parameters (we only know some checkpoints and their BA),
which prevents its direct usage in the algorithm. Instead,
we use a simplified constraint by the perturbation magni-
tude and believe it is a feasible method: (1) In most cases,
attackers use the watermarked model as the initial point
and fine-tune model parameters, which (probably) bounds
the change of model parameters within a distance; (2) We
achieve better robustness against various practical attacks
using our threat model. We notice that the defense in our
threat model is only a prerequisite for defense in the better
threat model. We hope our method can serve as the corner-
stone towards truly robust watermarks.

Overall, we investigated the parameter space of water-
marked DNNs in this paper. We found that there exist many
watermark-removed models in the vicinity of the water-
marked model, which may be easily used by removal at-
tacks. To alleviate this problem, we proposed a minimax
formulation to find the watermark-removed models and re-
pair their watermark behaviors. In particular, we observed
that there is a domain shift between defenses and removal
attacks when calculating BatchNorm statistics, based on
which we proposed to estimate them only with benign sam-
ples (dubbed ‘c-BN’). We conducted extensive experiments
on benchmark datasets, showing that our method can con-
sistently improves the robustness against several state-of-
the-art removal attacks. We hope our method could help
model owners better protect their intellectual properties.

Acknowledgement

This work is supported in part by the National Natu-
ral Science Foundation of China under Grant 62171248,
Shenzhen Science and Technology Program under Grant

JCYJ20220818101012025, and the PCNL Key Project un-
der Grant PCL2021A07.

References
[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas,

and Joseph Keshet. Turning your weakness into a strength:
Watermarking deep neural networks by backdooring. In
USENIX Security, pages 1615–1631, 2018.

[2] William Aiken, Hyoungshick Kim, Simon Woo, and Jung-
woo Ryoo. Neural network laundering: Removing black-box
backdoor watermarks from deep neural networks. Comput-
ers & Security, 106:102277, 2021.

[3] Arpit Bansal, Ping-yeh Chiang, Michael J Curry, Rajiv Jain,
Curtis Wigington, Varun Manjunatha, John P Dickerson, and
Tom Goldstein. Certified neural network watermarks with
randomized smoothing. In ICML, pages 1450–1465. PMLR,
2022.

[4] Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen Zhao,
and Farinaz Koushanfar. Deepmarks: A secure fingerprinting
framework for digital rights management of deep learning
models. In ICMR, pages 105–113, 2019.

[5] Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun,
Peng Cheng, Shouling Ji, Xingjun Ma, Bo Li, and Dawn
Song. Copy, right? a testing framework for copyright protec-
tion of deep learning models. In IEEE S&P, pages 824–841.
IEEE, 2022.

[6] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified
adversarial robustness via randomized smoothing. In ICML,
pages 1310–1320. PMLR, 2019.

[7] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushan-
far. Deepsigns: An end-to-end watermarking framework for
ownership protection of deep neural networks. In ASPLOS,
pages 485–497, 2019.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255. Ieee, 2009.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[10] Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethink-
ing deep neural network ownership verification: embedding
passports to defeat ambiguity attacks. In NeurIPS, pages
4714–4723, 2019.

[11] Kuofeng Gao, Yang Bai, Jindong Gu, Yong Yang, and Shu-
Tao Xia. Backdoor defense via adaptively splitting poisoned
dataset. In CVPR, pages 4005–4014, 2023.

[12] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and
Gigel Macesanu. A survey of deep learning techniques for
autonomous driving. Journal of Field Robotics, 37(3):362–
386, 2020.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[15] Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui
Ren. Backdoor defense via decoupling the training process.
In ICLR, 2021.

[16] Ziheng Huang, Boheng Li, Yan Cai, Run Wang, Shangwei
Guo, Liming Fang, Jing Chen, and Lina Wang. What can
discriminator do? towards box-free ownership verification
of generative adversarial networks. In ICCV, 2023.

[17] Kassem Kallas and Teddy Furon. Rose: A robust and secure
dnn watermarking. In 2022 IEEE International Workshop
on Information Forensics and Security (WIFS), pages 1–6.
IEEE, 2022.

[18] Veton Kepuska and Gamal Bohouta. Next-generation of vir-
tual personal assistants (microsoft cortana, apple siri, ama-
zon alexa and google home). In CCWC, pages 99–103. IEEE,
2018.

[19] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, volume 25, 2012.

[21] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Ad-
versarial frontier stitching for remote neural network water-
marking. Neural Computing and Applications, 32(13):9233–
9244, 2020.

[22] Yiming Li, Yang Bai, Yong Jiang, Yong Yang, Shu-Tao Xia,
and Bo Li. Untargeted backdoor watermark: Towards harm-
less and stealthy dataset copyright protection. In NeurIPS,
2022.

[23] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Back-
door learning: A survey. IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

[24] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Anti-backdoor learning: Training clean
models on poisoned data. NeurIPS, 34:14900–14912, 2021.

[25] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Neural attention distillation: Erasing back-
door triggers from deep neural networks. In ICLR, 2021.

[26] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and
Xiaodi Hou. Revisiting batch normalization for practical do-
main adaptation. arXiv preprint arXiv:1603.04779, 2016.

[27] Yiming Li, Mengxi Ya, Yang Bai, Yong Jiang, and Shu-Tao
Xia. Backdoorbox: A python toolbox for backdoor learning.
In ICLR Workshop, 2023.

[28] Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and Shu-
Tao Xia. Backdoor attack in the physical world. In ICLR
Workshop, 2021.

[29] Yiming Li, Linghui Zhu, Xiaojun Jia, Yong Jiang, Shu-Tao
Xia, and Xiaochun Cao. Defending against model stealing
via verifying embedded external features. In AAAI, 2022.

[30] Yiming Li, Mingyan Zhu, Xue Yang, Yong Jiang, Tao Wei,
and Shu-Tao Xia. Black-box dataset ownership verification
via backdoor watermarking. IEEE Transactions on Informa-
tion Forensics and Security, 2023.

[31] Zhifeng Li, Dihong Gong, Qiang Li, Dacheng Tao, and Xue-
long Li. Mutual component analysis for heterogeneous face
recognition. ACM Transactions on Intelligent Systems and
Technology (TIST), 7(3):1–23, 2016.

[32] Wei-An Lin, Yogesh Balaji, Pouya Samangouei, and Rama
Chellappa. Invert and defend: Model-based approximate in-
version of generative adversarial networks for secure infer-
ence. arXiv preprint arXiv:1911.10291, 2019.

[33] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
pruning: Defending against backdooring attacks on deep
neural networks. In RAID, pages 273–294. Springer, 2018.

[34] Nils Lukas, Edward Jiang, Xinda Li, and Florian Ker-
schbaum. Sok: How robust is image classification deep
neural network watermarking?(extended version). arXiv
preprint arXiv:2108.04974, 2021.

[35] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep
neural network fingerprinting by conferrable adversarial ex-
amples. In ICLR, 2020.

[36] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018.

[37] Ryota Namba and Jun Sakuma. Robust watermarking of neu-
ral network with exponential weighting. In ACM ASIACCS,
pages 228–240, 2019.

[38] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011.

[39] Haibo Qiu, Baosheng Yu, Dihong Gong, Zhifeng Li, Wei
Liu, and Dacheng Tao. Synface: Face recognition with syn-
thetic data. In ICCV, 2021.

[40] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, pages 4510–4520,
2018.

[41] Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li,
and Florian Kerschbaum. On the robustness of backdoor-
based watermarking in deep neural networks. In IH&MMSec
workshop, pages 177–188, 2021.

[42] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[43] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[44] Enzo Tartaglione, Marco Grangetto, Davide Cavagnino, and
Marco Botta. Delving in the loss landscape to embed ro-
bust watermarks into neural networks. In ICPR, pages 1243–
1250. IEEE, 2021.

[45] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and
Shin’ichi Satoh. Embedding watermarks into deep neural
networks. In ICMR, pages 269–277, 2017.

[46] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(11), 2008.

[47] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bi-
mal Viswanath, Haitao Zheng, and Ben Y Zhao. Neural
cleanse: Identifying and mitigating backdoor attacks in neu-
ral networks. In IEEE S&P, pages 707–723. IEEE, 2019.

[48] Lixu Wang, Shichao Xu, Ruiqi Xu, Xiao Wang, and Qi Zhu.
Non-transferable learning: A new approach for model own-

ership verification and applicability authorization. In ICLR,
2021.

[49] Run Wang, Jixing Ren, Boheng Li, Tianyi She, Wenhui
Zhang, Liming Fang, Jing Chen, and Lina Wang. Free fine-
tuning: A plug-and-play watermarking scheme for deep neu-
ral networks. In ACM MM, 2023.

[50] Dongxian Wu and Yisen Wang. Adversarial neuron pruning
purifies backdoored deep models. In NeurIPS, volume 34,
pages 16913–16925, 2021.

[51] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial
weight perturbation helps robust generalization. In NeurIPS,
volume 33, pages 2958–2969, 2020.

[52] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish
Rawat. Efficient defenses against adversarial attacks. In
AISec workshop, pages 39–49, 2017.

[53] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Lau-
rent El Ghaoui, and Michael Jordan. Theoretically principled
trade-off between robustness and accuracy. In ICML, pages
7472–7482. PMLR, 2019.

[54] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph
Stoecklin, Heqing Huang, and Ian Molloy. Protecting intel-
lectual property of deep neural networks with watermarking.
In ACM ASIACCS, pages 159–172, 2018.

[55] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab,
Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained trans-
former language models. arXiv preprint arXiv:2205.01068,
2022.

[56] Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ra-
mamurthy, and Xue Lin. Bridging mode connectivity in loss
landscapes and adversarial robustness. In ICLR, 2020.

A. Details about Vicinity Visualization

To visualize the vicinity, we measure the watermark suc-
cess rate (WSR) and benign accuracy (BA) on the panel
spanned by the two directions dadv and dFT . Specifi-
cally, dadv is the direction to erase watermark, i.e., dadv =
∇θL(θ,Dw), and dFT is the direction from the original
watermarked model θw to a fine-tuned model θFT , i.e.,
dFT = θFT − θw. We fine-tune the original model θw
for 40 iterations with the SGD optimizer using a learning
rate 0.05 to obtain θFT . We explore the vicinity by mov-
ing the original parameter along with these two directions,
recoding WSR and BA of neighbor model. For easier com-
parison, we use the relative distance in the parametric space,
i.e.,

θ = θw + α
dadv
∥dadv∥

∥θw∥+ β
dFT

∥dFT ∥
∥θw∥, (7)

where (α, β) are the given coordinates. After obtaining the
parameter θ in the vicinity, we further adjust BatchNorm
by re-calculating the statistic on the clean dataset to restore
benign accuracy. Finally, we evaluate this neighbor model
and record its benign accuracy and watermark success rate.

B. Details about Main Experiments

In this section, we first briefly introduce our baseline
methods, then provide the detailed settings for our main
experiments. We report the full results on CIFAR-10 and
CIFAR-100 at the end.

B.1. More details about baseline methods

Vanilla model watermark [54] mixed the watermark sam-
ples with the clean samples, based on which to train the
model. EW [37] trained the model with exponentially
reweighted parameter EW (θ, T) rather than vanilla weight
θ. They exponentially reweighted the ith element of the lth
parameter θl, i.e.,

EW (θl, T) = θlexp, where θlexp,i =
exp(|θli|T)

maxi(exp(|θli|T))
θli,

(8)
and T is a hyper-parameter adjusting the intensity of the
reweighting. As shown in the above equation, the weight
elements with a big absolute value will remain almost the
same after the reweight operation, while the ones with a
small value will decrease to nearly zero. This encourages
the neural network to lean on the weights with large abso-
lute values to make decisions, hence making the prediction
less sensitive to small weight changes. CW [3] aimed at
embedding a watermark with certifiable robustness. They
adopted the theory of randomized smoothing [6] and water-
marked the network using a gradient estimated with random

perturbed weights. The gradient on the watermark batch B
is calculated by

gθ =
1

k

k∑
i=1

EG∈N (0,(i
k)2I)E(x,y)∈B[∇l(x, y; θ+G)], (9)

where σ is the noise strength.

B.2. Details about Watermark-removal Attacks

Currently, there are some watermark-removal attacks
to counter model watermarking. According to Lukas
et al. [34], existing removal attacks can be divided into
three main categories, including 1) input pre-processing,
2) model extraction, and 3) model modification. In gen-
eral, the first type of attack pre-processes each input sam-
ple to remove trigger patterns before feeding it into the de-
ployed model [32]. Model extraction [14, 41] distills the
dark knowledge from the victim model to remove distinc-
tive prediction behaviors while preserving its main func-
tionalities. Model modification [45, 33] changes model
weights while preserving its main structure. In this paper,
we mainly focus on the model-modification-based removal
attacks, since input pre-processing has minor benefits for
countering backdoor-based watermark [34] and model ex-
traction usually requires a large number of training samples
that are inaccessible for defenders in practice [35].

Apart from these traditional watermark attacks men-
tioned above, we also adopted some backdoor-removal
methods to conduct a more thorough evaluation because
our watermark method is backdoor-based. The backdoor-
removal method can also be derived into two categories,
including 1) post-training backdoor removal methods [51,
25, 56] that remove backdoor with local benign samples
after training, 2) training-time backdoor removal meth-
ods [24, 15, 11] that directly train a clean model from a
poisoned training set. In our experiments, we focus on the
post-training backdoor removal methods because only the
model owner controls the training process.

The description of our adopted watermark/backdoor-
removal methods is listed in the following.
FT. Uchida et al. [45] removed the watermark by updating
model parameters using additional holding clean data.
FP. Liu et al. [33] presumed that watermarked neurons are
less activated by clean data, and thus pruned the least acti-
vated neurons in the last layer before fully-connected layers.
They further find-tuned the pruned model to restore benign
accuracy and suppress watermarked neurons.
ANP. Wu et al. [50] found that backdoored neurons are sen-
sitive to weight perturbation and proposed to prune these
neurons to remove the backdoor.
NAD. Li et al. [25] utilized knowledge from a fine-tuned
model where the watermark is partially removed, to guide
the watermark unlearning.

MCR. Zhao et al. [56] found that the existence of a high
accuracy pathway connecting two backdoored models in the
parametric space, and the interpolated model along the path
usually doesn’t have backdoors. This property allows MCR
to be applied in the mission of watermark removal.
NNL. Aiken et al. [2] first reconstructed trigger using Neu-
ral Cleanse [47], then reset neurons that behave differently
on clean data and reconstructed trigger data, and further
fine-tuned the model to restore benign accuracy and sup-
press watermarked neurons.

B.3. More Details about Watermark Settings

Settings for EW. As suggested in its paper [37], we fine-
tune a pre-trained model to embed the watermark. We pre-
train the model using the original dataset without injecting
the watermark samples. The pre-trained model is trained for
100 epochs using the SGD optimizer with an initial learning
rate of 0.1, the learning rate decays by a factor of 10 at the
50th and 75th epochs. We fine-tune the pre-trained model
for 20 epochs to embed the watermark, with an initial learn-
ing rate of 0.1, and the learning rate is drop by 10 at the 10th
and 15th epochs.
Settings for CW. For a fair comparison, we adopt a learning
rate schedule and a weight-decay factor identical to other
methods. Unless otherwise specified, other settings are the
same as those used in [3].
Settings for Our Method. For the classification loss term,
we calculate the loss using a batch of 128 clean samples,
while for the watermark term, we use a batch of 64 clean
samples and 64 watermark samples to obtain the estimation
of adversarial gradients.

B.4. Details about Watermark-removal Settings

Settings for FT. We fine-tune the watermarked model for
30 epochs using the SGD optimizer with an initial learning
rate of 0.05 and a momentum of 0.9, the learning rate is
dropped by a factor of 0.5 every five epochs.
Settings for FP. We prune 90% of the least activated neu-
rons in the last layer before fully-connected layers, and af-
ter pruning, we fine-tune the pruned model using the same
training scheme as FT.
Settings for ANP. We set the pruning rate to 0.6, where all
defense shares a similar BA, as shown in Figure 11.
Settings for NAD. The original NAD only experimented on
WideResNet models. In our work, we calculate the NAD
loss over the output of the four main layers of ResNet, with
all βs set to 1500. To obtain a better watermark removal
performance, we use an initial learning rate of 0.02 , which
is larger than 0.01 in the original paper [25].
Settings for MCR. MCR finds a backdoor-erased model
on the path connecting two backdoored models. But in our

settings, only one watermarked model is available. Hence
the attacker must obtain the other model via fine-tuning the
original watermarked model, then perform MCR using the
original watermarked model and fine-tuned model. We split
the attacker’s dataset into two equal halves, one used to fine-
tune the model and the other one to train the curve con-
necting the original model and the fine-tuned model. This
fine-tuning is performed for 50 epochs with an initial learn-
ing rate of 0.05, which decays by a factor of 0.1 every 10
epochs. For MCR results, t = 0 denotes the original model
and t = 1 denotes the original model. We select results with
t = 0.9, where all defense shares similar BA, see Figure 10.

Settings for NNL. We reconstruct the trigger using Neural
Cleanse [47] for 15 epochs, and reset neurons that behave
significantly different under clean input and reconstructed
input, we fine-tune the model for 15 epochs with the SGD
optimizer, the initial learning rate is 0.02 and is divided by
10 at the 10th epoch.

B.5. Detailed Results on CIFAR-10

The detailed results on CIFAR-10 are shown in Table 4.
Moreover, we can observe from Figure 10 and Figure 11
that our method is more robust than other methods, regard-
less of the threshold value used in MCR and ANP.

B.6. Detailed Results on CIFAR-100

To show that our method can also apply to other datasets,
we conduct additional experiments on CIFAR-100.

Modification to Attack Settings. As trigger reconstruction
need to scan 100 classes on CIFAR-100, we reduce the NC
reconstruction epoch from 15 to 5 to speed it up. The ANP
pruning threshold is set to 0.5 in CIFAR-100 experiments to
maintain benign accuracy.

Results. As shown in Table 5, similar to previous results
on CIFAR-10, our methods generally achieves better water-
mark robustness compared with other methods. The only
exception is on noise watermark where all watermark em-
bedding schemes failed to protect the watermark against FP
and NNL attacks. Moreover, we can observe from Figure 12
and Figure 13 that our models still outperform other meth-
ods regardless of the threshold value for ANP and MCR, in
terms of robustness against them.

B.7. Detailed Results on ImageNet Subset

To verify that our model can apply to other datasets, we
experiment on a subset of ImageNet, containing 100 classes
with 50,000 images for training (500 images per class) and
5,000 images for testing (50 images per class). , and the
results are shown as follows.

Modification to Defense Settings. We set the perturbation
budget ϵ to 1× 10−3 for better benign accuracy.

Table 4. Results on CIFAR-10. ‘NA’ denotes ‘No Attack’.
Metric Type Method NA FT FP ANP NAD MCR NNL AvgDrop

WSR

Content

Vanilla 99.56 56.78 74.58 25.34 48.14 16.56 21.02 ↓59.15
EW 99.17 55.11 63.22 66.24 48.92 25.17 29.15 ↓51.20
CW 99.62 26.98 54.22 27.39 29.18 29.97 19.78 ↓68.36
Ours 99.87 96.63 98.44 99.56 90.76 84.65 68.58 ↓10.10

Noise

Vanilla 99.99 28.38 28.21 14.52 3.88 10.99 1.00 ↓ 85.50
EW 99.99 5.10 39.35 28.54 0.04 0.07 3.34 ↓ 87.25
CW 100.00 0.13 10.87 0.18 0.04 1.41 0.30 ↓ 97.84
Ours 100.00 66.54 75.59 83.73 23.98 68.86 3.22 ↓ 46.35

Unrelated

Vanilla 100.00 18.82 24.61 22.31 2.76 10.91 67.35 ↓ 75.54
EW 99.97 71.46 66.59 46.48 12.48 32.44 64.94 ↓ 50.90
CW 100.00 9.51 14.17 3.20 5.28 5.02 13.41 ↓ 91.57
Ours 99.95 96.15 95.46 99.60 89.28 87.49 94.49 ↓ 6.20

BA

Content

Vanilla 93.86 91.80 92.19 90.15 90.39 89.27 91.92 2.91
EW 92.86 90.95 91.45 89.41 88.72 88.31 91.14 2.87
CW 93.73 91.75 91.99 89.67 90.29 89.00 91.77 2.98
Ours 93.42 91.72 91.81 88.86 89.79 89.08 91.06 3.03

Noise

Vanilla 93.57 92.00 92.12 89.87 90.59 89.41 91.58 2.64
EW 92.99 91.05 91.41 89.09 88.81 88.39 91.14 3.01
CW 93.67 91.19 91.79 86.32 85.12 88.74 91.28 4.60
Ours 93.47 91.59 91.87 86.75 90.14 89.18 90.73 3.43

Unrelated

Vanilla 93.52 91.53 91.91 90.16 89.16 88.22 90.77 3.23
EW 93.02 91.17 91.44 89.23 89.13 88.30 90.80 3.01
CW 93.47 91.17 91.29 86.31 88.97 87.83 90.72 4.60
Ours 93.30 91.47 91.46 86.48 89.70 89.08 90.36 3.54

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

(a) Content

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

(b) Noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

Legend
Vanilla,WSR
Vanilla,BA
EW,WSR
EW,BA
CW,WSR
CW,BA
ours,WSR
ours,BA

(c) Unrelated

Figure 10. MCR results with varying thresholds on CIFAR-10.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

(a) Content

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

(b) Noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

Legend
Vanilla,WSR
Vanilla,BA
EW,WSR
EW,BA
CW,WSR
CW,BA
ours,WSR
ours,BA

(c) Unrelated

Figure 11. ANP results with varying thresholds on CIFAR-10.

Table 5. Results on CIFAR-100. ‘NA’ denotes ‘No Attack’.
Metric Type Method NA FT FP ANP NAD MCR NNL AvgDrop

WSR

Content

Vanilla 98.27 19.63 1.96 70.25 0.62 15.14 0.24 ↓ 80.30
EW 97.93 10.57 2.84 55.23 1.92 1.44 1.14 ↓ 85.74
CW 98.77 11.80 0.23 12.12 0.44 11.65 0.09 ↓ 92.72
Ours 99.48 97.17 93.35 99.16 90.59 95.78 30.30 ↓ 15.09

Noise

Vanilla 99.94 60.54 10.03 96.55 20.57 52.77 0.12 ↓ 59.85
EW 99.87 10.73 9.79 95.62 6.69 8.75 12.99 ↓ 75.78
CW 99.98 24.38 1.80 55.95 3.28 38.44 0.05 ↓ 79.33
Ours 100.00 84.82 8.60 99.99 73.67 93.82 0.98 ↓ 39.69

Unrelated

Vanilla 100.00 6.83 1.50 92.25 6.25 12.58 11.42 ↓ 78.19
EW 100.00 27.67 3.42 93.33 18.25 17.75 40.25 ↓ 66.56
CW 99.83 0.25 1.08 41.08 4.08 7.67 0.58 ↓ 90.71
Ours 100.00 97.42 44.67 100.00 94.08 97.25 45.17 ↓ 20.24

ACC

Content

Vanilla 73.78 69.43 68.34 67.83 65.86 63.72 66.40 6.85
EW 73.45 67.91 66.76 66.33 63.69 61.22 66.93 7.97
CW 73.95 68.98 68.42 61.97 65.06 63.25 67.92 8.01
Ours 73.35 68.86 67.99 68.07 65.86 63.95 67.89 6.25

Noise

Vanilla 74.13 69.61 68.78 70.72 66.30 63.73 67.30 6.39
EW 73.43 67.39 66.92 68.85 64.18 61.10 66.96 7.53
CW 73.49 68.00 67.84 59.21 64.26 61.68 66.79 8.86
Ours 72.97 68.49 67.39 67.59 64.94 63.08 66.25 6.68

Unrelated

Vanilla 73.80 68.55 67.46 69.90 65.14 61.87 65.77 7.35
EW 73.57 67.83 66.61 69.39 63.52 61.47 65.90 7.78
CW 73.45 67.45 66.90 54.59 62.66 60.60 64.88 10.60
Ours 72.27 67.68 66.88 65.22 64.07 61.99 62.64 7.53

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

(a) Content

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

(b) Noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

Legend
Vanilla,WSR
Vanilla,BA
EW,WSR
EW,BA
CW,WSR
CW,BA
ours,WSR
ours,BA

(c) Unrelated

Figure 12. MCR results with varying thresholds on CIFAR-100.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

(a) Content

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

(b) Noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold

0

20

40

60

80

100

Ra
te

(%
)

Legend
BD,WSR
BD,BA
EW,WSR
EW,BA
CW,WSR
CW,BA
ours,WSR
ours,BA

(c) Unrelated

Figure 13. ANP results with varying thresholds on CIFAR-100.

Table 6. Results on ImageNet subset. ‘NA’ denotes ‘No Attack’.

Metric Type Method NA FT FP ANP NAD MCR NNL AvgDrop

WSR

Content

Vanilla 98.26 22.18 9.31 43.91 4.40 12.48 28.05 ↓ 78.20
EW 95.85 8.95 3.82 17.07 3.02 8.82 19.96 ↓ 85.58
CW 99.05 6.35 0.16 0.26 0.68 2.92 17.91 ↓ 94.34
Ours 99.54 57.56 21.46 98.57 31.95 71.93 79.39 ↓ 39.40

Noise

Vanilla 98.65 9.54 2.79 29.00 9.75 8.06 3.60 ↓ ↓ 88.20
EW 95.36 3.58 4.08 1.19 1.62 4.19 1.56 ↓ 92.66
CW 98.32 15.35 2.57 11.65 5.65 3.41 2.56 ↓ 91.45
Ours 99.38 33.80 11.69 95.52 32.54 28.40 1.43 ↓ 65.48

Unrelated

Vanilla 99.97 47.40 36.53 99.66 24.16 54.43 30.87 ↓ 51.13
EW 99.97 33.64 31.12 94.40 59.91 12.94 56.70 ↓ 51.85
CW 99.99 38.94 0.86 1.97 43.68 65.74 26.66 ↓ 70.34
Ours 100.00 93.98 81.97 99.99 88.99 93.97 96.57 ↓ 7.42

BA

Content

Vanilla 74.81 69.88 70.37 65.76 66.17 67.90 69.75 6.50
EW 75.15 68.66 69.18 61.91 64.15 65.65 69.42 8.65
CW 74.52 69.67 70.02 51.55 65.70 66.30 69.16 9.12
Ours 72.29 68.37 68.35 56.21 64.55 66.21 66.53 7.26

Noise

Vanilla 74.47 70.05 70.63 65.77 67.23 67.50 71.11 5.76
EW 75.09 68.06 69.51 60.96 64.16 65.51 69.53 8.80
CW 74.11 69.37 70.09 54.15 65.34 66.63 70.87 8.03
Ours 71.48 67.25 67.45 30.74 62.60 63.52 58.71 13.10

Unrelated

Vanilla 74.69 69.92 70.57 65.77 66.79 67.45 70.13 6.25
EW 75.25 68.38 69.32 60.63 64.67 65.95 70.01 8.76
CW 74.97 70.05 70.81 54.05 66.31 66.89 70.13 8.60
Ours 73.55 68.97 69.63 57.41 64.96 66.93 68.69 7.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

(a) Content

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

(b) Noise

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t

0

20

40

60

80

100

Ra
te

(%
)

Legend
Vanilla,WSR
Vanilla,BA
EW,WSR
EW,BA
CW,WSR
CW,BA
ours,WSR
ours,BA

(c) Unrelated

Figure 14. MCR results with varying thresholds on ImageNet subset.

0.0 0.2 0.4 0.6 0.8
t

0

20

40

60

80

100

Ra
te

(%
)

(a) Content

0.0 0.2 0.4 0.6 0.8
t

0

20

40

60

80

100

Ra
te

(%
)

(b) Noise

0.0 0.2 0.4 0.6 0.8
t

0

20

40

60

80

100

Ra
te

(%
)

Legend
Vanilla,WSR
Vanilla,BA
EW,WSR
EW,BA
CW,WSR
CW,BA
ours,WSR
ours,BA

(c) Unrelated
Figure 15. ANP results with varying thresholds on ImageNet subset.

Table 7. Results of Content embedded with varying perturbation magnitude ϵ using our method. AVG denotes the average WSR/BA after
watermark removal attacks.

Metric ϵ NA FT FP ANP NAD MCR NNL AVG

WSR

5× 10−3 99.86 88.93 93.31 96.61 61.94 39.04 44.43 70.71
1× 10−2 99.87 95.57 97.00 99.03 63.40 59.85 65.20 80.01
2× 10−2 99.87 96.63 98.44 99.56 90.76 84.65 68.58 89.77
4× 10−2 99.90 95.88 97.25 99.64 81.50 89.94 66.57 88.46

BA

5× 10−3 93.50 91.90 91.96 89.53 90.06 89.30 91.43 90.70
1× 10−2 93.62 91.76 92.18 89.50 90.40 89.15 91.63 90.77
2× 10−2 93.42 91.72 91.81 88.86 89.79 89.08 91.06 90.39
4× 10−2 93.34 91.51 91.85 87.15 89.63 89.16 90.67 89.99

Modification to Attack Settings. As trigger reconstruction
need to scan 100 classes on the ImageNet subset, we reduce
the NC reconstruction epoch from 15 to 5 to speed it up.

Results. As shown in Table 6, similar to previous results on
CIFAR-10, our methods generally reaches better watermark
robustness compared with other methods. The only excep-
tion is on noise watermark, where all watermark embed-
ding schemes failed to protect the watermark against NNL
attacks. Moreover, we can observe from Figure 14 and Fig-
ure 15 that our models still outperform other methods re-
gardless of the threshold value for ANP and MCR, in terms
of robustness against them.

C. Detailed Results of Ablation Studies

C.1. Results with Varying Perturbation Magnitude

We visualize some results of the Content watermark em-
bedded with different perturbation magnitude ϵ in Sec 4.3.
Here, we provided more detailed results in a numeric form
in Table 7. Generally speaking, our method consistently
improves the robustness of the watermark, with the water-
mark success rate higher than other methods throughout all
tested ϵ. Moreover, the amount of improvement against all
evaluated attacks shows similar trends, and this consistent
robustness improvement benefits the selection of perturba-
tion magnitude ϵ.

C.2. Results with Other Target Classes

To demonstrate that our method can apply to different
target classes, we experimented with Content and set the
target class yt ∈ {1, 2, 3, 4}. Similar to the default sce-
nario where yt = 0, these 4 tests maintain the average
watermark success rate of 94.87%, 79.81%, 84.36% and
87.76% respectively under all 6 removal attacks, while the
standard baseline only achieves 32.91%, 20.79%, 32.28%,
and 10.13% against the above six attacks, indicating that our
method achieves stable robustness improvement regardless
of the chosen target class (as shown in Table 8-9).

D. Additional Ablation Experiments

D.1. Results with other model architectures

In Section 4.3, we demonstrate that our method improves
watermark robustness against the FT attack across vari-
ous model architectures (i.e., MobileNetV2, VGG16, and
ResNet50). To further verify that our method is better than
baseline defenses across different model architectures under
different attacks, in this section, we conduct additional ex-
periments under more attacks (i.e., ANP, NAD, MCR) other
than FT-based attacks. As shown in Figure 16, our method
consistently improves the watermark robustness across dif-
ferent model architectures under all attacks.

In addition, to further verify that our method is still ef-
fective under simpler model architecture, we conduct addi-
tional experiments on CIFAR-10 with MobileNetV2. Mo-
bileNetV2 consists of 2.2M trainable parameters, which is
significantly less than the 11.2M parameters contained in
ResNet18 used in our main experiments. As shown in
Table 10, in this case, our method is still better than all
baseline methods with the average WSR drop of 29.93%,
whereas all baseline defenses suffer from at least 62.22%
average WSR decreases. These results verify the effective-
ness of our method again.

E. Additional Robustness Evaluations

E.1. Comparison with Other Watermark Methods

We compare our method with three other SOTA meth-
ods: NTL [48], ROSE [17], and CAE [35]. NTL uses the
error rate on patched data to indicate WSR, i.e., the higher
error rate is, the larger WSR is. While NTL lists ACC in the
original paper, we list the error rate (= 1 - ACC) for easier
comparison. The results are shown in Table 11 Note that
we apply a larger lr for FT, which makes the defense more
challenging. For fairness, we compare different methods
with various lr in the table including the results from origi-
nal papers. Ours outperforms the others in almost all cases.

Table 8. Results of vanilla model watermark over content-type attack with different target labels.

Metric yt NA FT FP ANP NAD MCR NNL AVG

WSR

0 99.56 56.78 74.58 25.34 48.14 16.56 21.02 40.40
1 99.51 46.54 73.60 45.93 12.83 9.41 9.15 32.91
2 99.54 47.97 55.16 9.24 3.23 6.61 2.52 20.79
3 99.48 60.79 77.99 8.56 15.89 11.87 18.56 32.28
4 99.53 17.13 10.39 9.07 11.39 8.50 4.33 10.13

BA

0 93.86 91.80 92.19 90.15 90.39 89.27 91.92 90.95
1 93.85 92.27 92.31 90.03 90.38 89.39 91.87 91.04
2 93.61 91.74 92.01 89.60 90.16 88.87 91.67 90.67
3 93.90 92.01 92.11 90.77 90.07 89.26 92.04 91.04
4 93.85 91.93 92.20 90.64 90.34 89.23 91.52 90.98

Table 9. Results of our model watermark over content-type attack with different target labels.

Metric yt NA FT FP ANP NAD MCR NNL AVG

WSR

0 99.87 96.63 98.44 99.56 90.76 84.65 68.58 89.77
1 99.76 97.69 98.58 99.49 90.20 90.12 93.16 94.87
2 99.76 95.60 97.55 98.95 53.68 73.04 60.03 79.81
3 99.76 97.30 97.22 98.83 65.81 82.96 64.01 84.36
4 99.73 97.02 97.31 99.13 78.91 76.84 77.35 87.76

BA

0 93.42 91.72 91.81 88.86 89.79 89.08 91.06 90.39
1 93.63 91.58 92.09 89.61 90.19 89.03 91.50 90.67
2 93.31 91.59 91.71 88.67 89.72 88.80 91.23 90.29
3 93.73 91.69 91.67 89.29 89.92 89.05 91.16 90.46
4 93.38 91.50 91.88 85.58 89.46 89.05 91.13 89.77

Table 10. The results with MobileNetV2 on CIFAR-10.

Metric Method NA FT FP ANP NAD MCR NNL AvgDrop

WSR

Vanilla 99.07 24.44 44.14 77.15 32.86 23.09 19.44 ↓ 62.22
EW 98.59 15.96 9.47 63.56 23.58 11.66 13.71 ↓ 75.60
CW 99.16 34.32 23.75 29.01 26.66 15.28 20.62 ↓ 74.22
Ours 99.77 67.84 66.78 99.94 82.73 48.73 53.06 ↓ 29.93

BA

Vanilla 92.27 89.28 90.15 68.50 87.56 85.52 89.08 7.26
EW 90.04 86.41 87.38 84.83 82.59 79.49 87.54 5.33
CW 92.07 89.06 89.38 77.70 86.88 85.20 88.97 5.87
Ours 90.99 88.33 88.06 57.07 85.51 83.10 87.99 9.32

MobileNetV2 VGG16 ResNet18 ResNet50
0

20

40

60

80

100

Ra
te

(%
)

(a) ANP

MobileNetV2 VGG16 ResNet18 ResNet50
0

20

40

60

80

100

Ra
te

(%
)

(b) NAD

MobileNetV2 VGG16 ResNet18 ResNet50
0

20

40

60

80

100

Ra
te

(%
) Vanilla

EW
CW
Ours

(c) MCR
Figure 16. The WSR of models under ANP, NAD, and MCR.

Table 11. Results under FT attack with different learning rates. “∗”
denotes results from the original paper. “-” denotes results that are
not reported in the original paper.

Method Before 1e-5 1e-3 1e-2 2e-2

ROSE∗ 92.50 92.50 – - –
ROSE 97.50 97.50 77.50 42.50 10.00
NTL∗ 85.20 – 86.50 – –
NTL 87.51 89.69 89.45 46.42 36.71

CAE∗ 100.00 – 100.00 – –
CAE 100.00 100.00 100.00 94.67 81.00
Ours 99.87 99.71 99.85 99.71 99.45

E.2. Comparison with Adversarial Training

Some may wonder if input perturbation helps embody a
more robust watermark. In general, adversarial training can
increase the stability of model predictions to image pertur-
bations. However, a robust watermark requires that the pre-
diction is stable regarding the changes in model parameters
(caused by watermark-removal attacks). Thus, AT does not
necessarily improve the robustness of model watermarks.
As shown in Table 12, AT may even reduce watermark ro-
bustness. We will explore its mechanisms in the future.

Table 12. Comparison with AT methods.
Method Before FT FP ANP NAD MCR NNL

Vanilla 99.56 56.78 74.58 25.34 48.14 16.56 21.02
PGD-AT [36] 98.66 20.59 30.80 46.47 14.26 14.69 45.56
TRADES [53] 98.97 46.24 37.42 23.77 5.45 15.47 54.67

Ours 99.87 96.63 98.44 99.56 90.76 84.65 68.58

F. Visualizing the Feature Space
To provide further understandings about the effective-

ness of our method, we visualize the how the hidden repre-
sentation evolves along the adversarial direction and during
the process of fine-tuning via t-SNE [46].

F.1. Features Along with the Adversarial Direction

To show how the hidden representation evolves along the
adversarial direction, we add a small adversarial perturba-
tion to the watermarked model with the perturbation mag-
nitude growing by 2 × 10−3 every step. As can see in Fig-
ure 17-19, the representation of watermark samples quickly
mixes with the clean representation under small perturba-
tion. In contrast, our method manages to maintain the wa-
termark samples in a distinct cluster and the cluster remains
distant from the untargeted clusters, as shown in Figure 20.

F.2. Feature Evolution During Fine-tuning

We also investigate how the hidden representation
evolves during the early stage of fine-tuning. We fine-tune
the watermarked models for 200 iterations using the SGD
optimizer with a learning rate of 0.05 and show how the

representation evolves via t-SNE every 50 iterations. As
can see in Figure 21-23, the representation of watermark
samples quickly mixes with the clean representation in the
early phase of fine-tuning, with the watermark success rate
decreasing. While our method manages to maintain the wa-
termark samples in a distinct cluster, and the cluster stays
distant from the untargeted clusters during the fine-tuning
process, as shown in Figure 24.

(a) (b) (c) (d) (e)
Figure 17. t-SNE visualization of vanilla watermarked model along the adversarial direction.

(a) (b) (c) (d) (e)
Figure 18. t-SNE visualization of EW watermarked model along the adversarial direction.

(a) (b) (c) (d) (e)
Figure 19. t-SNE visualization of CW watermarked model along the adversarial direction.

(a) (b) (c) (d) (e)
Figure 20. t-SNE visualization of our watermarked model along the adversarial direction.

(a) (b) (c) (d) (e)
Figure 21. t-SNE visualization of vanilla watermarked model during the process of fine-tuning.

(a) (b) (c) (d) (e)
Figure 22. t-SNE visualization of EW watermarked model during the process of fine-tuning.

(a) (b) (c) (d) (e)
Figure 23. t-SNE visualization of CW watermarked model during the process of fine-tuning.

(a) (b) (c) (d) (e)
Figure 24. t-SNE visualization of our watermarked model during the process of fine-tuning.

