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Abstract

In this paper, we provide 20,000 non-trivial human an-
notations on popular datasets as a first step to bridge gap to
studying how natural semantic spurious features affect im-
age classification, as prior works often study datasets mix-
ing low-level features due to limitations in accessing real-
istic datasets. We investigate how natural background col-
ors play a role as spurious features by annotating the test
sets of CIFAR10 and CIFAR100 into subgroups based on
the background color of each image. We name our datasets
CIFAR10-B and CIFAR100-B1 and integrate them with
CIFAR-Cs.

We find that overall human-level accuracy does not
guarantee consistent subgroup performances, and the phe-
nomenon remains even on models pre-trained on ImageNet
or after data augmentation (DA). To alleviate this issue, we
propose FlowAug, a semantic DA that leverages decoupled
semantic representations captured by a pre-trained genera-
tive flow. Experimental results show that FlowAug achieves
more consistent subgroup results than other types of DA
methods on CIFAR10/100 and on CIFAR10/100-C. Addi-
tionally, it shows better generalization performance.

Furthermore, we propose a generic metric, MacroStd,
for studying model robustness to spurious correlations,
where we take a macro average on the weighted standard
deviations across different classes. We show MacroStd be-
ing more predictive of better performances; per our met-
ric, FlowAug demonstrates improvements on subgroup dis-
crepancy. Although this metric is proposed to study our
curated datasets, it applies to all datasets that have sub-
groups or subclasses. Lastly, we also show superior out-of-
distribution results on CIFAR10.1.

1Dataset is released at https://github.com/charismaticchiu/Better-
May-Not-Be-Fairer-A-Study-Study-on-Subgroup-Discrepancy-in-Image-
Classification

1. Introduction

Deep neural networks (DNNs, e.g., [25, 19]), properly
trained via empirical risk minimization (ERM), have been
demonstrated to significantly improve benchmark perfor-
mances in a wide range of application domains. However,
minimizing empirical risk over finite or biased datasets of-
ten results in models latching on to spurious correlations
that do not show a robust relationship between the input data
and output labels. Moreover, benchmark evaluations based
solely on average accuracy may overlook these critical is-
sues. For instance, Fig. 1 shows that on CIFAR10, even
though a standard ERM model reaches human-level test ac-
curacy (red line), if we dive deeper into each class and com-
pute their respective worst test accuracy stratified by back-
ground colors, they are inconsistent across the ten classes
and the degradation from total accuracy is huge (black line)
for some. Such inconsistency and discrepancy have huge
real-world implications, suggesting DNN models may make
biased decisions against or in favor of specific spurious fac-
tors, such as certain background colors.

Researchers have been working in different directions
to understand the effect of spurious correlations, including
model over-parameterization [35], causality [1] and infor-
mation theory [27, 53]. Various techniques have emerged
over the years to address this challenge, among which
DA [41] has stood out for its simplicity and effectiveness.
DA shows better generalization results in various machine
learning tasks than other approaches [52, 50, 47, 18, 46, 39].
These augmentation methods, however, are often based on
heuristic and coarse image processing techniques such as
flipping, rotating, blurring, or manipulating images by mix-
ing attributes from other inputs [52, 50, 11, 21] (Fig. 2);
therefore, they can only address limited aspects of spurious
correlations, for which we will show an example in § 2. To
address this limitation, instead of mixing low-level features,
we seek to augment the training set by learning semantic
deep representations and then using them to generate new
images.

ar
X

iv
:2

21
2.

08
64

9v
2 

 [
cs

.C
V

] 
 2

2 
Se

p 
20

23



Common Augmentations

(+1.01)(+0.80)

(+0.99) (+1.12) (+1.07)

(+0.66)

Variations of FlowAug (proposed)

Figure 1: FlowAug reduces subgroup discrepancy. CIFAR10-B enables us to observe the worst test time subgroup accu-
racy in each class. Standard ERM shows subgroup discrepancy, uneven subgroup performances across all classes, and a huge
gap between total accuracy (red line) and the worst subgroup accuracy (black line). This issue persists even after common
DAs are used (top). Our proposed FlowAug mitigates this issue (bottom) and also reports improved overall performance.
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Figure 2: Examples of different augmentation methods. Row 2 & 3 are generated by our methods.

In this paper, as the very first step towards comprehen-
sive evaluation of subgroup performance against semanti-
cally meaningful and realistic spurious correlations in im-
age classification, we conduct a case study experiment to
investigate background colors as spurious features (§2), for
their commonality in image classification and immediate
implications for trustworthiness [34]. To directly quantify

the results, we annotated the test data of CIFAR10 and
CIFAR100 into subgroups based on natural image back-
ground colors (see Fig. 3), yielding CIFAR10-Background
and CIFAR100-Background. To the best of our knowledge,
our datasets are two of the only human-annotated bench-
mark datasets with a natural semantic bias. We argue that
the background color bias should be a necessary spurious



(a) black (b) blue (c) green (d) gray

(e) red (f) white (g) brown (h) others

Figure 3: Examples of CIFAR10-B (Car). We label seven
common background colors for CIFAR10 and CIFAR100.
Difficult examples are categorized as “others”.

correlation for future studies on robustness to benchmark
on and so our work can facilitate future works to bench-
mark their capabilities on reducing learning spurious fac-
tors. Equipped with our datasets, we can investigate the
reliance on background color of deep neural models in a
multi-class multi-subgroup setup.

We reveal that even though standard DNNs have
achieved human-level accuracy in image classification
tasks, the performances fluctuate across different sub-
groups. This phenomenon demonstrates the reliance on
background colors as spurious features. Moreover, applying
some popular DA methods or pre-training on larger dataset
such as ImageNet do not prevent the models from producing
uneven accuracies across subgroups, as shown in Fig. 1 & 5,
which further shows that low-level feature manipulations or
brute-force pre-training are not sufficient to address spuri-
ous correlations and better methods are needed. To quantify
our observations, we propose MacroStd, a metric to quan-
tify subgroup performance discrepancy and imply the re-
liance on spurious correlations (§ 3.4).

To enable semantic data augmentations and address
the issue of uneven accuracies, we propose FlowAug, a
novel DA method which is capable of manipulating im-
ages semantically via decoupled representations learned
from invertible generative flows [28] (§3). Concretely,
our deep generative augmentation approach incorporates a
novel flow-based generative model that encourages disen-
tanglement of local and global representations from images,
which arguably correspond to the image “style” and “con-
tent” [15, 54], respectively. By operating on the global
representation that is isolated with the image class label,
FlowAug semantically creates new images for DA.

More consistent performance across subgroups demon-
strates the effectiveness of FlowAug. Also, we integrate
our CIFAR-Bs with CIFAR-Cs [20] for broader out-of-
distribution (OOD) evaluations and observe similar consis-
tent subgroup performances. Furthermore, though not our
main foci, we also find that superior experimental results on

(a) Principle 1 (b) Principle 2

(c) Principle 3 (d) Principle 4

Figure 4: Examples of the four main principles of our
labeling philosophy. See § 3.2 for philosophy descriptions.

various in-distribution (ID) and OOD benchmarks, includ-
ing CIFAR10, CIFAR100 [23], CIFAR10.1[33, 42] bolster
our belief that low-level manipulations or brute-force pre-
training are not sufficient.

To summarize, our contributions are four-fold,

• We curate 20,000 human-annotated labels and two
CIFAR-B datasets that reveal the subgroup discrep-
ancy phenomenon and allow us to (1) study semanti-
cally meaningful and realistic spurious correlations in
a multi-class multi-subgroup setup, and (2) integrate
with CIFAR-C for OOD evaluations.

• We propose FlowAug, a novel augmentation method
that leverages “expert knowledge” of the deep genera-
tive model to change semantic attributes of images and
empirically shown to reduce subgroup discrepancy.

• We propose a generic metric that captures the subgroup
discrepancy phenomenon of ERM and common DA
methods and measures the sensitivity of model per-
formances to spurious correlations, and demonstrate
FlowAug’s effectiveness in this regard.

• As an additional benefit, we conduct experiments on
CIFAR10/100 and CIFAR10.1 and show FlowAug can
further provide superior performances on ID and OOD
datasets.

2. A Motivating Example of Subgroup
Discrepancy

We investigate background color as the spurious correla-
tion with our CIFAR10-B (§ 3.2) by first training a standard
Resnet18 for 250 epochs with weight decay 5 × 10−4, ini-
tial learning rate 0.1 and learning rate decay at [100, 150]
epochs by a factor of 0.1. We observe significant perfor-
mance degradation in the subgroups of some classes, for
example class “airplane,” “bird” and “deer” (Fig. 5 (left)).
Moreover, after applying DAs such as AutoAug [9], the
same phenomenon remains, for instance observe the “bird”



Figure 5: Gaps between class accuracies (dark bars) and their worst subgroup accuracies (light bars). Although a
standard CNN model can reach human-level accuracy (red line), we find that the subgroup performances can be surprisingly
low. Even after data augmentation (mid-left) or fine-tuned from ImageNet (right), the same phenomenon remains. FlowAug
(mid-right) shows more consistent results and mitigates the performance gaps (dark bars) the most.

class in the mid-left plot in Fig. 5. More surprisingly, even
after we fine-tune Resnet18 pre-trained on ImageNet (pre-
Resnet) with similar protocol to [22], the degradation con-
tinues to exist (Fig. 5 (right)).

In summary, though a Resnet model with or without pop-
ular DAs achieve more than 90% class accuracies, their re-
spective background subgroup performances can be surpris-
ingly low. This phenomenon, which we call “subgroup dis-
crepancy” or “in-class variability,” shows that background
colors play a role in the performance of a standard DNN
model and constitute spurious correlations; otherwise, the
performances should be relatively consistent. This triggers
our interest in mitigating the performance variability in sub-
groups, i.e. the reliance on background attributes. And we
show in Fig. 1 & Fig. 5 that using FlowAug achieves more
consistent subgroup results.

Furthermore, fine-tuning model pre-trained on larger
benchmark such as ImageNet does not reduce subgroup
discrepancy even on dataset like CIFAR, so we reasonably
conjecture that this phenomenon will exist in other datasets.

3. Methods
In principle, DA takes the form of a particular set of

transformation functions T where each t ∼ T transforms
an input x in a particular fashion. Moreover, an expert may
have the knowledge to design label-preserving transforma-
tions T in a way that t(x)’s leave the label unchanged.

After the transformations, the dataset D will be aug-
mented to {(x1:K

i , yi)}ni=1, where K is the number of times
xi is transformed. From a frequentist point of view, we can
apply any MLE algorithm to the augmented dataset, and the
hope is that the learned model can better estimate the true
model since we have more data.

In this section, we discuss our generative flow model,
present our datasets CIFAR10-B and CIFAR100-B for
studying spurious correlation, and detail our augmentation
algorithms. Lastly, we introduce two metrics to quantify the

effect of spurious correlation.

3.1. Decoupling representations with Flow-based
Generative Models

Prior work has shown that embedding a invertible nor-
malizing flow model as a decoder in a variational autoen-
coder (VAE) can decouple global (z) and local (ν) repre-
sentations of images in an unsupervised fashion [28], and
can switch the decoupled representations of different im-
ages to alter their semantic attributes (see Appendix). We
presume the global information corresponds to the style of
the image and local leans toward the content in the neural
style transfer literature [15, 54]. In this work, we apply the
flow model F to encode images into global and local rep-
resentations and also decode them back to image space like
VAEs,

z, ν ← Fenc(x); x′ ← Fdec(z, ν) (1)

where z ∼ N (µ(x)), σ(x)), µ(x) and σ(x) are neural net-
works learned from the data, and ν ∼ N (0, I). z is a dz-
dimensional vector where dz is the dimension of the latent
space and the size of ν is the same as the input image x.

We further hypothesize that z includes information on
colors or more, which are spurious to the ground truth, and
ν bears information about the shape, object, etc., which are
more indicative of the labels. In § 5.1, we will do an ablation
study to attest this hypothesis.

3.2. Datasets quantifying spurious background cor-
relations

We curate CIFAR-10-B & CIFAR-100-B to identify and
study spurious information in images, and we choose to
label the major background colors of CIFAR10 and CI-
FAR100 validation sets. By learning the subgroup perfor-
mances, we can measure the sensitivity of a model to dif-
ferent spuriously correlated colors. As shown in Fig. 3, we
manually label the background colors of CIFAR10 and CI-
FAR100, and split them into eight separate groups. We un-
derstand people have different criteria toward determining



Algorithm 1: FlowAug-Gaussian Global z
Input: Flow: F , Dataset: X , L, µ, σ, b
for l = 1, ..., L do

x ∼ X; // Sample image
z, ν ← Fenc(x) ; // Encode the image
ϵ ∼ Ntrunc(µ, σ

2; b); // Sample
perturbations
z ← z + ϵ; // explore space
xaug ← Fdec(z, ν) ; // Decode global
and local back to image space

end
Output: Xaug

the background color; therefore, we provide our four main
labeling principles as follows,

1. We label the color that has the most coverage around
the object. In Fig. 4 (a), one may argue the red patch
or blue ocean has taken up most of the image in the
background, but the “baby” is surrounded completely
by the green area, and the “flatfish” is in the red area.

2. When two colors take almost the same coverage other
than the object, we choose the color that appears fur-
ther away. In Fig. 4 (b), black is farther away from the
“bowl”, and so is the blue sky for the “can”.

3. When two colors take almost the same coverage and
appear to be at a similar distance, we make a judgment
call on the color that has more coverage (Fig. 4 (c)).

4. When multiple colors appear in the background and
none is significantly larger than the rest (Fig. 4 (d)),
or when the object takes up almost all the space in the
picture so that we cannot judge the color in the back-
ground, or when the perceived color does not belong
to our categories, we put it in the “others” category.

3.3. Algorithms

Knowing properties of ν and z discussed in §3.1, we de-
sign two families of transformations to operate on global
z: (1) T1: we add perturbations to z, and (2) T2: we in-
terpolate global information extracted from different im-
ages. The over-arching rationale behind is: by equipping
models with label-preserving images under diverse environ-
ments (i.e., backgrounds), the model should learn more ro-
bust correlations[1]. The second and third row of Fig. 2
demonstrate our method ability in this regard.

More specifically, in T1 we add truncated Gaussian per-
turbation ϵ to z,
T1 := {t(x) = Fdec(z + ϵ, ν)|(z, ν) = Fenc(x),

ϵ ∼ Ntrunc(µ, σ
2; b), ∀x}.

instead of a Gaussian noise, since a Gaussian noise may
sample large numbers that potentially destroy the decoding

Algorithm 2: FlowAug-Mix Gloabl z
Input: Flow: F , Dataset: X , Threshold: tr, L, α
for l = 1, ..., L do

x1, x2 ∼ X; // Sample images
z1, ν1 ← Fenc(x1) ; // Encode x1

z2, ν2 ← Fenc(x2) ; // Encode x2

m ∼ Beta(α, α); // Sample
interpolation parameter

if m < tr then
m← 1−m ; // Avoid drastic
change in style

end
z1 ← mz1 + (1−m)z2; // explore
space
xaug ← Fdec(z1, ν1) ; // Decode global
and local

end
Output: Xaug

ofFdec(z, ν). For T2, we decode two random images x1, x2

to retrieve z1, z2 and then interpolate z1 and z2 stochasti-
cally with a parameter m drawn from a Beta distribution,

T2 := {t(xi) = Fdec(znew, ν)|znew = mzi+(1−m)zj ,

m ∼ Beta(α, α), (zi, νi) = Fenc(xi), ∀i ̸= j}.

Detailed transformations are elaborated in Algorithm 1 & 2.
We train our models with the following learning objec-

tives: (1) training only with transformed images from T1 or
T2 instead of the original examples, (2) in addition to trans-
formed images, adding the original dataset, and (3) combin-
ing the two algorithms and the original dataset,

LFlowAug = L(f(t(x)), y; θ), t ∼ T1 or t ∼ T2, (2)

LFlowAug+std = L(f(t(x)), y; θ) + λL(f(x), y; θ),
t ∼ T1 or t ∼ T2, (3)

Lcombine = L(f(t1(x)), y; θ) + λ1L(f(t2(x)), y; θ)+
λ2L(f(x), y; θ), t1 ∼ T1 and t2 ∼ T2, (4)

3.4. Quantifying subgroup discrepancy

To quantify the reliance on background attributes, we
first propose using the weighted standard deviation,

σw =

√√√√∑G
i=1 wi(si − s̄∗)2∑G

i=1 wi − 1
, (5)

where si’s are the subgroup accuracies, s̄∗ the weighted
mean, wi’s the weights determined by the number of exam-
ples in the subgroup, G the number of groups. Weighted Std



can be applied to subgroups performances within a class (as
in Fig. 6), and across all accuracies from different classes
and subgroups.

The second metric we propose is macro standard devia-
tion (MacroStd),

σMacro =

√√√√ 1

C

C∑
i=1

σ
(i)
w

2
, (6)

where σ(i)
w is the weighted standard deviation for each class,

and C is the number of classes.
MacroStd treats each class equally and measures the sen-

sitivity of a model performance across classes. If MacroStd
is high, this suggests the model has imbalanced perfor-
mances across classes and also could be affected by back-
ground colors. We conduct a correlation analysis to show
our metric is a better indicator for both sensitivity and accu-
racy (see Appendix).

4. Experiments
In this section, we discuss our empirical results on

the study of spurious correlation with our CIFAR10-B &
CIFAR100-B and their integration with OOD datasets such
as CIFAR10-C and CIFAR100-C. Secondly, although not
our primary foci, we present ID and OOD image classifica-
tion experiments on three datasets — CIFAR10, CIFAR100,
CIFAR10.1 — to test the generalization capabilities of ap-
plying FlowAug. Lastly, we analyze and provide intuitions
on how our approach is superior. Furthermore, the compar-
ing baselines and implementation details are provided.

Due to human resource limit, we are not able to scale
labeling efforts to larger benchmark such as ImageNet, but
our work has pinpointed critical issues in the subgroup dis-
crepancy in image classification. And we reasonably be-
lieve the phenomenon will persist in other datasets given the
result from preResnet (Fig. 5 (right)). In addition, a recent
benchmark work [13] shows that CIFARs are not necessar-
ily easier than ImageNet, which also validates our efforts.

4.1. Datasets

Other than our CIFAR10-B and CIFAR100-B that are
based on CIFAR10 and CIFAR100 [23], we integrate them
with CIFAR10-C & CIFAR100-C [20], which are bench-
mark datasets to model generalization abilities in the pres-
ence of 18 shallow corruptions including blurring, contrast,
shift, etc. Finally, CIFAR10.1 [33] is a test set consists of
2000 images collected from TinyImages [42] and contains
the same class labels as CIFAR10. Additionally, we include
ImageNet-10 based on our labeling method and discuss the
results in the Appendix.

4.2. Baselines

We compare our proposed method with four types of
low-level DA methods (1) mixing by interpolations, (2) fill-

in-with-blank, (3) mixing by fill-in-the-blank, (4) combi-
nations of image manipulations. In our experiments, we
compare with the best setups reported in their papers. We
include more discussion on rationale behind the selecting
the chosen baselines and additional comparisons with com-
posite data augmentations such as AugMix and AugMax in
the Appendix.

Mixup [52] does linear interpolation on two random im-
ages x1, x2 and mix them as xnew = λx1 + (1 − λ)x2,
where λ ∼ Beta(α, α), and the same applies to the label,
ynew = λy1 + (1− λ)y2.
Cutout [11] randomly crops out a portion of an image
and fills it with a specific color, and the label remains un-
changed.
Cutmix [50] crops out an area of image, but fills the area
with a portion of the same size from another image. The
label of the augmented image is adjusted according to the
proportion of the area of two engaging examples.
Autoaug [9] uses reinforcement learning to optimize a
pre-defined set of policies, combinations of low-level image
manipulation, and then learns the best policy for DA.
Standard refers to the models trained on the original
datasets, without using any DA methods.

4.3. Implementation Details

Generative models We pre-train the normalizing flow
models as in [28], and they achieve the negative log-
likelihood scores in bits/dim (BPD) 3.27 and 3.31 on CI-
FAR10 and CIFAR100, respectively.

Hyperparameters In Algorithm 1, we simply set µ = 0
and σ = 0.1 for the truncated Gaussian distribution. As
for truncation b, we empirically find that z has an average
maximum value around 4 and so we set b = 4. In Algo-
rithm 2, we simply set α = 1 and tr = 0.5. For all models
reported in Table 2, we train Resnet18 for 250 epochs with
weight decay 0.0005. Also, the learning rate starts at 0.1
and is divided by 10 at [100, 150] epochs. For our learn-
ing objectives, we lightly fine-tune λ in Eq. (3) with val-
ues of {0.01, 0.05, 0.1}, and λ1, λ2 in Eq. (4) with λ1 = 1
and λ2 ∈ {0.01, 0.05, 0.1}. The generative flow models are
trained on two NVIDIA A40 GPUs, while the Resnet18 are
trained on one NVIDIA A40 GPU.

4.4. Empirical Results

MacroStd and WeightedStd Table 1 reports the
MacroStd and the weighted standard deviation of subgroup
performances from the whole dataset. Our approach con-
sistently has both lower MacroStd and lower WeightedStd
over the baselines. Moreover, in Fig. 6, our approach also
achieves lower WeightedStd at the class level. These results
show evidence that our approach is less affected by the
background colors and hence is more robust.



Figure 6: Subgroup performances (CIFAR10-Cat). FlowAug has more balanced results across subgroups and lower
WeightedStd, suggesting our method is more resistant to spurious correlations such as background color. (.) indicates the
number of instances in the subgroup.

MacroStd Weighted Std
CIFAR10 CIFAR100 CIFAR10 CIFAR100

Standard 2.24 12.24 3.45 16.44
Mixup 2.17 11.94 3.02 16.75
Cutout 1.91 12.45 2.94 16.52
Cutmix 1.91 12.62 3.34 16.87
AutoAug 2.11 11.74 3.54 16.30

Ours (Mix z) 1.99 11.73 2.92 15.96
+ Std 1.81 12.49 2.76 16.76
Ours (Uniform on z) 1.83 12.17 2.98 16.57
+ Std 1.81 11.59 3.26 15.95
+ Mix z 1.85 11.72 2.89 16.31
+ Std + Mix z 1.86 11.23 3.12 16.01
Ours (Trunc Gaussian on z) 1.91 12.00 2.82 16.23
+ Std 1.65 11.55 3.08 16.02
+ Mix z 1.89 11.95 3.09 16.35
+ Std + Mix z 1.66 11.78 2.71 15.92

Trunc Gaussian on ν 1.94 12.68 2.81 16.70
Mix ν 2.50 13.27 4.21 18.46

Table 1: MacroStd and Weighted Std. Lower numbers
represent lower reliance on spurious background color cor-
relations and our algorithms are consistently better than the
baselines.

CIFAR10-C and CIFAR100-C Another benefit of our
datasets is the compatibility with CIFAR-Cs. Together with
CIFAR-Cs we are able to evaluate the subgroup discrepancy
phenomenon in an OOD setting. Fig. 7 shows that FlowAug
has reduced subgroup discrepancy than other DAs. We ex-
clude AutoAug in Fig. 7 because it contains policies resem-
bling some corruption types of CIFAR-C so we deem it not
a fair comparison.

CIFAR10 and CIFAR100 Although ID and OOD gener-
alization performances are not our main foci, our FlowAug
demonstrates significant gains on CIFAR10 and CIFAR100
and we report our experimental results in Table 2. Algo-
rithm 1 itself achieves results better than all the baselines.
Algorithm 2 also performs better than the Standard baseline
and is competitive with other methods. When Algorithm 1
and 2 are combined or also add the Standard loss (Eq. (4)),
they can further enhance the performances.

Figure 7: CIFAR10-C and CIFAR100-C results (sever-
ity=1). We integrate our datasets with CIFAR10/100-C.
FlowAug demonstrates more consistent subgroup perfor-
mances on OOD datasets.

In Algorithm 1, we do an ablation study with uniform
distribution in Sec. 5.2. The best improvements on CI-
FAR10 and CIFAR100 are at 1.42% and 1.47% respec-
tively. The superior results of our deep generative augmen-
tation approach with decoupled representations have shown
greater generalization potential.

CIFAR10.1 On another OOD dataset CIFAR10.1, we
also observe significant improvements in performances
from FlowAug over the baselines (up to +1% better than the
best of all five baselines). These results again demonstrate
that FlowAug is more robust and has better generalizability.

Our CIFAR10.1, CIFAR10-C, and CIFAR100-C experi-
ments demonstrate FlowAug’s generalizability to OOD data
and validate our approach of using deep decoupled repre-
sentations for DA.

4.5. Analysis

Our two FlowAug algorithms 1 & 2 both improve over
the baselines, and combining the two shows even superior
results. Conceptually, we know that the flow model F can
map X to a Gaussian prior distribution (cf. Eq. 1), but not
necessarily all the points in the Gaussian distribution would
follow the reverse g to a realistic image. Then intuitively,
given that z1, z2 come from real images, Algorithm 2’s in-



CIFAR-10 CIFAR10.1 CIFAR-100
best / last best / last best / last

Standard 95.16 / 95.00 88.70 / 88.25 78.52 / 78.52
Mixup 95.96 / 95.82 89.75 / 88.85 77.91 / 76.99
Cutout 95.94 / 95.60 90.40 / 89.70 78.21 / 78.00
Cutmix 96.17 / 96.04 90.05 / 90.20 78.87 / 78.42
AutoAug 95.82 / 95.47 89.85 / 89.80 78.57 / 78.12

Ours (Mix z) 95.98 / 95.59 90.35 / 89.30 78.58 / 78.07
+ Std 96.15 / 95.73 90.25 / 90.20 78.96 / 78.33
Ours (Uniform on z) 96.12 / 96.11 90.35 / 90.45 79.45 / 79.24
+ Std 96.28 / 96.14 90.95 / 91.15 79.68 / 79.67
+ Mix z 96.58 / 96.37 91.40 / 91.65 79.68 / 79.52
+ Std + Mix z 96.44 / 96.31 91.05 / 91.00 79.68 / 79.51
Ours (Trunc Gaussian on z) 96.23 / 96.23 90.15 / 90.25 79.30 / 79.04
+ Std 96.22 / 96.04 90.55 / 89.80 79.62 / 79.62
+ Mix z 96.49 / 96.42 90.05 / 90.25 79.51 / 79.18
+ Std + Mix z 96.53 / 96.29 90.75 / 91.20 79.99 / 79.54

Trunc Gaussian on ν 95.70 / 95.45 88.70 / 89.25 78.50 / 78.41
Mix ν 94.22 / 93.43 87.55 / 85.50 74.05 / 71.42

Table 2: Test results in % (best/last epoch). Although ID
and OOD generalization are not our foci, FlowAug consis-
tently outperforms the baseline and we only highlight the
top-2 results. Note: we simply apply the models trained
from CIFAR-10 to obtain CIFAR10.1 results without fine-
tuning.

terpolating of z1, z2 can be interpreted as finding an optimal
point between two proven optimal points in the space, i.e.,
Algorithm 2 explores the Gaussian space in an efficient way.

On the other hand, adding a sampled perturbation to z
as in Algorithm 1 can stretch the search space to outside
of the Gaussian, which brings good performances. It also
explains why a combined approach such as Eq. 4 can gen-
erally achieve superior performances over the rest since Al-
gorithm 1 and 2 can be complementary.

5. Ablation Studies
To further study global and local representations, we can

make some design choices applied to z and ν. In § 3, we
assume z and ν carry information about the background and
ground truth respectively, and we want to test the assump-
tions and the generality of Algorithm 1.

5.1. Perturbing Local (ν) or Global (z)?

§ 4 has shown that perturbing z improves generalization
and the robustness of models. On the other hand, we can
also decode realistic images by perturbing ν (Fig. 2(h)),
which we assume affects the prediction. We apply Algo-
rithm 1 & 2 with the same parameters on ν, and the results
deteriorate on all datasets by at least 0.5% and up to 7%,
suggesting that our assumption about ν’s correspondence to
the ground truth label is reasonable.

5.2. Does perturbation type matter? A case study
of Gaussian vs Uniform distributions

Algorithm 1 uses a truncated Gaussian perturbation, but
in fact, we can also add noise sampled from other distri-

CIFAR10 MacroStd W-Std CIFAR100 MacroStd W-Std

Standard 95.16 2.24 3.45 78.52 12.24 16.44
Cutmix 96.17 1.91 3.34 78.87 12.62 16.87
Ours-alg1 96.23 1.83 2.98 79.45 12.17 16.57
Ours-alg1+Cutmix 96.34 1.65 2.91 81.57 11.20 15.34

Table 3: Chaining FlowAug with Cutmix on CI-
FAR10/100. Our FlowAug has the flexibility of being com-
bined with other works to further enhance performances.

butions, such as a Uniform perturbation. To have about
the same amount of probability density in the same range
as N (µ = 0, σ = 0.1), we choose U(−0.2, 0.2) for our
study. Table 2 shows that adding uniform noise is compara-
ble to adding truncated Gaussian, and when combined with
algorithm 2 and(or) Standard, the improvements are top-2,
achieving over a 1% gain on CIFAR10 and CIFAR100, and
more than a 2% gain on CIFAR10.1. This study suggests the
generalization capability of FlowAug on symmetric noise
distributions.

5.3. Can FlowAug be composited with another
method?

Composite DA sometimes offer additional benefit to
generalization [45, 21, 44]. Thus, we investigate if
FlowAug possesses the flexibility of being composited and
run an additional experiment combining our simplest Al-
gorithm 1 variation and Cutmix. Tab.3 shows combining
FlowAug and Cutmix further mitigates subgroup degrada-
tion and also enhances generalization. In addition, on CI-
FAR100, the test accuracy is better than any methods using
Resnet18 to our knowledge. This experiment showcases the
possibility of chaining FlowAug with other methods for at-
taining “SOTA” performances in both mitigating bias or en-
hancing generalization. We compare FlowAug with other
recent composite DA such as AugMix, AugMax in the Ap-
pendix.

6. Correlation Analysis on MacroStd and Per-
formances

WeightedStd is the most common measure to quan-
tify sensitivity in statistics. However, we want to justify
our MacroStd to be a more suitable metric in quantifying
subgroup degradation. We perform correlation analyses
between accuracy and MacroStd(ours)/WeightedStd. The
statistics are summarized in Table 4, and on both CIFAR10
and CIFAR10.1, our metric is a better indicator for sensitiv-
ity and accuracy (coefficients the lower the better), which
validates the novelty of our metric.

7. Related Works
Representation Learning. Deep learning models’ suc-
cess is generally attributed to their ability to learn complex
and meaningful representations [3], and most attempts to



CIFAR-10 CIFAR10.1
best / last best / last

MacroStd (ours) -0.89 / -0.85 -0.83 / -0.88
WeightedStd -0.78 / -0.77 -0.62 / -0.70

Table 4: Correlation (↓) between accuracy and sensitiv-
ity metrics (best/last epoch).

learning quality representations require certain inductive bi-
ases, for instance, space invariance of CNNs [26]. Of par-
ticular interest to our work, generative models such as VAEs
[5, 31, 7, 40] enforce constraints such as independent mul-
tivariate Gaussain in the latent layers to learn disentangled
representations. Our work leverages a model that learns two
decoupled representations instead of the factorial ones.

Data Augmentation. DA often helps achieve improved
generalization. One line of approach performs low-level
basic image operations such as mixing examples [52], or
random erasing [50, 11], etc. Another approach uses re-
inforcement learning to learn the best policy of basic im-
age operations [9, 10]. [30] use causal inference to guide
their method and add interventions during the generation
process. Our work uses decoupled global representations
to isolate spurious correlations and then learn robust corre-
lations to the objects. We refer readers to [14] for recent
surveys.

Robustness. Robustness in DNNs has drawn the attention
of the community largely since [17, 24]. Multiple lines of
research were proposed to study robustness, including using
Distributionally Robust Optimization [12, 2], Adversarial
Training [29, 6, 36, 49], and certifiable bounds [51, 8]. [1]
proposed a scenario where representations learned should
be robust in different environments, and [37, 38] suggests
that learning Causal Representations can be an ultimate ap-
proach to robustness in deep learning. [16] studied the ef-
fect of shape and texture to CNNs. Our work is in line with
the idea of [1] and studies color as a spurious factor orthog-
onal to concept of texture [4].

8. Conclusion and Future Work
In this work, we contributed 20,000 non-trivial hu-

man annotations in two datasets to reveal the phenomenon
of subgroup discrepancy in various (pre)training tech-
niques, and proposed a semantic DA method, FlowAug
which trains more robust models evaluated on CIFARs and
CIFAR-Cs. Additionally, we showed the potential of using
disentangled representations for DA by achieving superior
generalization performances on both ID and OOD datasets.

We believe our work serves as a leap forward in studies
of fairness, robustness, and even causality in DNNs, as we
can use CIFAR-Bs to quantify the effect of a hidden bias and
we learn that high-level DA is suited to achieve consistent

predictions. Last but not least, due to human and computing
resource limits, we are not able to scale the labeling effort
nor the experiments to larger datasets such as ImageNet,
but our results on ImageNet-10 and CIFARs have shown
it is an impactful direction and should further enhance the
performances.

References
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A. CIFAR10-B Statistics

Classes Green Gray Blue White Black Brown Red Others

cat 171 130 137 57 84 299 63 59
dog 271 90 124 39 81 297 58 40
truck 121 180 278 187 24 177 2 31
bird 453 58 179 32 32 237 0 9
airplane 85 112 609 81 7 102 4 0
ship 71 88 711 45 15 56 0 14
frog 417 64 75 56 49 238 15 86
horse 493 29 108 41 50 251 7 21
deer 604 27 99 8 25 227 4 6
automobile 177 262 147 130 34 230 15 5

Table 5: CIFAR10-B Statistics. The number of instances that belongs to each background color from each class.
B. More discussion on chosen baselines and comparison to AugMix & AugMax

We choose the DAs that are strong and commonly studied in recent works such as [48, 43, 44]. PyTorch’s official “SOTA”
training method [44] also uses the combinations of our chosen baselines along with other perfected hyperparameters such as
longer training; however, we isolated each baseline to measure the individual contribution of a single method. In addition,
we compare with two recent works AugMix and AugMax, which are recent methods evaluated on plain Resnet18, and our
generalization results are superior, as per reported in [45] (see Tab.6-left). AugMix and AugMax are not a single method
but a combinations of different ones and were designed for other robustness purposes. Lastly, we want to re-iterate that
generalization performance is not our main focus but an additional benefit when reducing the model bias toward specific
colors.

C. ImageNet-10
We labeled ImageNet-10 and found similar subgroup degradation aspect on ImageNet, and our method can still mitigate

the issue using standard training procedure without fine-tuning (Tab.6-right); therefore, we believe FlowAug will work on
high-resolution/larger datasets

D. Selection of Color Groups
While labeling the datasets, we add one color only if it has a couple of images. This prevents having many colors with 0

images. For example, in CIFAR10, classes like “bird” and “ship” do not contain images with a red background, but it has
some presence in other classes, so we added red as a color group.

E. Generalization on CIFAR10-C and CIFAR100-C
Aside from generalization on i.i.d. data, we are interested in FlowAug’s capabilities to generalize to out-of-domain

(OOD) data, which is another aspect of robustness. We use models of the last epoch from Table 2 to test on CIFAR10-C and
CIFAR100-C. Although FlowAug does not explicitly add corruptions such as various kinds of blurring, contrast and so on to
training data, we observe comparable performances (Fig. 8) with augmentation methods that have corruption effects, such as
MixUp, and FlowAug is better than Cutout and Cutmix (+1.35% and +1.26%, respectively).

CIFAR10 CIFAR100

AugMix 95.79 78.23
AugMax 95.76 78.96
Ours 96.58 79.99

Acc. MacroStd W-Std

Standard 91.80 9.57 11.17
Autoaug 93.40 8.84 9.99
Ours-Alg1 94.80 8.39 9.96

Table 6: Left: Accuracy of our FlowAug compared with AugMix & AugMax. Right: ImageNet-10 results. Our FlowAug
show superior results.



Figure 8: CIFAR10-C and CIFAR100-C results (severity=1). FlowAug’s results are comparable with common DA meth-
ods that have corruption effects such as Mixup, even though FlowAug does not add corruptions to training. Note that Mixup
(Figure 2(b)) produces a similar effect to blurrings.

F. Switch Operation

Figure 9: Examples of switch operation on decoupled representations. [28] can perform switch operations on global and
local representations of images on various datasets (figure used with the author’s permission).
G. Label Quality

The background color labels are labeled by a person with an experienced computer vision background for consistency and
are verified twice. As a quality check, two people with strong technical backgrounds checked 500 random images. The rate
of agreement is 91.8 percent, and 5.4 percent of images that did not agree in the first round agree with the labels we used for
experiments after discussion. The disagreement rate is smaller than the average error rate in modern datasets [32]. We will
release the dataset and welcome the community to update the background labels.

H. An Additional Protected Attribute

Figure 10: Additional protected attribute on CIFAR10 and CIFAR100.
In this work, we studied color as a bias, and we can also study another protected attribute in a hand-wavy fashion. For

example on CIFAR10, we can group the ten classes into vehicles and animals and apply our MacroStd to measure sensitivity.
A similar study can be conducted on CIFAR100 with its original 20 super-classes. On CIFAR10, since there are only two
“super-classes” so we report the weighted average of the standard deviation of vehicle/animal group; on CIFAR100, we report
our MacroStd across the 20 superclasses. The results are summarized in Fig. 10, and it shows FlowAug is again superior. We
emphasize that this is a conceptual study on an additional protected attribute and is not within the scope of our work.

I. CIFAR100-B Statistics



Classes Green Gray Blue White Black Brown Red Others

apple 23 6 9 40 11 11 0 0
aquarium fish 30 5 12 0 38 9 4 2
baby 18 16 25 7 7 21 5 1
bear 56 15 9 1 2 16 1 0
beaver 36 8 18 8 6 24 0 0
bed 8 21 7 18 3 42 0 1
bee 24 8 10 6 4 33 8 7
beetle 29 13 8 15 1 28 3 3
bicycle 24 30 17 7 3 17 2 0
bottle 10 24 9 17 7 28 4 1
bowl 6 19 19 14 22 18 2 0
boy 21 13 16 13 8 21 5 3
bridge 11 9 67 5 5 2 1 0
bus 14 19 23 18 8 14 0 4
butterfly 53 12 3 7 4 17 2 2
camel 31 10 25 3 9 19 2 1
can 5 24 12 25 7 27 0 0
castle 4 12 65 15 1 2 0 1
caterpillar 63 6 7 0 6 15 2 1
cattle 47 5 13 8 5 20 1 1
chair 3 10 4 71 4 6 0 2
chimpanzee 65 3 4 3 1 20 1 3
clock 3 21 12 34 4 20 1 5
cloud 0 2 80 2 8 2 2 4
cockroach 2 19 13 44 1 14 5 2
couch 5 14 19 24 6 27 3 2
crab 9 23 16 16 15 16 3 2
crocodile 39 13 11 2 5 28 2 0
cup 9 27 18 17 14 11 1 3
dinosaur 23 14 12 26 7 17 0 1
dolphin 14 11 74 0 0 1 0 0
elephant 48 6 17 3 3 19 2 2
flatfish 15 14 34 13 6 12 6 0
forest 4 7 22 7 0 11 3 46
fox 32 11 19 1 7 26 2 2
girl 15 11 15 10 13 26 7 3
hamster 11 23 22 4 8 22 9 1
house 20 4 42 20 3 7 0 4
kangaroo 44 14 4 2 3 31 1 1
keyboard 8 15 23 8 5 23 3 15
lamp 5 20 23 14 12 20 5 1
lawn˙mower 32 6 6 45 2 9 0 0
leopard 31 14 20 1 8 22 1 3
lion 36 4 19 1 3 31 3 3
lizard 13 14 21 5 8 30 5 4
lobster 14 12 18 17 11 15 6 7
man 15 19 14 9 18 24 1 0
maple˙tree 11 6 48 29 2 4 0 0

Table 7: CIFAR100-B Statistics (part 1). The number of instances that belongs to each background color from each class.



Classes Green Gray Blue White Black Brown Red Others

motorcycle 11 28 10 30 2 16 3 0
mountain 0 7 83 6 1 1 2 0
mouse 15 13 13 12 6 34 1 6
mushroom 57 9 5 3 7 19 0 0
oak˙tree 6 2 72 15 1 4 0 0
orange 13 11 17 20 20 6 3 10
orchid 35 4 7 4 35 9 1 5
otter 28 14 27 3 5 22 1 0
palm˙tree 3 7 62 13 5 5 0 5
pear 19 13 10 28 7 20 0 3
pickup˙truck 31 27 16 6 5 14 0 1
pine˙tree 7 11 61 13 1 7 0 0
plain 0 13 70 14 0 3 0 0
plate 3 22 15 26 17 13 2 2
poppy 57 4 7 4 14 4 2 8
porcupine 51 11 8 1 11 17 0 1
possum 27 19 10 1 16 22 2 3
rabbit 34 6 12 2 16 28 2 0
raccoon 30 6 14 5 21 23 1 0
ray 23 11 49 3 6 8 0 0
road 47 7 34 2 2 7 1 0
rocket 7 14 66 5 4 4 0 0
rose 54 3 10 9 11 5 1 7
sea 2 6 74 2 0 12 1 3
seal 17 14 43 4 6 12 1 3
shark 12 3 68 1 13 2 1 0
shrew 30 8 17 5 5 31 3 1
skunk 42 13 5 3 6 30 1 0
skyscraper 1 5 80 9 2 2 0 1
snail 45 7 12 3 5 26 1 1
snake 21 15 13 7 4 30 7 3
spider 37 18 15 2 9 11 7 1
squirrel 36 6 14 5 8 30 0 1
streetcar 22 10 32 11 4 13 7 1
sunflower 44 1 26 9 7 3 2 8
sweet˙pepper 15 7 9 27 14 14 6 8
table 10 17 18 17 7 29 2 0
tank 16 13 30 17 1 23 0 0
telephone 5 11 5 59 4 13 3 0
television 4 24 10 26 10 21 2 3
tiger 45 3 14 8 9 16 0 5
tractor 33 8 34 10 1 14 0 0
train 18 16 42 13 4 7 0 0
trout 20 6 15 28 14 16 1 0
tulip 53 2 11 4 16 13 1 0
turtle 14 9 37 10 6 22 2 0
wardrobe 10 22 10 20 9 20 2 7
whale 1 4 85 7 0 3 0 0
willow˙tree 13 3 43 26 2 5 0 8
wolf 17 10 22 5 22 18 6 0
woman 12 21 16 19 7 15 8 2
worm 13 13 26 8 17 15 7 1

Table 8: CIFAR100-B Statistics (part 2). The number of instances that belongs to each background color from each class.


