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Abstract

Federated Learning (FL) has recently emerged as a
promising distributed machine learning framework to pre-
serve clients’ privacy, by allowing multiple clients to up-
load the gradients calculated from their local data to a cen-
tral server. Recent studies find that the exchanged gradi-
ents also take the risk of privacy leakage, e.g., an attacker
can invert the shared gradients and recover sensitive data
against an FL system by leveraging pre-trained generative
adversarial networks (GAN) as prior knowledge. However,
performing gradient inversion attacks in the latent space of
the GAN model limits their expression ability and general-
izability. To tackle these challenges, we propose Gradient
Inversion over Feature Domains (GIFD), which disassem-
bles the GAN model and searches the feature domains of
the intermediate layers. Instead of optimizing only over
the initial latent code, we progressively change the opti-
mized layer, from the initial latent space to intermediate
layers closer to the output images. In addition, we design
a regularizer to avoid unreal image generation by adding a
small l1 ball constraint to the searching range. We also ex-
tend GIFD to the out-of-distribution (OOD) setting, which
weakens the assumption that the training sets of GANs and
FL tasks obey the same data distribution. Extensive experi-
ments demonstrate that our method can achieve pixel-level
reconstruction and is superior to the existing methods. No-
tably, GIFD also shows great generalizability under differ-
ent defense strategy settings and batch sizes.

1. Introduction

Federated learning [23, 38] is an increasingly popular
distributed machine learning framework, which has been
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Figure 1: The reconstructed results of our proposed GIFD
on ImageNet[6] and FFHQ[18]. The first column contains
the randomly initialized images generated by generators.
The next two columns show the reconstruction samples of
the latent space search and our proposed GIFD,

applied in many privacy-sensitive scenarios [20, 36], such
as financial services, medical analysis, and recommenda-
tion systems.

It allows multiple clients to participate in collaborative
learning under the coordination of the central server. The
central server aggregates the uploaded gradients calculated
from the local data by the end users, rather than the pri-
vate data. This mechanism resolves the data silos problem
and brings privacy benefits to distributed learning. How-
ever, a series of recent studies have shown that even the
gradients uploaded in FL take the risk of privacy leakage.
Zhu et al. [43] first formulate it as an optimization prob-
lem and design an optimization-based algorithm that recon-
structs private data by best matching the dummy gradients
with the real gradients. Zhao et al. [41] further improve the
attack with an extra label restoration step. Geiping et al.
[9] first achieve ImageNet-level recovery through a well-
designed loss function that adds a new regularization and
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uses a different distance metric. In order to improve the
performance on larger batch sizes, Yin et al. [37] propose a
batch-level label extraction method and assume that certain
side-information is available to regularize feature distribu-
tions through batch normalization (BN) prior.

It is widely investigated and acknowledged that a pre-
trained GAN learned from a public dataset generally cap-
tures a wealth of prior knowledge. Recent studies [37, 17,
21] propose to leverage the manifold of GAN as prior infor-
mation, which provides a good approximation of the natu-
ral image space and enhances the attacks significantly. The
aforementioned works achieve impressive results in their
own scenarios, but most of them rely on strong assumptions,
e.g., known labels, BN statistics, and private data distribu-
tion, which are actually impractical in the real FL scenario.
Therefore, it is hard for most existing methods to recover
high-quality private data in a more realistic setting.

In this paper, we advocate a simple and effective solu-
tion, Gradient Inversion over Feature Domain (GIFD), to
address the challenges of expression ability and generaliz-
ability of pre-trained GANs. Recently, it has been shown
that rich semantic information is encoded in the interme-
diate features and the latent space of GANs [2, 33, 29, 5].
Among them, the GAN-based intermediate layer optimiza-
tion in solving compressed sensing problems achieves great
performance [5]. Inspired by these works, We reformulate
the GAN inversion as a novel intermediate layer optimiza-
tion problem by minimizing the gradient matching loss by
searching the intermediate features of the generative model.
Specifically, our first step is to optimize the latent space and
then we optimize the intermediate layers of the generative
model successively. During the feature domain optimiza-
tion stage, we only use part of the generator and the so-
lution space becomes larger, which can easily lead to un-
real image generation. To solve this problem, we iteratively
project the optimizing features to a small l1 ball centered at
the initial vector induced by the previous layer. Finally, we
select output images from the layer with the corresponding
least gradient matching loss as the final results. The visual
comparison in Figure 1 clearly demonstrates the necessity
of optimizing the intermediate feature domains.

Another issue unsolved in GAN-based gradient attacks
is the flexibility of private data generation under more rig-
orous and realistic settings. To relax these assumptions,
we first investigate an out-of-distribution (OOD) gradient
attack scenario, where the private data distribution is signif-
icantly different from that of the GAN’s training set. The
significant result improvement demonstrates the proposed
method has excellent generalizability and achieves great
performance on OOD datasets. Furthermore, we discuss
several common defense strategies in protection form gra-
dient sharing[39], including gradient sparsification [31, 1],
gradient clipping [10], differential privacy [10], and Sote-

ria (i.e., perturbing the data representations) [32]. These
frequently used privacy defense approaches have been con-
firmed to achieve high resilience against existing attacks
by degrading the privacy information carried by the share
gradients. Extensive experiments and ablation studies have
demonstrated the effectiveness of the GIFD attack.

Our main contributions are summarized as follows:

• We propose GIFD for exploiting pre-trained generative
models as data prior to invert gradients by searching
the latent space and the intermediate features of the
generator successively with l1 ball constraint.

• We show that this optimization method can be used
to generate private OOD data with different styles,
demonstrating the impressive generalization ability of
the proposed GIFD under a more practical situation.

• We systematically evaluate our proposed method com-
pared with the state-of-the-art baselines with the gra-
dient transformation technique under four considered
defense strategies.

2. Related Work
2.1. Gradient-based Attack in FL

In federated learning, the early studies investigate mem-
ber inference [30, 24], where a malicious attacker can de-
termine whether a certain data sample has participated in
model training. A similar attack, called property inference
[8], can reveal the attributes of the samples in the training
set. Another powerful attack is model inversion [14], which
works by training a GAN from local images and the shared
gradients to generate samples with the same distribution as
the private data. Wang et al. [34] then improve the model
attack and reconstruct client-level data representatives.

Gradient Inversion Attacks. This is a more threatening
type of attack where an adversary can fully reconstruct the
client’s private data samples. The existing attack methods
can be characterized into two paradigms [39]: recursion and
iteration-based methods.

Recursion-based attacks. Phong et al. [28] first utilized
gradients to successfully recover the input data from a shal-
low perceptron. Fan et al. [7] considered networks with
convolution layers and solved the problem by converting
the convolution layer into a full connection layer. Zhu et al.
[42] combined forward and backward propagation to trans-
form the problem into solving a system of linear equations.
Chen et al. [4] then combined optimization problems un-
der different situations and proposed a systematic frame-
work. The recursion-based methods have the following
limitations: (1) low-resolution images only; (2) the global
model in FL cannot contain pooling layers or shortcut con-
nections; (3) these methods cannot handle mini-batch train-



ing; and (4) they heavily depend on gradients, i.e., if gradi-
ents are perturbed, most of these methods barely work.

Iteration-based attacks. Zhu et al. [43] first formulated
the attack as an iterative optimization problem. Attackers
restore data samples by minimizing the distance between
the shared gradients and the dummy gradients generated by
a pair of dummy samples. Zhao et al. [41] proposed to ex-
tract the label of a single sample from the gradients and fur-
ther improved the attack. Geiping et al. [9] reconstructed
higher resolution images from ResNet [13] by changing the
distance metric and adding a regularization term. Yin et al.
[37] primarily focused on larger batch sizes recovery. With
strong BN statistics and deep pre-trained ResNet-50 as the
global model (larger model generates more gradient infor-
mation), they successfully revealed some information from
partial images at larger batch sizes. Jeon et al. [17] fine-
tuned the GAN parameter to better utilize image prior and
improved the quality of restored images. Hatamizadeh et
al. [12] extended attacks on Vision Transformers. Consid-
ering defense strategies in FL, Li et al. [21] proposed a new
technique called gradient transformation to deal with the de-
graded gradients and still revealed private information.

Currently, several strong assumptions are made to help
better reconstruct, which are not identical to the realistic FL
setting. By nullifying some of these assumptions [16], the
reconstruction performance drops significantly.

2.2. GAN as prior knowledge

GAN [11] is a deep generative model, which can learn
the probability distribution of the images in the training
set through adversarial training. A well-trained GAN can
generate realistic and high-diversity images. Recent stud-
ies show that GAN can be leveraged to solve inverse prob-
lems [35], e.g. compressed sensing. Yin et al. [37] intro-
duced a method that utilizes a pre-trained generative model
as an image prior. Jeon et al. [17] proposed to search the
latent space and parameter space of the generative model
in turn, which fully exploits GAN’s generation ability to
reconstruct images of outstanding quality. A weakness is
that it requires a specific generator to be trained for each re-
constructed image, which consumes large amounts of GPU
memory and inference time. Li et al. [21] also adopted the
generative model, but only optimized the latent code, which
achieves semantic-level reconstruction. Among the GAN-
based methods, only Jeon et al. [17] really considered the
situation when the training data of the generative model and
the global model obey different probability distributions.

Inspired by the successful application of Intermediate
Layer Optimization (ILO) [5] in compressed sensing, we
decide to search the latent space and feature domains of
the generative model to achieve pixel-level reconstruction.
Meanwhile, we find that our method is superior to the pre-
vious methods for OOD data.

3. Method
In this section, we first introduce the basic paradigm of

gradient inversion attacks. Then, we explain how former
methods leverage GAN to achieve better results. Finally,
we elaborate on our proposed GIFD, which successively
searches the latent space and intermediate feature spaces of
the generative model.

3.1. Problem Formulation

Given a neural network fθ with weights θ for image
classification tasks, and batch-averaged gradients g calcu-
lated from a private batch with images x∗ and labels y∗,
the attacker attempts to invert the gradients to private data
with randomly initialized input tensor x̂ ∈ RB×H×W×C

and labels ŷ ∈ {0, 1}B×L (B,H,W,C,L being batch size,
height, width, number of channels and class number):

x̂∗, ŷ∗ = argmin
x̂,ŷ

D

(
1

B

B∑
i=1

∇ℓ(fθ(xi), yi), g

)
, (1)

where x̂ = (x1, . . . , xB), ŷ = (y1, . . . , yB). D(·, ·) is the
measurement of distance, e.g., l2-distance [37, 21], nega-
tive cosine similarity [9, 17], and ℓ(·, ·) is the loss function
for classification. In the workflow of the algorithm, the at-
tacker generates a pair of random noise x̂ and labels ŷ as
parameters, optimized towards the ground truth x∗ and y∗

through minimizing the matching loss between dummy gra-
dients and transmitted gradients.

Since private labels can be inferred directly from the gra-
dients [41, 37], the objective function with regularization
term can be simplified to the following form:

x̂∗ = argmin
x̂

D (F (x̂), g) +Rprior(x̂), (2)

where F (x̂) = 1
B

∑B
i=1∇ℓ(fθ(xi), yi), Rprior(x̂) is prior

knowledge regularization (e.g., BN statistics [37]).
Given a pre-trained generative model Gw(·) learning

from the public dataset, an intuitive method is to transform
the problem into the following form:

z∗ = argmin
z
D (F (Gw(z)), g) +Rprior(z;Gw), (3)

where z ∈ RB×k is the latent code of the generative model.
By narrowing the search range from RB×m (m = H×W×
C) to RB×k (k<<m), one can reduce the uncertainty in
the optimizing process. Based on this, various GAN-based
gradient inversion methods [21, 17] are proposed to ensure
the quality and fidelity of the generated images.

3.2. Gradient Inversion over Feature Domains

First, we formally formulate our optimization objective:

x̂∗ = argmin
x̂

D (T (F (x̂)), g) +Rfidty(x̂), (4)
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Figure 2: Overview of our proposed GIFD attack. The intermediate layer optimizer minimizes the loss computed from the
dummy gradients and the shared gradients from the victim under the image fidelity regularization, to update the latent vector
and the intermediate features successively. Finally, the generative model outputs reconstruction data from the layer with the
corresponding least gradient matching loss.

where x̂ is generated by Gw or part of Gw, F (·) is the
batch-averaged gradient operator, T (·) is the gradient trans-
formation technique we will discuss later. The first term
D (T (F (x̂)), g) denotes the gradient matching loss, and the
second term Rfidty(x̂) is the image fidelity regularization.
To simplify the expression, we solve for the objective func-
tion in the following form:

x̂∗ = argmin
x̂

Lgrad(x̂), (5)

where we denote the loss function in (4) by Lgrad(x̂). An
overview of our method is shown in Figure 2, we next in-
troduce each component in detail.
Intermediate Layer Optimizer. This is the core of our
algorithm. As the pseudocode described in Algorithm 1,
instead of directly optimizing over x̂, we focus on searching
the latent space and the intermediate space of the generator
in turn, to make the most of the GAN prior.

The first step is to optimize over the randomly initialed
latent vector z using gradient descent with an effective
Spherical Optimizer [25]. Once we obtain the optimal z∗,
we dissemble the generator Gw into G0 ◦G1 ◦ · · · ◦GN−1 ◦
GN for intermediate feature optimization. Then, we map
optimal latent vector z∗ into intermediate latent representa-
tions h0

1 using G0, i.e., h0
1 := G0(z

∗). Next, our algorithm
enters the for loop in line 7 of Algorithm 1 and starts to
search the intermediate features.

At the pass of loop i, we perform the following oper-
ations. First, we generate images from intermediate fea-
ture hi only with the rest part of Gw (i.e., Gi ◦ · · · ◦ GN ).
Then, we use the generated images to compute dummy gra-
dients and optimize over hi via minimizing cost function in

(4). Considering the intermediate feature searching might
lead to unreal images generation, we constrain the search-
ing range to lie within an l1 ball of radius r[i] centered at
h0
i , i.e. the term ball

r[i]

h0
i

in the line 9 of Algorithm 1. Af-
ter obtaining the optimal results h∗

i of the present layer, we
generate the initial intermediate representations for the next
layer with Gi, i.e. h0

i+1 := Gi(h
∗
i ).

As shown in line 4, 11, 12, 13, 18 of Algorithm 1, we
hope to utilize the gradient matching loss as valid informa-
tion to guide us to select the output images. More specifi-
cally, we choose the output images from the layer with the
corresponding least gradient matching loss among all the
searched intermediate layers as the final output. Although
less loss doesn’t always mean better image quality, our strat-
egy still outperforms specifying a fixed layer’s output.

With all the efforts above, we encourage the optimizer
to explore the intermediate space with rich information, to
generate more diverse and high-fidelity images, while lim-
iting the solution space within a l1 ball around the manifold
induced by the previous layer in order to avoid overfitting
and guarantee the realism of the generated images. Further-
more, our approach is easy to implement as it is not tied
to any specific GAN architecture and only requires a pre-
trained generative model.
Labels Extraction. Specifically, consider a network pa-
rameterized by W for classification task over n-classes us-
ing cross-entropy loss function, when the training data is
a single image, the ground truth label c can be accurately
inferred [41] through:

c = i, s.t.∇Wi
FC

⊤ · ∇Wj
FC ≤ 0, ∀ j ̸= i, (6)

where we denote the gradient vector w.r.t. the weights (de-



Algorithm 1 Pseudocode of our proposed GIFD

Input: Gw: a pre-trained generative model; fθ: the global
model in FL; g: shared gradients; K: the index of the
last intermediate layer to optimize; r[1 . . .K]: radius of
l1 ball in each intermediate layer; B: batch size;

Output: Reconstructed images via GIFD attack;
1: Initial latent code z := (z1, . . . , zB) with random noise
2: // Latent space search
3: z∗ ← argminz Lgrad(Gw(z))
4: Set x̂∗ := Gw(z

∗), lossmin = D (T (F (Gw(z
∗))), g)

5: Dissemble Gw into G0 ◦G1 ◦ · · · ◦GN−1 ◦GN

6: Set h0
1 := G0(z

∗)
7: for i← 1 to K do
8: //Intermediate layers search with

l1-ball constraint
9: h∗

i ← argmin
hi∈ball

r[i]

h0
i

Lgrad(Gi ◦ · · · ◦GN (hi))

10: lossi = D (T (F (Gi ◦ · · · ◦GN (h∗
i ))), g)

11: if lossi < lossmin then
12: x̂∗ := Gi ◦ · · · ◦GN (h∗

i )
13: lossmin = lossi
14: end if
15: // Generate features of the next

intermediate layer as the initial
vector to optimize

16: h0
i+1 := Gi(h

∗
i )

17: end for
18: Return results: x̂∗

noted as Wi
FC) connected to the ith logit in the classifi-

cation layer (i.e., the output layer) by ∇Wi
FC. Hence, we

can identify the ground-truth label via the index of the neg-
ative gradients. [37] further extends to support batch-level
label extraction with high accuracy, while assuming non-
repeating labels in the batch. The inferred labels are used
to compute dummy gradients and as the class conditions for
conditional GANs, which greatly enhances our attack.
Image Fidelity Regularization. Intuitively, it is challeng-
ing to restore data only from the shared gradients, as gra-
dients are only a non-linear mapping form of the original
data. It is therefore worth using some strong priors as an
approximation of natural images:

Rfidty(x̂) = αℓ2Rℓ2(x̂) + αTVRTV (x̂), (7)

where the first term is the l2 norm of the images [37] with
scaling factor αℓ2 , which encourages the algorithm to solve
for a solution that is preferably sparse. Since neighboring
pixels of natural images are likely to have close values, we
add the second term [9] RTV (x̂) to penalize total variation
of x̂ with scaling factor αTV .
Gradient Transformation. In order to mitigate the effects
of defense strategies, we adopt the adaptive attack [21] by
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Figure 3: Comparison of PSNR mean on BigGAN and
StyleGAN2 under different values of hyper-parameter K
(i.e., the last intermediate layer to optimize). Notably, the
figures exclude the results where the corresponding values
are below the starting point of the y-axis.

estimating transformation from received gradients and in-
corporating it into the optimization process, i.e., T (·) in (4).
Specifically, we can infer three defense strategies: (1) Gra-
dient clipping; (2) Gradient sparsification; and (3) Soteria.

4. Experiments
To validate the effectiveness of GIFD in improving at-

tack performance, we conduct experiments on two widely
used GANs in a range of scenarios. We evaluate our
method for the classification task on the validation set of
ImageNet ILSVRC 2012 dataset[6]) and 10-class (using
age as label) FFHQ [18] at 64 × 64 pixels. For the gen-
erative model, we use a pre-trained BigGAN [3] for Im-
ageNet and a pre-trained StyleGAN2 [18] for FFHQ. We
use a randomly initialized ResNet-18 as the FL model, and
choose negative cosine similarity as distance metric D(·).
We use the default B = 1 at one local step. Then we
conduct experiments with larger B and compare the per-
formance of different methods. Our code is available at
https://github.com/ffhibnese/GIFD.
Implementation details. According to its specific struc-
ture, we split BigGAN into G0 to G12 with 12 intermediate
feature domains, and StyleGAN2 into G0 to G7 with 7 in-
termediate feature domains. We ensure that the intermediate
features lie in the l1 ball through Project Gradient Descent
(PGD) [26]. Motivated by the fact that a stepwise optimiza-
tion over the noises in StyleGAN2 yields better reconstruc-
tions [5] for compressed sensing, we gradually allow to op-
timize more noises as we move to deeper intermediate lay-
ers and make them lie inside the l1 ball as well. For more
details about experiments, please refer to the Appendix.
Evaluaion Metrics. We compute the following quanti-
tative metrics to measure the discrepancy between recon-
structed images and ground truth: (1) PSNR (Peak Signal-
to-Noise Ratio), (2) LPIPS [40] (Learned Perceptual Im-
age Patch Similarity), (3) SSIM (Similarity Structural In-
dex Measure), and (4) MSE (Mean Square Error) between
reconstruction and private images.

https://github.com/ffhibnese/GIFD


Table 1: Comparison of GIFD with state-of-the-art methods on every 1000th image of the ImageNet and FFHQ validation
set. We calculate the average value of metrics on reconstructed images.

Metric ImageNet FFHQ

IG [9] GI [37] GGL [21] GIAS [17] GIFD IG [9] GI [37] GGL [21] GIAS [17] GIFD

PSNR↑ 17.0756 16.5109 13.3885 17.4923 20.0534 15.3523 14.9485 15.1335 20.1799 21.3368
LPIPS↓ 0.3078 0.3297 0.3678 0.2536 0.1559 0.4172 0.4503 0.2009 0.1266 0.1023
SSIM↑ 0.2908 0.2673 0.1251 0.3381 0.4713 0.2272 0.2044 0.2453 0.5379 0.5768
MSE↓ 0.0223 0.0258 0.0553 0.0236 0.0141 0.0311 0.0343 0.0339 0.0121 0.0098

Original IG [9] GI [37] GGL [21] GIAS [17] GIFD

(a) ImageNet (BigGAN)

Original IG [9] GI [37] GGL [21] GIAS [17] GIFD

(b) FFHQ (StyleGAN2)

Figure 4: Qualitative results of different methods on ImageNet and FFHQ.

4.1. Decide Which Layer to End

In order to further improve the quality of output images,
we need to carefully handle the parameter K in Algorithm
1. Actually, we find that there is a trade-off between under-
fitting and over-fitting about the choice of K. When K is
small, we only search the first few intermediate features of
the generative model and do not fully utilize the rich in-
formation encoded in the intermediate space. As a result,
the quality of the generated images does not meet our ex-
pectations. On the contrary, when K is large, we exces-
sively search the deeper layers and generate images that
have less cost, but a larger discrepancy with the original im-
ages. Therefore, we randomly select images (disjoint from
our main experimental data) from the validation set of Ima-
geNet and FFHQ to study the impact of K and try to select
the best final layer. As shown in Figure 3, when K = 9 and
K = 4 are used for BigGAN and StyleGAN2 respectively,
we obtain results with the largest PSNR. Hence, we use this
configuration for conducting all the experiments.

4.2. Comparison with the State-of-the-art Attacks

Next, we compare our proposed GIFD with existing
methods and provide qualitative and quantitative results.

We consider the following four state-of-the-art baselines:
(1) Inverting Gradients (IG) by Geiping et al. [9]; (2) Grad-
Inversion (GI) by Yin et al. [37]; (3) Gradient Inversion in
Alternative Spaces (GIAS) by Jeon et al. [17]; and (4) Gen-
erative Gradient Leakage (GGL) by Li et al. [21].

In real application scenarios, a vast majority of FL sys-
tems do not transmit the BN statistics computed from pri-
vate data [16]. Based on this fact, all the experiments do
not use the strong BN prior proposed by [37]. Since the
randomly initialized values of vectors will greatly affect the
reconstruction results, we conduct 4 trials for every attack
and select the result with the least gradient matching loss.
The ablation study is conducted in the Appendix.

Experiment Results. By observing the results in Table 1,
we demonstrate that our method consistently achieves great
improvement compared to the competing methods for gra-
dient inversion attacks. Especially in the ImageNet dataset
with BigGAN, our method has nearly 2.5dB and 0.1 im-
provements in average PSNR and LPIPS values respec-
tively. As the visualization comparison shown in Figure 4,
under a more practical setting, most existing methods strug-
gle to recover meaningful and high-quality images even at
B = 1, while our method reveals significant information



Table 2: Comparision of GIFD with state-of-the-art baselines on OOD data of different styles.

Datset Method Art Painting Photo Cartoon

PSNR↑ LPIPS↓ SSIM↑ MSE↓ PSNR↑ LPIPS↓ SSIM↑ MSE↓ PSNR↑ LPIPS↓ SSIM↑ MSE↓

ImageNet*

IG [9] 18.3476 0.2286 0.3870 0.0172 15.6647 0.3575 0.2409 0.0325 15.8766 0.3183 0.3970 0.0288
GI [37] 17.4681 0.2625 0.3445 0.0203 15.2700 0.3888 0.2201 0.0346 15.3905 0.3112 0.3926 0.0327

GGL [21] 12.8011 0.3639 0.1356 0.0571 12.9246 0.3159 0.1507 0.0667 11.0315 0.3294 0.2832 0.0895
GIAS [17] 17.2804 0.2774 0.3346 0.0227 20.4539 0.1724 0.4913 0.0111 19.0247 0.1862 0.5740 0.0149

GIFD 19.3311 0.1700 0.4503 0.0151 21.9281 0.1137 0.5765 0.0082 22.8055 0.1030 0.6970 0.0067

FFHQ*

IG [9] 15.9020 0.3856 0.2736 0.0273 17.7422 0.3043 0.3398 0.0174 14.7029 0.3118 0.3213 0.0358
GI [37] 16.2990 0.3537 0.2917 0.0259 18.5540 0.2388 0.3808 0.0147 15.0097 0.3232 0.3201 0.0331

GGL [21] 14.2833 0.2514 0.1982 0.0435 15.5001 0.2309 0.2513 0.0302 12.3590 0.2556 0.2322 0.0624
GIAS [17] 18.4619 0.1912 0.4424 0.0172 19.6763 0.1615 0.4885 0.0123 15.3798 0.2250 0.3837 0.0338

GIFD 19.8847 0.1534 0.4979 0.0120 21.3981 0.1148 0.5446 0.0098 17.4005 0.1634 0.4614 0.0220
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Original IG [9] GI [37] GGL [21] GIAS [17] GIFD
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Figure 5: Visual comparison of different methods on ImageNet* and FFHQ*.

about the private data and achieves pixel-level reconstruc-
tion on both two datasets.

The GAN-based methods (i.e. GGL, GIAS, GIFD) gen-
erally achieve better results than the GAN-free methods
(i.e. GI, IG) on the FFHQ dataset. This indicates that the
special data distribution of human-face can be more eas-
ily learned by the generative model so that the gain from
the GAN prior is larger. We also observe that the GAN-
based method GGL, which only optimizes the latent code
and does not fully exploit the GAN prior, yields unsatis-
factory results and performs even worse than the GAN-free
methods [9, 37] on the ImageNet dataset, which again veri-
fies the necessity of searching intermediate layers.

We note that the performance of GIAS with BigGAN is
worse than with StyleGAN2. One reason is that the data of
ImageNet is more diverse. More importantly, with such a
large number of parameters in BigGAN, the solution space
for the GAN parameter search process becomes larger and
presents a great challenge, i.e., GIAS is more susceptible
to the scale of GAN. In contrast, GIFD chooses to opti-
mize the intermediate features and then avoids this problem,
hence achieving faithful reconstruction on both two GANs,
demonstrating the excellent versatility of our method.

4.3. Out of Distribution Data Recovery

We then consider a more practical scenario where the
training sets of the GAN model and the FL task obey dif-
ferent data distributions. Considering the difficulty and fea-
sibility of gradient attack tasks, we define the OOD data
as having the same label space, but quite different feature
distributions. Hereinafter, we denote the OOD data of Ima-
geNet and FFHQ by ImageNet* and FFHQ* respectively.

PAC [19] dataset is a widely used benchmark for domain
generalization with four different styles, i.e., Art Painting,
Cartoon, Photo, and Sketch. In order to achieve our OOD
setting, we manually select data with three different styles
(i.e., Art Painting, Cartoon, Photo) from the validation set
of PACS. For each style in ImageNet*, we select 15 images
of guitar, elephant and horse in total. For FFHQ*, we select
15 images for each style and crop them to obtain the face
images. We present visual comparison and quantitative re-
sults in Figure 5 and Table 2.

Experiment Results. As shown in Table 2, the experi-
ment results demonstrate our significant improvement over
the baseline methods. For instance, our method has nearly
3.8dB improvement in average PSNR upon GIAS for Car-



toon in ImageNet*. Compared with other styles, the GAN-
based methods perform best on Photo, whose domain char-
acteristics are similar to the training sets of GANs. We also
note that for Art in ImageNet*, the GAN-based methods
except GIFD perform even worse than the GAN-free ones,
which implies that here the gain from GAN is minor and
even brings negative effects to them.

Generally, the other GAN-based methods preserve more
pre-trained knowledge from ImageNet or FFHQ, thus strug-
gling to generate images similar to ground truth with differ-
ent styles. In contrast, our method augments the genera-
tive ability of the GAN models and enlarges the diversity of
the output space, hence achieving outstanding performance.
Thus, with our proposed GIFD, we are able to safely relax
the assumption that the datasets of the generative model and
FL have to obey the same feature distribution.

4.4. Attacks under Certain Defense Strategies

Next, we consider attacking a more robust and secure FL
system with defense strategies. In order to make a fair com-
parison, we equip all the baselines with the well-designed
gradient transformation technique mentioned before to mit-
igate the impact of defense.

We consider a relatively strict defense setup as the previ-
ous work [19]: (1) Gaussian Noise with standard deviation
0.1; (2) Gradient Clipping with a clip bound of 4; (3) Gra-
dient Sparsification in a sparsity of 90; and (4) Soteria with
a pruning rate of 80%.

Table 3: PSNR mean of different methods under different
defense strategies.

Method Defense Strategies

Noise [10] Clipping [10] Sparsification [1] Soteria [32]

IG [9] 11.0654 16.4418 12.0760 9.1941
GI [37] 10.0818 12.5387 12.1691 10.1831
GGL [21] 12.7640 12.7930 12.6810 12.8433
GIAS [17] 12.5397 17.9384 15.1745 16.8151
GIFD 13.2558 18.8983 16.0240 18.3205

(a) ImageNet

Method Defense Strategies

Noise [10] Clipping [10] Sparsification [1] Soteria [32]

IG [9] 11.2766 18.1382 12.0077 9.8334
GI [37] 10.4968 12.4146 12.1849 10.0843
GGL [21] 14.8982 15.6669 14.9123 15.1798
GIAS [17] 12.1276 20.4726 16.7005 20.4283
GIFD 13.7118 21.2861 17.3253 21.1545

(b) FFHQ

Experiment Results. We present experiment results in Ta-
ble 3 compared to related methods. In general, with the
underlying gradient transformation and the fully exploited
GAN image prior, GIFD is still able to invert a degraded
gradient observation to generate high-quality images or re-

veal private information, especially in cases of clipping and
Soteria. One exception is that GGL takes the lead on FFHQ
when applying additive noise operation. This is because
the gradient information is seriously corrupted by the added
high-variance Gaussian noise and is no more enough for
pixel-level reconstruction. However, GGL only searches
the latent space and with GAN’s powerful generative ca-
pability, it can still produce well-formed images with clear
facial contour, which can give a fair result in the metrics
even though they are quite different from the original ones.
This also indicates that adding Gaussian noise is indeed an
effective defense method against related attacks when the
variance exceeds a certain threshold.

4.5. Performance of Larger Batch Sizes

We then increase the batch size and observe the results
of each algorithm. Notably, we assume that no duplicate
labels in each batch and infer the labels from the received
gradients [37]. We present the results on ImageNet in Table
4, see Appendix for results on FFHQ.

Table 4: PSNR mean of different methods for different
batch sizes on ImageNet.

Method Batch Size

1 2 4 8 16 32

IG[9] 17.4634 15.2417 14.3744 13.6599 13.1545 12.0795
GI[37] 17.4373 14.7293 14.0947 13.3001 12.7842 11.8767
GGL[21] 12.7511 12.8903 13.1875 12.6001 11.8027 11.0896
GIAS[17] 17.1401 16.1683 15.5894 15.2130 14.4462 13.6080
GIFD 20.6217 16.7542 16.4272 15.4889 14.6500 13.8106

Experiment Results. We find that the proposed GIFD
achieves a steady improvement over previous methods at
any batch size. The numerical results also show that the
performance of all methods generally degrades as the batch
size increases, implying that the reconstruction at large
batch sizes is still a significant challenge.

5. Conclusion
We propose GIFD, a powerful gradient inversion attack

that can generalize well in unseen OOD data scenarios.
We leverage the GAN prior via optimizing the feature do-
main of the generative model to generate stable and high-
fidelity inversion results. Through extensive experiments,
we demonstrate the effectiveness of GIFD with two widely
used pre-trained GANs on two large datasets in a variety of
more practical and challenging scenarios. To alleviate the
proposed threat, one possible defense strategy is utilizing
gradient-based adversarial noise as a novel privacy mecha-
nism to provide confused inversion.

We hope this paper can inspire some new ideas for future
work and make contributions to the gradient attacks under
more realistic scenarios. We also hope that our work can



shed light on the design of privacy mechanisms, to enhance
the security and robustness of FL systems.
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A. Larger Batch Sizes on FFHQ
We provide the results of different batch sizes on the

FFHQ dataset. Since the label extraction algorithm[37] re-
quires non-repeating labels in a batch, the batch size cannot
exceed the number of categories. Therefore, the maximum
batch size of our experiment is 8 on FFHQ. Note that the
latent vector of StyleGAN2 has a relatively large number
of parameters to be optimized and the CMA-ES optimizer,
adopted by GGL, does not support large-scale optimization.
Thus, GGL is unable to operate when B > 2.

Table 5: PSNR mean of different methods for different
batch sizes on FFHQ.

Method Batch Size

1 2 4 8

IG [9] 19.07606 16.27659 13.87481 12.24488
GI [37] 17.35061 15.55461 13.42360 12.19926
GGL [21] 14.74791 13.35473 —— ——
GIAS [17] 20.07786 16.95568 13.67158 12.49889
GIFD 21.13338 17.96191 14.34927 12.74023

As shown in Table 5, GIFD outperforms all previous
methods at every batch size we considered. During the label
extraction process, the error rate of inferred labels is rela-
tively high when B > 2, leading to degraded performance
of all methods because of losing the significant information
brought by the correct labels.

B. Inference Speed Comparison
GIAS [17], searching the latent and parameter space of

the generative model in turn, generally performs best among
the previous methods. A series of experiments have demon-
strated that our method achieves consistent improvement
over GIAS. Besides, GIFD only searches the feature do-
main, whose optimized parameters are far less compared
with the generator’s parameters. And GIAS requires a spe-
cific generator to be trained for each reconstructed image,
consuming great inference time and GPU memory. Thus
GIFD should have an advantage in inference speed. In Fig-
ure 6, we draw the cost-time curve for the intermediate
feature searching phase of GIFD and the parameter space
searching phase of GIAS. The corresponding PSNR values
of the results are also annotated in the figure.

As expected, GIFD completes the optimization task only
with less than 1/3 of the time for GIAS and further reduces
the loss. We also find that every time the optimizer moves to
the next feature space, the loss comes to a peak and quickly
decreases over several iterations. After getting stable, the
loss value of each layer is always below the curve of GIAS.

Further, we conduct experiments on methods with the
same distance metric as GIFD in Table 6. Although IG con-
verges faster, an attacker can perform attacks offline with a
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Figure 6: The cost function over time of GIAS and GIFD
with B = 4. We give 4 trials and calculate the average
values. For a fair comparison, both methods execute a total
of 8000 iterations.

copy of the historical global model and observed gradients,
thus the attack effect is more essential than inference speed.
In this case, GIFD achieves a good trade-off between effec-
tiveness and time cost.

Table 6: Converge time and results at batch size 4.

Method IG [9] GIAS [17] GIFD

Time(s)↓ 726.8008 1360.7808 907.727
PSNR↑ 14.1896 16.6995 18.4018
Loss↓ 0.008029 0.007803 0.006865

C. More FL Global Models.

To further validate our method, We provide numerical
results of PSNR on more global models below.

Table 7: PSNR for different global models on ImageNet.

Global model IG [9] GI [37] GGL [21] GIAS [17] GIFD

ConvNet 22.8043 21.3876 13.2582 24.1741 25.5646
AlexNet 15.3390 16.3423 13.6605 17.5883 19.7926
VGG-16 13.3505 13.3856 13.9808 14.5414 16.0014
ResNet-18 17.0756 16.5109 13.3885 17.4923 20.0534
DenseNet-121 18.0840 17.3253 14.3538 18.1686 19.7376

As shown in Table 7, the overall attack performance var-
ied across different global models and GIFD always per-
forms the best, convincing the superiority of our method.
It also implies that the model structure is related to the de-
fense effect. Further study can look into it and design more
secure model structures.



D. More Visual Comparison
We show more qualitative comparison on both in-

distribution datasets (ImageNet[6] and FFHQ[18]) and out-
of-distribution data (PACS [19]) in Figure 7.

Original IG [9] GI [37] GGL [21]GIAS [17] GIFD
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(b) Out-of-distribution Data

Figure 7: More visual comparison of different methods on
in-distribution and out-of-distribution data.

We can easily find that our reconstructed images stay
closer to the original manifold. This again provides evi-
dence that our method fully exploits the generative model
as an image prior and hence could reveal more sensitive in-
formation about the private data.

E. Ablation Study

We conduct ablation experiments on both two datasets to
further verify the effectiveness of each proposed technique.
There are three variants of GIFD. GIFD-z only searches the
latent space. GIFD-f starts to search the intermediate fea-
ture domain without the l1 ball limitation and outputs the fi-
nal results from the last searched intermediate layer. Based
on GIFD-f , GIFD-e selects outputs from the layer with the
least matching error. And GIFD is GIFD-e plus the l1 ball
limitation. The results of Table 8 show that each aforemen-
tioned technique can further improve the performance.

Table 8: Ablation study of GIFD and its three variants on
every 1000th image of ImageNet and FFHQ validation set.

Method
Metric

PSNR↑ LPIPS↓ SSIM↑ MSE↓
GIFD-z 13.9451 0.3445 0.1463 0.0488
GIFD-f 18.6457 0.2320 0.3916 0.0180
GIFD-e 19.4662 0.1900 0.4383 0.0161
GIFD 20.0534 0.1559 0.4713 0.0141

(a) ImageNet

Method
Metric

PSNR↑ LPIPS↓ SSIM↑ MSE↓
GIFD-z 16.9947 0.1351 0.3931 0.0263
GIFD-f 20.2506 0.1462 0.5210 0.0123
GIFD-e 20.5839 0.1267 0.5412 0.0119
GIFD 21.3368 0.1023 0.5768 0.0098

(b) FFHQ

F. Another Approach for OOD Problem

Motivated by previous work [14, 34], Jeon et al.
[17] propose another method that can solve the out-of-
distribution (OOD) problem through training a generative
model only with the shared gradients, i.e., Gradient Inver-
sion to Meta-Learn (GIML). They regard the global model
in FL framework as a discriminator and train the generator
by solving a set of gradient inversion tasks. However, as-
suming that the private labels are known, their experiments
are limited to 32 × 32 images and the improvement is also
limited. On the contrary, our method has impressive effects
on OOD data and only requires a pre-trained GAN, which
releases the computing costs of training a generative model.



G. Details about Gradient Transformation
More specifically, the adversary can infer three defense

strategies as follows (denote the received gradients by g):
(1) Gradient clipping. Given a clipping bound c, gra-

dient clipping transforms the gradients as T (g, c) = g ·
min( c

∥g∥2
, 1). Since this operation is always layer-wise, the

attacker can compute the ℓ2 norm at each layer of the re-
ceived gradients as the estimated clipping bound.

(2) Gradient sparsification. Given a pruning rate p ∈
(0, 1), the client only transmits the (1−p) largest values of g
(in absolute value) and the rest values are replaced by zero.
Implemented by applying a layer-wise mask, the gradient
sparsity can be estimated by observing the percentage of
non-zero entries in the shared gradients.

(3) Soteria. Recently proposed by [32], it is an effi-
cient and reliable defense strategy. This operation is ac-
tually equivalent to applying a mask only to the gradients
of the defended layer. Once the global model fθ and in-
put x are given, this process becomes deterministic. Then,
the attacker can inverse this mask according to the non-zero
entries of the gradients from the defended layer.

H. Discussion
Reconstruction at large batch sizes. Although our

method performs well in a range of experiments, the im-
provement at large batch sizes is still limited, implying that
attacks in such a scenario are still a major challenge. Mean-
while, we make the assumption that there are no duplicate
labels in each batch to infer the labels, which is also diffi-
cult to achieve in the real scenario. To relax the assumption
that non-repeated labels in a batch, we notice a recent pa-
per [22] has addressed the problem effectively, which can
be perfectly combined with our GIFD to enhance the attack
when there are duplicate labels.

Hypothesis about OOD data. In order to utilize the
powerful information brought by labels, we assume that
images from different distributions have the same label
space. To tackle more realistic OOD problems where la-
bel spaces are different, subsequent research could consider
using more powerful diffusion models [15, 27] as prior in-
formation, or using other related techniques to improve the
expressiveness of generative models.

I. Experimental Details
For each intermediate feature domain, we use Adam op-

timizer with 0.1 as the initial learning rate and give 1000
iterations. We adopt the warm-up strategy, where the learn-
ing rate linearly warms up from 0 to 0.1 during the first 1/20
of the optimization and gradually decays to 0 in the last 3/4
stage using cosine decay.

Guided by the theory [5] that a sequence of increasing
radii of the l1 ball tends to provide better results, we grad-

ually allow larger deviations and tune the r by experiment,
obtaining an appropriate setting as follows.

(1) For BigGAN, we only need to constrain the interme-
diate features:

• Intermediate features: [2000, 2500, 3000, 3500, 4000,
4500, 5000, 5500, 6000].

(2) StyleGAN2 has more particularities we need to han-
dle for feature domain optimization. In addition to the inter-
mediate features, we optimize the noise vectors and apply
the l1 ball constraint to them at the same time. Involved
in the generation of styles in StyleGAN2, the latent vectors
also need to be optimized and we constrain their searching
range within an l1 ball as well:

• Intermediate features: [2000, 3000, 4000, 5000]

• Noises: [1000, 2000, 3000, 4000, 5000]

• Latent vectors: [1000, 2000, 3000, 4000, 5000]

For the image fidelity regularization, we use αTV =
10−4, αl2 = 10−6. We run all experiments on NVIDIA
RTX 2080 Ti GPUs and A100 GPUs. The experiments
on the effects of K and on defense strategies are each con-
ducted on 30 randomly selected images and the numerical
results for batch size are the averages of 10 batches.


