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Abstract

Reducing communication overhead in federated learn-
ing (FL) is challenging but crucial for large-scale dis-
tributed privacy-preserving machine learning. While meth-
ods utilizing sparsification or other techniques can largely
reduce the communication overhead, the convergence rate
is also greatly compromised. In this paper, we propose a
novel method named Single-Step Synthetic Features Com-
pressor (3SFC) to achieve communication-efficient FL by
directly constructing a tiny synthetic dataset containing
synthetic features based on raw gradients. Therefore, 3SFC
can achieve an extremely low compression rate when the
constructed synthetic dataset contains only one data sam-
ple. Additionally, the compressing phase of 3SFC utilizes
a similarity-based objective function so that it can be op-
timized with just one step, considerably improving its per-
formance and robustness. To minimize the compressing er-
ror, error feedback (EF) is also incorporated into 3SFC.
Experiments on multiple datasets and models suggest that
3SFC has significantly better convergence rates compared
to competing methods with lower compression rates (i.e.,
up to 0.02%). Furthermore, ablation studies and visual-
izations show that 3SFC can carry more information than
competing methods for every communication round, further
validating its effectiveness.

1. Introduction

Until now, federated learning [22] (FL) is deemed as one
of the most promising distributed techniques [8, 3] to tackle
the isolated data island problem with privacy guarantees.
However, the training process of FL involves frequent ex-
changing of model parameters between central servers and
participating clients, which is becoming increasingly ex-
pensive, especially considering the rapid growth of model
size today [6, 16, 10]. Moreover, participating clients of FL
typically operate at unreliable and limited network connec-

tion rates compared to data centers [15], further hindering
the large-scale deployments of FL. Consequently, commu-
nication is becoming the primary bottleneck for flexible FL
at the scale [5].

To explore possible approaches for reducing communi-
cation overhead in FL, various methods have been proposed
targeting different objectives. The work in [30, 21] ap-
plied top-k sparsification to the gradients so that only the
most important information is transmitted at each epoch.
Moreover, Wangni [33] reported that using top-k sparsifi-
cation with error feedback (EF), the communication over-
head of ResNet-50 [12] trained on ImageNet [24] could
be reduced by 99.6% while maintaining nearly the same
model accuracy. On the other hand, The work in [2, 4]
employed quantification to represent gradients by a lower
precision data type with a considerably smaller size. Later
Karimireddy [17] introduced error feedback to quantifica-
tion as well, substantially improving the rate of conver-
gence. In [11], instead of gradients, several data samples
distilled from the full training dataset were transmitted as
they are much smaller than the gradients, and they can pro-
duce similar gradients through back-propagation. More re-
cently, Li [19] and Wu [34] proposed compressing and de-
compressing communication data using compressed sens-
ing and knowledge distillation, respectively.

While the methods mentioned above have been proven
useful in reducing communication overhead reduction, em-
pirical evidence indicates that they both suffer from de-
graded model convergence rates. This means that the model
is expected to converge much slower with a smaller com-
pression rate, as demonstrated in Figure 1. Here, the com-
pression rate is defined as Equation 1. In this paper, we pro-
pose a single-step synthetic features compressor (3SFC), to
boost the convergence rate during training and carry more
information under a limited communication budget. Instead
of transmitting raw gradients directly, 3SFC first constructs
a tiny synthetic dataset for the FL model. Then a scaling
coefficient is calculated to minimize the compression error.
Finally, the constructed synthetic dataset and the scale co-
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Figure 1: Test accuracy of MLP (199,210 parameters)
trained on non-i.i.d. MNIST dataset with 20 clients. The
rate of convergence reduces as the compression rate de-
creases.

efficient are transmitted to the server. In addition, the error
feedback [29] is also incorporated into 3SFC to further min-
imize the overall compression error.

Comp. Rate =
Comp. Size

Uncomp. Size
=

1

Comp. Ratio
. (1)

Our contributions can be summarized as following:

1. Instead of transmitting gradients employed by most
existing compression methods, 3SFC only transmits a
tiny set of model inputs and labels, which is indepen-
dent of the model architecture. Consequently, 3SFC
can achieve an extremely low compression rate.

2. A similarity-based objective function is employed to
construct synthetic inputs and labels, which drastically
lowers the time and space complexity and improves the
performance and robustness of 3SFC. Moreover, the
error feedback is incorporated into 3SFC to minimize
the overall compressing error and therefore boost the
convergence rate. These design choices make 3SFC
an effective solution for achieveing communication-
efficient FL while maintaining model accuracy.

3. 3SFC can achieve a significantly better convergence
rate compared to competing methods under the same
and even lower communication budget (i.e., up to a
compression ratio of 3600×). Ablation study and other
visualizations further validate the efficiency of 3SFC
against other state-of-the-art works. The code is open-
sourced for reproduction 1.

2. Related Work
Sparsification: Methods in [1, 21, 33] utilized sparsi-

fiers to filter and send partial gradients to greatly reduce
1The source code is uploaded as the Supplementary Material, and will

be open-sourced after publication.
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Figure 2: When trying to fit gradients obtained by 128 steps
of SGD for 128 steps of simulation using the method in
[11], it should be perfectly fitted instead of collapsed. On
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less computation and storage but achieves significantly bet-
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Figure 3: Before the collapse of the method in [11] in Fig-
ure 2, the gradients of its trainable parameters exhibit a phe-
nomenon similar to the gradient explosion, where the mag-
nitude of gradients increases as they backpropagate from
the 128-th to the first group of parameters. This could be a
possible reason for the collapse.

the communication overhead. Typical sparsifiers include
random-k, top-k, etc. DGC [21] and STC [26] are con-
sidered as current state-of-the-arts. Recently, Sahu [25]
formally showed that top-k is the communication-optimal
sparsifier under a limited communication budget.

Quantification: Methods in [4, 2, 27] replaced the de-
fault 32-bit data type in Machine Learning (ML) training
with the 8-bit or even 1-bit data type before communicat-
ing, and thereby reducing communication overhead. Com-
pared to sparsification methods that can achieve a compres-
sion rate of 1/100 or even lower, quantification can at most
achieve a compression rate of 1/32.

Data distillation (Synthetic dataset) for FL: Recent
work [11, 13] have proposed using several synthetic data
samples to represent gradients in FL. Since local models in



FL are optimized for multiple steps locally, The synthesis
process will first generate a synthetic dataset, then simulate
optimizing its local model for multiple steps using the syn-
thetic dataset, and finally, utilize the minimization of the `2
distance between simulated and real model weights as its
objective function to optimize the synthetic dataset. While
the multiple steps of simulation is intuitive, empirical re-
sults suggest that it leads to not only a high level of time
and space complexity for synthesizing (i.e., calculate gradi-
ents and store intermediate model weights multiple times),
but also great instability and possible collapse, especially
for relatively large models and datasets. Figure 2 demon-
strates such a collapse. Moreover, gradients of trainable pa-
rameters before the collapse are visualized in Figure 3, indi-
cating that a phenomenon similar to the gradient explosion
had occurred due to the multiple steps of simulation. Con-
sequently, since previous work hardly converges under our
experimental settings involving extremely low compression
rate and relatively large models and datasets as Section 5
demonstrated, they will not be compared in our formal ex-
periments.

To alleviate the above-mentioned problems for data dis-
tillation to achieve both computation and communication
efficient gradient compression, 3SFC employs a similarity-
based objective function, instead of `2-based objective func-
tion, to optimize the synthetic dataset. Empowered by
the new objective function, 3SFC optimizes the synthetic
dataset only once compared to dozens and hundreds by pre-
vious work, substantially enhancing the performance and
stability under low compression rates and large models and
datasets. Moreover, error feedback is introduced to the data
distillation realm for the first time, further helping the opti-
mization converge.

Others: Li [19] proposed utilizing compressed sensing
for communication data compressing and decompressing.
Wu [34] used knowledge distillation to distill the learned
knowledge from the local model to a smaller model before
communication.

3. Problem Formulation
Assume there areN clients participating in a FL training

process, where the i-th client has a local dataset Di that
obeys distribution Pi, and a loss function Fi(Di, wi) where
wi is the weight of its modelMi. Note that in vanilla FL, all
clients and servers share the same model architecture, i.e.,
M1 = M2 = ... = MN = M . The objective of FL is to
solve Equation 2:

min
w∈Rd

G(F1(D1, w), F2(D2, w), ..., FN (DN , w)), (2)

where G(·) is the linear aggregation function satisfying the
sum of aggregation weights equals 1. Typical aggregation
functions include arithmetic mean and weighted average

based on |Di| [22] where | · | is the size of the ·. The
global model w at the t-th communication round is updated
by Equation 3:

wt+1 = G(wt
1, w

t
2, ..., w

t
N )

= wt −G(gt1, gt2, ..., gtN )
, (3)

where gti = wt − wt
i denotes the model weight differences

after locally training for K rounds, and can be seen as ac-
cumulated gradients. Generally, to reduce communication
overhead, a compressor C is applied to each client’s gti, so
that the global model w can be updated by Equation 4:

wt+1 = wt −G(C(gt1), C(gt2), ..., C(gtN )). (4)

As a result, the objective of communication compressing
can be modeled as Equation 5:

C∗ = argmin ||C(gti)− g
t
i ||

2 s.t. ||C(gti)||0 ≤ B, (5)

where B is the communication budget, constraining the
maximum size of communication data at each communica-
tion round, and || · || measures the distances of ·. Moreover,
letting εti = ||C(gti)− gti || denotes the compression error at
time t, then the error feedback can be utilized to optimize
this error term by adding it to the gt+1

i . Thus, with error
feedback, the global model can be updated as Equation 6:{
wt+1 = wt −G(C(gt1 + εt1), C(gt2 + εt2), ..., C(gtN + εtN )),

εt+1
i = gti + ε

t
i − C(gt1 + εt1).

(6)

4. Our Approach

The general architecture of 3SFC is illustrated in Fig-
ure 4. At each epoch, the i-th client first trains its local
model using its local dataset. After training, accumulated
gradients can be obtained by subtracting the global model
weights from the latest local model weights. Then, the i-
th client will utilize the encoder to compress the averaged
gradients into a synthetic dataset Dt

syn,i that fits the com-
munication budget. When the compressed data is received
by the server, the server will first decode the compressed
data into accumulated gradients, and then it will aggregate
the gradients and update the global model. As seen from
Figure 4, in 3SFC, the compressor C consists of an encoder
and a decoder, where the encoder is located on the clients
and the decoder is placed on the servers.

4.1. Encoder with error feedback

The encoder in 3SFC is responsible for compressing gti
into a synthetic dataset Dt

syn,i and a scaling coefficient sti.
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Figure 4: The general architecture of 3SFC. When compressing in ¹, a set of trainable parameters and labels will first be fed
into the frozen local model to calculate model gradients. Then, calculated model gradients will be compared with real model
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The objective of the encoder can be described by Equa-
tion 7:

 min
Dt

syn,i,s
t
i

||sti∇wtFi(D
t
syn,i, w

t)− gti − ε
t
i||2 + λDt

syn,i
2

s.t. ||Dt
syn,i||0 + 1 ≤ B,

(7)
where gti denotes the differences between the global model
wt and its latest local model, i.e., gti = wt − wt

i for clients.
λDt

syn,i
2 is an `2 regularization term to constrain the solu-

tion of Dt
syn,i for better stability. Note that here the global

model wt is passed into Fi(·) instead of wt
i , because wt is

the initial weight of every client’s local optimization pro-
cess at each epoch. Since gti + εti is fixed, sti can be derived
from ∇wtFi(D

t
syn,i, w

t) as shown in Equation 8:

sti =
||gti + εti||

||∇wtFi(Dt
syn,i, w

t)||
cos(θ)

=
(gti + ε

t
i) · ∇wtFi(D

t
syn,i, w

t)

||∇wtFi(Dt
syn,i, w

t)||2
,

(8)

where θ is the angle between two gti + εti and
∇wtFi(D

t
syn,i, w

t). Consequently, the objective described
in Equation 7 is equivalent to the following optimization

problem: min
Dt

syn,i

1− |
∇wtFi(D

t
syn,i, w

t) · (gti + εti)
||∇wtFi(Dt

syn,i, w
t)||||gti + εti||

|+ λDt
syn,i

2

s.t. ||Dt
syn,i||0 + 1 ≤ B.

(9)
Namely, The objective is to find a synthetic datasetDsyn

that produces gradients that are most similar to gti in terms
of the direction. After solving Equation 9, sti can be thus
calculated by Equation 8 and the compression error εti can
be updated by Equation 6. Finally, Dt

syn,i and sti will be
uploaded to others to represent the local gradients of client
i.

4.2. Decoder

After receiving Dt
syn,i and sti from others, the decoder

at server j will attempt to reconstruct the gradients for local
model updating by the following equation:

gti + ε
t
i = sti∇wtFj(D

t
syn,i, w

t). (10)

Note that the success of the reconstruction depends on
the assumption that the server j has access to the global
model wt and Fi(·) = Fj(·), which can be easily satisfied.
Finally, for servers, following Equation 6, the global model
of server j can be updated accordingly.

4.3. Algorithm and complexity analysis

The pseudocode of 3SFC is presented in Algorithm 1. In
3SFC, during the training process, clients will solve two op-



Algorithm 1 3SFC
Input: global model wt, local dataset Di, learning rate ηi,
accumulated gradient εti, regularization parameter λ
Parameter: communication budget B, number of global
epoch E, number of local iteration K, number of 3SFC it-
eration S, number of clients N , aggregation function G
Output: global model wt+1

Clients:
1: for each client i from 1 to N in parallel do
2: initialize Dt

syn,i where ||Dt
syn,i||0 + 1 ≤ B

3: for each local iteration e from 1 to K do
4: wt

i = wt
i − ηi∇wt

i
Fi(Di, w

t
i)

5: end for
6: gti = wt

i − wi

7: for each s from 1 to S do
8: Dt

syn,i = Dt
syn,i − ηi∇Dt

syn,i
(1 −

| ∇wtFi(D
t
syn,i,w

t)·(gti+ε
t
i)

||∇wtFi(Dt
syn,i,w

t)||||gti+εti||
|+ λDt

syn,i
2
)

9: end for
10: sti =

(gti+ε
t
i)·∇wtFi(D

t
syn,i,w

t)

||∇wtFi(Dt
syn,i,w

t)||2

11: εt+1
i = εti + g

t
i −∇wtFi(D

t
syn,i, w

t)

12: return Dt
syn,i, s

t
i, ε

t+1
i

13: end for
Servers:

1: for each client i from 1 to N do
2: receive Dt

syn,i, s
t
i

3: gti + ε
t
i = sti∇wtFi(D

t
syn,i, w

t)
4: end for
5: wt+1 = wt −G(gt1 + εt1, gt2 + εt2, ..., gtN + εtN )
6: return wt+1

timization problems instead of one compared to the vanilla
FL method FedAvg [22]: the empirical risk minimization
problem on the local dataset (Line 4) and Equation 9 for
compression (Line 8). The solvers to these two problems
are not nested, meaning the time complexity of 3SFC equals
O(NE(K + S)). In terms of the space complexity, 3SFC
additionally stores the wt, Dt

syn,i, s
t
i and εti, which are all

fixed size parameters. Hence, 3SFC shares the same space
complexity, O(N), with FedAvg as well.

5. Experiments
Datasets: Following the conventions of the commu-

nity [26, 36, 4], five datasets including MNIST [9], FM-
NIST [35], EMNIST [7], Cifar10 and Cifar100 [18] are
used in the experiments. To simulate the Non-i.i.d. charac-
teristic, all datasets are manually partitioned into multiple
subsets based on the Dirichlet distribution, which is com-
monly used in the FL setting [31, 20]. Figure 5 illustrates
our partitions. As can be seen, different clients own differ-
ent datasets in terms of both quantity and category.
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Figure 5: Illustration of our manual dataset partitions for 20
clients based on the Dirichlet distribution. Each bar repre-
sent a client, and different segments with different colors of
a bar represents different labels. As can be seen, different
clients have different dataset sizes and dataset distributions,
and some clients only have some of the labels.

Dataset+Model FedAvg (1×)
FedSynth

1× 250×
MNIST+MLP 0.9017 0.9017 0.1359

EMNIST+MLP 0.6108 0.6108 0.0192
FMNIST+MLP 0.8183 0.8183 0.1216

FMNIST+Mnistnet 0.8573 0.8573 0.1318

Table 1: Test accuracies of FedSynth in our preliminary ex-
periments with 10 clients after 200 epochs of training. As
can be seen, the model is barely optimized (as discussed
in Section 2) with FedSynth with an extremely high com-
pression ratio, while other methods like 3SFC and DGC
achieve much higher performances as Table 2 illustrated.
Consequently, FedSynth is not compared with 3SFC in the
latter experiments. These results validate our observations
described in Section 2.

Models: To cover both simple and complicated learning
problems, five models including Multi-Layer Perceptron
(MLP), MnistNet, ConvNet, ResNet [12] and RegNet [23]
are used in the experiments. Here, MnistNet has two convo-
lutional layers and two linear layers, and ConvNet has four
convolutional layers and one linear layer. Additionally, for
ResNet and RegNet, all batch normalization layers [14] and
dropout layers [28] are deleted from the model as their pa-
rameters are not trainable [32]. This simplification has also
been used in previous studies[26, 36].



Methods
MNIST EMNIST FMNIST Cifar10 Cifar100

MLP MLP MLP Mnistnet ConvNet ResNet RegNet ResNet RegNet

10 Clients

FedAvg 0.9017 (1.0×) 0.6108 (1.0×) 0.8183 (1.0×) 0.8573 (1.0×) 0.6153 (1.0×) 0.4759 (1.0×) 0.4498 (1.0×) 0.1575 (1.0×) 0.114 (1.0×)
DGC 0.8663 (250.0×) 0.5287 (250.0×) 0.7718 (250.0×) 0.8065 (1333.3×) 0.6151 (10.4×) 0.2113 (3571.4×) 0.3050 (757.6×) 0.0138 (3571.4×) 0.0322 (757.6×)
signSGD 0.8692 (32.0×) 0.5415 (32.0×) 0.7550 (32.0×) 0.8198 (32.0×) 0.6180 (32.0×) 0.3687 (32.0×) 0.2759 (32.0×) 0.0178 (32.0×) 0.0391 (32.0×)
STC 0.8848 (32.0×) 0.5258 (32.0×) 0.8016 (32.0×) 0.8427 (32.0×) 0.6187 (32.0×) 0.4009 (32.0×) 0.3568 (32.0×) 0.0088 (32.0×) 0.0416 (32.0×)
3SFC 0.8876 (250.0×) 0.5494 (250.0×) 0.7881 (250.0×) 0.8179 (1333.3×) 0.6182 (10.4×) 0.2567 (3571.4×) 0.3753 (757.6.0×) 0.0466 (3571.4×) 0.0711 (757.6×)

20 Clients

FedAvg 0.9013 (1.0×) 0.6086 (1.0×) 0.8173 (1.0×) 0.8572 (1.0×) 0.6146 (1.0×) 0.4701 (1.0×) 0.4646 (1.0×) 0.1785 (1.0×) 0.1194 (1.0×)
DGC 0.8808 (250.0×) 0.5332 (250.0×) 0.7768 (250.0×) 0.8207 (1333.3×) 0.6115 (10.4×) 0.2542 (3571.4×) 0.3204 (757.6×) 0.0101 (3571.4×) 0.0501 (757.6×)
signSGD 0.8689 (32.0×) 0.5483 (32.0×) 0.7522 (32.0×) 0.8102 (32.0×) 0.6099 (32.0×) 0.3673 (32.0×) 0.3020 (32.0×) 0.0824 (32.0×) 0.051 (32.0×)
STC 0.8889 (32.0×) 0.5512 (32.0×) 0.8020 (32.0×) 0.8198 (32.0×) 0.6125 (32.0×) 0.4111 (32.0×) 0.3748 (32.0×) 0.0734 (32.0×) 0.0499 (32.0×)
3SFC 0.8918 (250.0×) 0.5556 (250.0×) 0.8013 (250.0×) 0.8217 (1333.3×) 0.6044 (10.4×) 0.3049 (3571.4×) 0.3854 (757.6×) 0.0532 (3571.4×) 0.0764 (757.6×)

40 Clients

FedAvg 0.9003 (1.0×) 0.6138 (1.0×) 0.8162 (1.0×) 0.8559 (1.0×) 0.6036 (1.0×) 0.4653 (1.0×) 0.4597 (1.0×) 0.0168 (1.0×) 0.1047 (1.0×)
DGC 0.8775 (250.0×) 0.5425 (250.0×) 0.7645 (250.0×) 0.8297 (1333.3×) 0.6056 (10.4×) 0.2807 (3571.4×) 0.3379 (757.6×) 0.0094 (3571.4×) 0.0448 (757.6×)
signSGD 0.8698 (32.0×) 0.5583 (32.0×) 0.7546 (32.0×) 0.8124 (32.0×) 0.6102 (32.0×) 0.3779 (32.0×) 0.3012 (32.0×) 0.0812 (32.0×) 0.0475 (32.0×)
STC 0.8886 (32.0×) 0.5607 (32.0×) 0.7996 (32.0×) 0.8310 (32.0×) 0.6024 (32.0×) 0.4128 (32.0×) 0.3603 (32.0×) 0.0818 (32.0×) 0.0414 (32.0×)
3SFC 0.8886 (250.0×) 0.5595 (250.0×) 0.7945 (250.0×) 0.827 (1333.3×) 0.6145 (10.4×) 0.2869 (3571.4×) 0.3835 (757.6×) 0.0560 (3571.4×) 0.0618 (757.6×)

Table 2: Comparison of test accuracy and compression ratio. Note that 3SFC and DGC have much higher compression ratios
compared to signSGD and STC due to the limitation of quantification-based methods and the high compressing efficiency of
3SFC and DGC. Consequently, while STC seems to perform well, 3SFC achieves competing or better performance with a
significantly lower communication budget. A dedicated comparison of 3SFC and STC is illustrated later to demonstrate the
superiority of 3SFC in Section 6.2.

Competetors: We compare 3SFC with 4 other meth-
ods: FedAvg [22], DGC [21], signSGD with EF [4] and
STC [26]. Specifically, FedAvg is a traditional FL train-
ing method without any compression, DGC is considered
as a state-of-the-art in sparsification, signSGD is a typi-
cal quantification method and STC combines sparsification
and quantification (i.e., STC sparsifies top-k parameters and
quantifies the others). Note that previous work in the data
distillation for FL realm (e.g., FedSynth [13] is consid-
ered as a state-of-the-art in data distillation for FL realm
to achieve communication efficient FL) is not compared in
our experiments, as it hardly converges due to the instability
and collapse described in Section 2 with high compression
ratio and large datasets and models, as Table 1 illustrated.
All later experiments are evaluated on a simulated 40 clients
cluster. The CUDA version is 11.4, the Python version is
3.9.15 and the PyTorch version is 1.13.0.

6. Analysis
6.1. Performance comparisons

We first compare the final accuracy of 3SFC with other
competing methods after 200 epochs of training. The learn-
ing rate is set to 0.01, the batch size is set to 256, local iter-
ation K is set to 5 and λ is set to 0 for no regularization. In
terms of the compression rate, we set DGC to be the same
as 3SFC for all experiments for fair comparisons, because
DGC is a sparsification-based method that can have an ex-
tremely low compression rate. For quantification-based
methods like signSGD and STC, we leave their compres-
sion rate to be 1/32, and will later do dedicated evaluations

between them and 3SFC.
The comprehensive accuracy comparison results of

3SFC and other methods are shown in Table 2. It can be ob-
served that under the same compression rate, 3SFC yields
higher test accuracy consistently compared to DGC after
training, suggesting that 3SFC brings a faster convergence
rate to the model training when the communication budget
is limited. On the other hand, 3SFC still achieves compa-
rable model performance compared to signSGD and STC,
where the latter two methods communicate much more (i.e.,
100× more for ResNet). Figure 6 further validates the ef-
fectiveness of 3SFC by visualizing the test accuracy and
training loss.

6.2. Further comparisons between 3SFC and STC

To further evaluate 3SFC compared to STC for fairness,
we gradually increase the communication budget of 3SFC
and compare both their compression ratio and test accu-
racy, which is shown in Table 3. As the table suggests,
3SFC can achieve comparable or even better test accuracy
while saving a significant amount of communication traf-
fic. For example, when training ResNet on Cifar10 with 10
clients, 3SFC reports a comparable final accuracy (0.3954
compared to 0.4009) while communicating 189.4× fewer
data. On the other hand, 3SFC reaches considerably better
performance for RegNet on Cifar100 (0.0946 compared to
0.0416) with 384.6× better compression ratio.

6.3. Compression efficiency

To study why 3SFC achieves a faster convergence rate,
we restrain the compression rate of 3SFC and DGC to be
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Figure 6: Test accuracy and training loss comparisons after
200 epochs of training. Compared to other methods, 3SFC
owns the fastest convergence rate with respect to the amount
of traffic communicated, with the highest compression ratio.

the same, and visualize the compression efficiency of 3SFC,
DGC, and FedAvg. Here, the compression efficiency stands
for how much information the compressed data carry com-
pared to the uncompressed data. Intuitively, the compres-
sion efficiency can be represented by the `2 distance be-
tween compressed and uncompressed data. However, since
the compressed data in both 3SFC and DGC are vertical to
the uncompressed data (which is illustrated by E quation 8),
in this subsection, we will use the cosine similarity between
the compressed and uncompressed data as the compression
efficiency. The visualization is shown in Figure 7.

In Figure 7, FedAvg has a constant compression effi-
ciency of 1.0, as FedAvg does not compress the data at all.
Hence, FedAvg is served as a reference here. Meanwhile,

Dataset+Model STC 3SFC (2×B) 3SFC (4×B)

10 Clients

MNIST+MLP 0.8848 (32.0×) 0.8961 (125.0×) 0.8958 (62.5×)
EMNIST+MLP 0.5258 (32.0×) 0.5820 (125.0×) 0.5955 (62.5×)
FMNIST+MLP 0.8016 (32.0×) 0.8031 (125.0×) 0.8063 (62.5×)
FMNIST+Mnistnet 0.8427 (32.0×) 0.8356 (666.7×) 0.843 (333.3×)
Cifar10+Resnet 0.4009 (32.0×) 0.3642 (1785.7×) 0.3954 (892.9×)
Cifar10+Regnet 0.3568 (32.0×) 0.4335 (378.8×) 0.4341 (189.4×)
Cifar100+ResNet 0.0088 (32.0×) 0.0881 (1785.7×) 0.0989 (892.9×)
Cifar100+RegNet 0.0416 (32.0×) 0.0946 (384.6×) 0.0952 (192.3×)

20 Clients

MNIST+MLP 0.8889 (32.0×) 0.8948 (125.0×) 0.8963 (62.5×)
EMNIST+MLP 0.5512 (32.0×) 0.5832 (125.0×) 0.5961 (62.5×)
FMNIST+MLP 0.8020 (32.0×) 0.8053 (125.0×) 0.8070 (62.5×)
FMNIST+Mnistnet 0.8198 (32.0×) 0.8343 (666.7×) 0.8372 (333.3×)
Cifar10+Resnet 0.4111 (32.0×) 0.3450 (1785.7×) 0.3654 (892.9×)
Cifar10+Regnet 0.3748 (32.0×) 0.4376 (378.8×) 0.4508 (189.4×)
Cifar100+ResNet 0.0734 (32.0×) 0.0973 (1785.7×) 0.1118 (892.9×)
Cifar100+RegNet 0.0499 (32.0×) 0.0977 (384.6×) 0.1031 (192.3×)

40 Clients

MNIST+MLP 0.8886 (32.0×) 0.8932 (125.0×) 0.8949 (62.5×)
EMNIST+MLP 0.5607 (32.0×) 0.5876 (125.0×) 0.5995 (62.5×)
FMNIST+MLP 0.7996 (32.0×) 0.8027 (125.0×) 0.8073 (62.5×)
FMNIST+Mnistnet 0.8310 (32.0×) 0.8374 (666.7×) 0.8412 (333.3×)
Cifar10+Resnet 0.4128 (32.0×) 0.3747 (1785.7×) 0.3695 (892.9×)
Cifar10+Regnet 0.3603 (32.0×) 0.4481 (378.8×) 0.4503 (189.4×)
Cifar100+ResNet 0.0818 (32.0×) 0.1041 (1785.7×) 0.1189 (892.9×)
Cifar100+RegNet 0.0414 (32.0×) 0.0799 (384.6×) 0.0889 (192.3×)

Table 3: Test accuracy and compression ratio comparisons
of STC and 3SFC with different communication budgets.
3SFC mostly achieves higher test accuracy while having a
higher compression ratio, suggesting 3SFC compresses and
decompresses the communication data more efficiently.

it is clear from the figure that with the same compression
rate, 3SFC achieves higher compression efficiency for ev-
ery communication round (i.e., the green area), meaning
that the compression error of 3SFC is lower at every update
step of the global model, contributing to the faster conver-
gence rate of the training. Moreover, as error feedback is
incorporated into both DGC and 3SFC, the compression er-
ror of each communication round will be accumulated into
gt
i forever. Consequently, the compression efficiency for

both DGC and 3SFC decreases gradually as the training
progresses.

6.4. Ablation study

Table 4 shows the ablation study of 3SFC in terms of
EF, communication budget B and local iteration K. As ob-
served from Table 4, compared to 3SFC w/ EF, disabling EF
in 3SFC drastically degrades the model performance after
training in all experiments, validating the effectiveness of
EF. Moreover, MLP trained on MNIST by 3SFC w/o EF ob-
tained a final test accuracy of 0.4580 with 10 clients (0.8876
for 3SFC w/ EF), 0.6707 with 20 clients (0.8918 for 3SFC
w/ EF) and 0.4830 with 40 clients (0.8886 for 3SFC w/ EF).
Such a huge performance difference in such a simple learn-



Methods
MNIST EMNIST FMNIST Cifar10 Cifar100

MLP MLP MLP Mnistnet ConvNet ResNet RegNet ResNet RegNet

10 Clients

3SFC w/ EF 0.8876 0.5494 0.7881 0.8179 0.6182 0.2567 0.3753 0.3835 0.0711
3SFC w/o EF 0.4580 0.2397 0.5746 0.7324 0.4495 0.2313 0.2559 0.0170 0.0235
3SFC w/ EF (2×B) 0.8961 0.5820 0.8031 0.8356 0.6308 0.3642 0.4335 0.0881 0.0946
3SFC w/ EF (4×B) 0.8958 0.5955 0.8063 0.8430 0.6241 0.3954 0.4341 0.0989 0.0952
3SFC w/ EF (K = 1) 0.6939 0.3152 0.6500 0.7807 0.5207 0.2001 0.2871 0.0104 0.0366
3SFC w/ EF (K = 10) 0.8961 0.6075 0.8212 0.8383 0.6333 0.3099 0.3908 0.0494 0.0778

20 Clients

3SFC w/ EF 0.8918 0.5556 0.8013 0.8217 0.6044 0.3049 0.3854 0.0532 0.0764
3SFC w/o EF 0.6707 0.1970 0.60075 0.7450 0.4625 0.2373 0.3062 0.0231 0.0295
3SFC w/ EF (2×B) 0.8948 0.5832 0.8053 0.8343 0.6165 0.3450 0.4376 0.0973 0.0977
3SFC w/ EF (4×B) 0.8963 0.5961 0.8070 0.8372 0.6187 0.3654 0.4508 0.1118 0.1031
3SFC w/ EF (K = 1) 0.7504 0.3387 0.6441 0.7706 0.5249 0.2155 0.3072 0.0126 0.0412
3SFC w/ EF (K = 10) 0.9063 0.6127 0.8289 0.8294 0.6049 0.3095 0.4150 0.0483 0.0831

40 Clients

3SFC w/ EF 0.8886 0.5595 0.7945 0.8270 0.6145 0.2869 0.3835 0.0560 0.0618
3SFC w/o EF 0.4830 0.2512 0.63492 0.7575 0.4742 0.2300 0.2917 0.0133 0.0277
3SFC w/ EF (2×B) 0.8932 0.5876 0.8027 0.8374 0.6132 0.3747 0.4481 0.1041 0.0799
3SFC w/ EF (4×B) 0.8949 0.5995 0.8073 0.8412 0.6115 0.3695 0.4503 0.1189 0.0889
3SFC w/ EF (K = 1) 0.6956 0.3129 0.6547 0.7752 0.5243 0.2254 0.3024 0.0127 0.0317
3SFC w/ EF (K = 10) 0.9072 0.6074 0.8277 0.8399 0.5875 0.3099 0.4176 0.0476 0.0748

Table 4: The ablation study with different parameters of 3SFC (i.e., with/without EF, communication budgets B, local
iteration K). The configuration for the Base is 1 ×B and K = 5. From the table, it is clear that enabling EF in 3SFC has an
important role in helping models converge, validating its effectiveness. Moreover, Increasing B or K can both further boost
the convergence rate of the training.
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Figure 7: Compression efficiency comparisons. 3SFC owns
significantly higher compression efficiency compared to
DGC under the same compression rate, suggesting 3SFC
is a much more efficient compressor compared to DGC.

ing task effectively suggests that disabling EF also brings
more instability and uncertainty to the training process.

In terms of B and K, when increasing B, the test ac-
curacy of the model increases as well, as more data are
being transferred at each communication round. On the

other hand, by decreasing the local iteration K from 5 to
1, the test accuracy is reduced significantly since the model
has been optimized much less. Contrarily, the test accu-
racy boosts up when K is set to 10. Consequently, in-
creasing the communication budget B is the most signifi-
cant way to further boost the convergence rate of the model
using 3SFC. For example, by increasing the compression
rate from 0.028% (1 × B) to 0.056% (2 × B) for ResNet
trained on Cifar100 with 40 clients, the convergence rate
of the model gets doubled and the test accuracy after 200
epochs of training also increases from 0.0560 to 0.1041.
However, when the communication budget is strictly lim-
ited, the convergence rate of 3SFC can be improved as well
by setting a larger local iteration K.

7. Conclusion

In this paper, we propose a single-step synthetic features
compressor (3SFC) for communication-efficient FL. 3SFC
compresses the data using a similarity-based objective func-
tion in a single step, thus saving both compute and storage
resources, and maintaining the robustness of the algorithm.
Moreover, error feedback is employed to further minimize
the compression error. Comparisons of test accuracy and
compression ratio show that 3SFC achieves significantly
faster convergence rates with lower compression rates. An
ablation study demonstrates the role of different parame-
ters, and visualizations of compression efficiency further
validates the effectiveness of 3SFC.
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