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Abstract

Federated Learning (FL) is popular for its privacy-
preserving and collaborative learning capabilities. Recently,
personalized FL (pFL) has received attention for its ability to
address statistical heterogeneity and achieve personalization
in FL. However, from the perspective of feature extraction,
most existing pFL methods only focus on extracting global
or personalized feature information during local training,
which fails to meet the collaborative learning and personal-
ization goals of pFL. To address this, we propose a new pFL
method, named GPFL, to simultaneously learn global and
personalized feature information on each client. We conduct
extensive experiments on six datasets in three statistically
heterogeneous settings and show the superiority of GPFL
over ten state-of-the-art methods regarding effectiveness,
scalability, fairness, stability, and privacy. Besides, GPFL
mitigates overfitting and outperforms the baselines by up to
8.99% in accuracy.

1. Introduction
To maximize the value of data generated on massive

clients while protecting privacy, Federated Learning (FL), an
iterative machine learning scheme, comes along with various
applications [25, 21, 38, 35, 34]. Traditional FL methods
focus on collaborative learning and obtaining a reasonable
global model. However, in practice, one single global model
cannot meet the requirements of every client and performs
poorly due to statistical heterogeneity [24, 1, 50].

Recently, personalized FL (pFL) has attracted increasing
attention in addressing statistical heterogeneity and achiev-
ing personalization in FL [50, 49, 63, 62]. From the view
of each client, it joins FL for additional server information
(e.g., global model parameters) to enhance its model and
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address the data shortage problem. To obtain high-quality
server information, each client also has to provide locally
learned information for server aggregation. Thus, an ideal
pFL is one kind of FL with two goals: (1) aggregating infor-
mation for collaborative learning and (2) training reasonable
personalized models. On the other hand, since every client
is connected to the external environment and shares certain
common information, the data present on each client com-
prises both global and personalized feature information.

However, from a feature extraction perspective, exist-
ing pFL methods only focus on one of these two goals on
clients. For collaborative learning, FedRoD [8] trains the
feature extractor to extract global feature information for
its global objective, but it does not extract personalized fea-
ture information for personalized tasks. For personalization,
FedPer [3] and FedRep [12] only use local data to train the
model for the personalized objective, losing some global
information during local training [10], which is not bene-
ficial for collaborative learning. Although FedPHP [32]/
FedProto [51] utilizes global features/prototypes to guide
personalized feature extraction, the quality of global fea-
tures/prototypes depends on the quality of feature extractors,
which is paradoxical. Poor global features/prototypes mis-
lead feature extraction in turn.

To simultaneously learn global and personalized fea-
ture information on each client, we propose a novel pFL
framework, named GPFL. Inspired by the category anchors
that introduce extra common information in domain adapta-
tion [65], we learn the global feature information with the
guidance of global category embeddings using the Global
Category Embedding layer (GCE). Besides, we learn per-
sonalized feature information through personalized tasks.
However, learning two contrary (global vs. personalized)
objectives is confusing, so we devise and insert the Con-
ditional Valve (CoV) after the feature extractor to create a
global guidance route and a personalized task route in the
client model. With CoV, we learn global and personalized
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feature information separately at the same time, unlike Fe-
dRoD, FedPer, and FedRep, which only learn one kind of
feature information. Besides, GPFL leverages trainable cat-
egory embeddings to guide feature extraction at both the
magnitude and angle levels, unlike FedPHP and FedProto,
which rely on the well-trained feature extractor. Further-
more, the global category embeddings in GPFL introduce
extra global information besides local data, which can mit-
igate the overfitting of personalized models and enhance
fairness and privacy-preserving ability.

To evaluate GPFL regarding effectiveness, scalability,
fairness, stability, and privacy, we compare GPFL with ten
state-of-the-art (SOTA) methods on six datasets in Computer
Vision (CV), Natural Language Processing (NLP), and Inter-
net of Things (IoT) domains. Besides, we consider the label
skew [40, 36, 27], feature shift [31], and real world [66, 15]
settings to simulate different kinds of statistical heterogene-
ity in FL. Experimental results show that GPFL outperforms
these baselines by up to 8.99% in accuracy. We provide
the code in the supplementary materials. Overall, our key
contributions are

• We emphasize the importance of achieving both collab-
orative learning and individualized goals in pFL and
propose a pFL method GPFL that simultaneously learns
the global and personalized feature information.

• We learn the global feature information through train-
able category embeddings, and the additional global
information in GCE mitigates the overfitting of the
personalized model to local data.

• We conduct extensive experiments in the CV, NLP, and
IoT domains under label skew, feature shift, and real
world settings. The results show that our GPFL out-
performs the SOTA method in terms of effectiveness,
scalability, fairness, stability, and privacy.

2. Related Work & Background
2.1. Personalized Federated Learning

Meta-learning & fine-tuning. Per-FedAvg [13] and Fed-
Meta [7] are similar methods that learn a global model with
the aggregated model update trend to achieve good perfor-
mance on each client with a few steps of local fine-tuning.
However, the aggregated trend cannot meet the model update
trends of every client.
Personalized heads. FedPer [3], FedRep [12], and Fe-
dRoD [8] split the given backbone into a feature extractor
and a head. FedPer and FedRep are similar methods that only
share the feature extractor between the server and clients.
Different from them, each client in FedRoD owns a feature
extractor and two heads. FedRoD trains the feature extractor
as well as the shared head for its global objective (with the
balanced softmax (BSM) loss [46]) and trains the personal-

ized head for its personalized objective. However, it does
not derive gradients, w.r.t. the feature extractor from the per-
sonalized objective, ignoring personalized feature extraction.
Besides, the BSM loss is ineffective in feature shift settings.
Regularization. Different from FedProx [30], which regu-
larizes the difference between local model parameters and
frozen global parameters, pFedMe [49]/Ditto [29] uses a
proximal term for the additional personalized models. The
personalized model in Ditto benefits from the global pa-
rameter guidance. However, they ignore the global and
personalized feature information extraction.
Feature extraction guidance. FedPHP aligns the features
outputted by the personalized feature extractor and the global
feature extractor for each sample, and FedProto aligns the
feature vectors to their corresponding category prototypes.
However, FedProto only guides a feature vector to be close
to its corresponding prototype rather than guiding it to stay
away from other prototypes, which results in the intersection
of classification boundaries (see Sec. 4.2). Besides, FedProto
generates prototypes based on the learned feature vectors,
so the prototypes in FedProto can be uninformative without
the well-trained feature extractor. This problem exacerbates
when large backbones are trained from scratch in FL because
they have difficulty learning good feature extractors in early
iterations.

2.2. Conditional Computation

Usually, the structures of most DNNs are static during
training and inference. With conditional computing tech-
niques [6, 16, 18, 43], such as dynamic routing [18, 37, 57],
a DNN can have a dynamic structure when given different
conditional inputs. For example, using an auxiliary policy
network, SpotTune [18] dynamically chooses which and
how many blocks in a pre-trained residual network should
be fine-tuned according to the input images. During infer-
ence, BlockDrop [57] executes specific layers of a residual
network according to the decisions made by reinforcement
learning. D2NN [37] proposes a kind of DNN that allows
selective execution through controller modules.

These methods are designed in central learning scenarios
for specific tasks. Inspired by them, we propose a CoV to
create global and personalized routes in the client model for
global and personalized feature information extraction.

3. GPFL
3.1. Problem Statement

We have a total of N clients and client i (i ∈ [N ]) gener-
ates its private data xi (labelled by yi) via a distinct distribu-
tion Di. For the personalized task, we denote the personal-
ized objective on client i as

Fi := E(xi,yi)∼Di
Li(xi, yi;Wi), (1)



where Li is the personalized loss function, and Wi is the
parameters of all modules on client i. For all clients, our
objective is

{W1, . . . ,WN} = argmin G(F1, . . . ,FN ), (2)

where typically G(F1, . . . ,FN ) =
∑

i∈[N ] niFi, ni =
|Di|∑

j∈[N] |Dj | measures the importance of client i and |Di|
is the number of training samples on client i. With Eq. (1),
Eq. (2) considers collaborative learning and personalization.

3.2. Method

2.2 guide feature learning in two spaces
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Figure 1. Illustration of client modules and data flow between
them. Client i shares W fe, V , C, and Ĉ while keeping Wh

i

locally. Global category embeddings in ĜCE are frozen before
local training. We simultaneously train ϕ, CoV, GCE, and ψ in an
end-to-end manner on the client. For training, we activate both the
global guidance route (gray arrows) and the personalized task route
(black arrows). For inference and evaluation, only the personalized
task route is activated.

Overview. Focusing on the extracted features, we follow
FedRep and split the backbone into a feature extractor (ϕ)
and a head (ψ), where ψ is the last fully connected (FC)
layers in the backbone, and ϕ represents the remaining lay-
ers. In Figure 1, to achieve the collaborative learning and
personalization goals in pFL, we use CoV to transform the
original feature vector fi to two feature vectors fG

i and
fP
i for global and personalized feature extraction, respec-

tively. Then we learn the global feature information with
the guidance of global category embeddings in GCE and
learn personalized feature information through personalized
tasks. Using the embedding technique [53, 64], we can get
any trainable category embedding u through the look up op-
eration: u = GCE(u;C), where u is a category ID. In each
iteration, we share global parameters W fe, V , and C among
clients and obtain Ĉ by copying C after receiving C. We de-
note the trainable parameters as Wi := {W fe, V, C,Wh

i }.
Feature extraction. We firstly obtain fi through ϕ that
maps the data samples to a lower feature space of dimension
K: ϕ : RD → RK , where typically D ≫ K. Formally,
∀(xi, yi) ∼ Di,fi = ϕ(xi;W

fe).
Feature transformation. Inspired by the conditional
computation techniques [18, 54, 43], we transform fi to fG

i

and fP
i through the affine mapping [5, 54, 43]:

fG
i = σ[(γ + 1)⊙ fi + β],

fP
i = σ[(γi + 1)⊙ fi + βi],

(3)

where 1 has the same shape as fi with all the values equal
to 1 and σ is the ReLU activation function [33]. ⊙ is the
Hadamard product. γ, β, γi, and βi are generated by CoV:

{γ,β} = CoV(fi, g;V ),

{γi,βi} = CoV(fi,pi;V ),
(4)

where g ∈ RK and pi ∈ RK are the global and personal-
ized conditional input (described later), respectively. CoV
consists of two sub-modules CoVγ and CoVβ with identical
structures but different parameters. Concretely, CoVγ gen-
erates γ/γi by inputting g/pi sequentially to an FC layer, a
ReLU activation, and a layer-normalization layer [4]. CoVβ

generates β/βi in a similar way.
Generating g and pi. g is identical among clients, while
pi contains local data distribution information. Since all
the clients share the same Ĉ during local training, we can
generate g by averaging all the frozen category embeddings
(with dimension K):

g =

∑
u∈[U ] ĜCE(u; Ĉ)

U
. (5)

For pi, we first obtain data distribution information through
the statistics on client i. Specifically, we generate the pro-
portion coefficient of category u by

αu
i = E(xi,yi)∼Di

I{yi = u}, u ∈ [U ], (6)

where I{·} is the indicator function, and U is the number of
all the categories among clients. Then, we have

pi =

∑
u∈[U ] ĜCE(u; Ĉ) · αu

i

U
. (7)

Angle-level global guidance. In addition to sharing model
parameters between server and clients, sharing other infor-
mation, such as prototype [51] and logits [61], has shown
effectiveness in the literature. Thus, we propose to share the
global category embeddings across clients. Inspired by the
contrastive loss [28, 9, 48], we guide each feature vector to
be close to its corresponding category embedding while stay-
ing away from other category embeddings, which spreads
out the category embeddings during training. Formally, we
have the angle-level guidance loss

Lalg
i = − log

exp (sim(fG
i ,GCE(yi;C)))∑

u∈[U ] exp (sim(fG
i ,GCE(u;C)))

, (8)

where sim(f ,v) = fT v
||f ||2||v||2 is a cosine similarity function.

Due to the L2-norm || · ||2, sim(·) only measures the similar-
ity between fG

i and GCE(u;C), u ∈ [U ] at the angle level



ignoring their magnitude. Note that, all the embeddings in
GCE are updated through Eq. (8).
Magnitude-level global guidance. Inspired by the prox-
imal term that keeps the local model parameters close to
the frozen global parameters [30], we keep fG

i close to its
corresponding frozen global embedding. Formally, we have
the magnitude-level guidance loss

Lmlg
i = ||fG

i , ĜCE(yi; Ĉ)||2. (9)

Personalized tasks. With fP
i , client i learns a head ψ

that maps from the transformed feature space to the category
space: ψ : RK → RU . Formally, we have

LP
i = ℓ(ψ(fP

i ;Wh
i ), yi), (10)

where ℓ is the Cross Entropy (CE) loss function [68].
Local loss function Li. Combining the loss mentioned
above together, we have

Li = LP
i + Lalg

i + λLmlg
i + µ||V ||2 + µ||C||2, (11)

where λ and µ are hyperparameters. The entire learning
process is shown in Algorithm 1.

3.3. Privacy Analysis

Following FedCG [56], we consider a semi-honest sce-
nario where the server follows the FL protocol but may
recover original data from a victim client i with its model
updates through Deep Leakage from Gradients (DLG) [69].
Given model (or feature extractor) Φ and model updates ∆,
DLG learns dummy input x̃ and dummy logits (or feature
vectors) output z̃ by minimizing

Ldlg = ||∇ℓ̃(Φ(x̃), z̃)−∆||2, (12)

where we use Mean Squared Error (MSE) loss [59] for ℓ̃.
Then the server can obtain the recovered input x̃∗.

In GPFL, Wh
i and αu

i , u ∈ [U ] are not shared outside the
client, protecting most of the private information. Without
αu
i , the CoV module can only perform transformation for the

global route, like a regular layer in a backbone. The server
can treat the combination of ϕ and CoV as a pseudo feature
extractor ϕ̃ := ϕ ◦ CoV and obtain f̃G := ϕ̃(x̃;W fe,t

i , V t
i ).

Compared to FedPer and FedRep which only share the fea-
ture extractor, either ϕ or ϕ̃ learns more global information.
Besides, the server can utilize GCE to calculate the logit
output for category u by

logitu = sim(f̃G,GCE(u;Ct
i )), u ∈ [U ]. (13)

In other words, the server can use GCE by integrating it
with ϕ̃ as a pseudo model like the uploaded client model in
FedAvg and Ditto, but with more global information. Ac-
cording to previous work [41], the model with more global
information has a better privacy-preserving ability. We show
the experimental results in Sec. 4.7.

Algorithm 1 The Learning Process in GPFL

Input: N clients with their local data; initial parameters
W fe,0, V 0, C0; η: local learning rate; λ and µ: hy-
perparameters; ρ: client joining ratio; T : total training
iterations.

Output: Personalized model parameters {W1, . . . ,WN}.
1: Client i,∀i ∈ [N ] initializes its ψ and obtains Wh,0

i .
2: for iteration t = 0, . . . , T do
3: Server samples a client subset It based on ρ.
4: Server sends {W fe,t, V t, Ct} to It.
5: for Client i ∈ It in parallel do

▷ local initialization
6: Initialize ϕ, CoV, GCE with {W fe,t, V t, Ct}.
7: Initialize ĜCE with Ct.
8: Generate g and pi by Eq. (5) and Eq. (7).

▷ local training
9: Update W fe,t, V t, Ct, Wh,t

i simultaneously:
10: W fe,t

i ←W fe,t − η∇W fe,tFi;
11: V t

i ← V t − η∇V tFi;
12: Ct

i ← Ct − η∇CtFi;
13: Wh,t+1

i ←Wh,t
i − η∇Wh,t

i
Fi.

14: Upload {W fe,t
i , V t

i , C
t
i} to the server.
▷ Server aggregation

15: Server calculates nt =
∑

i∈It ni and obtains
16: W fe,t+1 =

∑
i∈It

ni

ntW
fe,t
i ;

17: V t+1 =
∑

i∈It
ni

ntV
t
i ;

18: Ct+1 =
∑

i∈It
ni

ntC
t
i .

19: return {W1, . . . ,WN}

4. Performance Comparison
We evaluate the performance of GPFL in terms of the

learned features, effectiveness, scalability, fairness, stabil-
ity, and privacy. Specifically, we compare GPFL with
ten SOTA methods, including FedAvg [40], FedProx [30],
Per-FedAvg [13], pFedMe [49], Ditto [29], FedPer[3], Fe-
dRep [12], FedRoD [8], FedPHP [32], and FedProto [51],
on CV, NLP, and IoT tasks.

4.1. Setup

Datasets. For CV tasks, we use three public datasets:
Fashion-MNIST (FMNIST) [58], Cifar100 [26], and Tiny-
ImageNet [11]. For NLP tasks, we use two public datasets:
AG News [67] and Amazon Review [14]. For the IoT task,
we use a Human Activity Recognition (HAR) dataset [2].
Backbones. Following work [40, 39, 17], we use a 4-
layer CNN on FMNIST, Cifar100, and Tiny-ImageNet. To
evaluate GPFL on a backbone larger than the 4-layer CNN,
we also run ResNet-18 [19] on Tiny-ImageNet. On AG
News and Amazon Review, we use the fastText [23] and the
3-layer MLP [44] as the backbones, respectively. Following



previous work [60], we use a HAR-CNN on HAR to process
the sensor signal. As for the local learning rate η, we set
η = 0.005 for 4-layer CNN and 3-layer MLP, set η = 0.1 for
ResNet-18 and fastText, and set η = 0.01 for HAR-CNN.
Statistically heterogeneous settings. With the above six
datasets, we create three popular statistically heterogeneous
settings to simulate the FL environment: label skew [40,
36, 27], feature shift [31], and real world [66, 15] settings.
Specifically, we have two label skew settings: the patholog-
ical setting [40, 47] and practical setting [36, 28]. For the
pathological label skew setting, we sample data with label
amount 2/10/20 for each client on FMNIST/Cifar100/Tiny-
ImageNet from a total of 10/100/200 categories, with disjoint
data and different numbers of data samples. For the practical
label skew setting, we sample data from FMNIST, Cifar100,
Tiny-ImageNet, and AG News through the Dirichlet distri-
bution [36], denoted by Dir(β). Concretely, we sample
qc,i ∼ Dir(β) (β = 0.1 / β = 1 by default for CV/NLP
tasks [55]) and allocate a qc,i proportion of the samples with
label c to client i. For the feature shift setting, following
existing methods [14, 31], we create four clients, each con-
taining data from one domain on Amazon Review. For the
real world setting, the sensor signal data on HAR is naturally
collected and stored on 30 clients with six activities.
Implementation Details. Following pFedMe and FedRoD,
unless explicitly specified, we have 20 clients with a client
joining ratio ρ = 1. On each client, we consider 75% data as
the training dataset and use the remaining 25% data for eval-
uation. Following pFedMe, we report the best performance
of the global model for traditional FL and the best average
performance across personalized models for pFL. By default,
we set the batch size to 10 and the number of local epochs to
1. We run 2000 iterations with three trials for all the methods
on each task and report the mean and standard deviation. For
more details and experimental results (e.g., the results in the
feature shift setting with different statistical heterogeneity,
i.e., different β), please refer to supplementary materials.

4.2. Learned Features

Here, for easy visualization, we experiment on FMNIST
in the pathological label skew setting using ten clients and
keep other settings constant. As shown in Figure 2, we
use t-SNE [52] to visualize the feature vectors extracted by
FedPer, FedProto, and our GPFL.

The classification boundary is not discriminative in Fed-
Per and the boundaries in FedProto intersect, e.g., the bound-
aries of category 0 and 1 in Figure 2c, while Figure 2d has
no intersection. By simultaneously considering global guid-
ance and personalized tasks, GPFL can learn discriminative
features and distinguish the data distribution of each client,
revealing excellent personalization performance of GPFL in
feature extraction.
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(c) FedProto (d) GPFL

Figure 2. (a): Data distribution on each client; the size of red
circles means the number of samples. (b), (c), and (d): t-SNE
visualizations of feature vectors on FMNIST with 10 clients; “cid”
means client ID. Best viewed in color.

4.3. Effectiveness

Then, we compare our GPFL with baselines under the
label skew, feature shift, and real world settings. Due to the
limited space, we use “TINY” and “TINY*” to represent
using the 4-layer CNN and ResNet-18 (trained from scratch)
on Tiny-ImageNet, respectively.
Label skew settings. We show the results regarding the
label skew settings in Table 1. GPFL achieves superior per-
formance in both pathological and practical settings. Con-
cretely, in the practical setting on Cifar100, GPFL outper-
forms the best baseline Ditto by 8.99% with only 0.31% stan-
dard deviation. FedRep performs well on Tiny-ImageNet in
the pathological setting, but GPFL outperforms it by 6.10%
in the practical setting. Since there are many embeddings
of tokens in NLP tasks, the feature guidance per category in
GPFL and FedProto is beneficial for embedding learning in
the label skew setting. GPFL achieves 1.63% improvement
over FedProto and outperforms other baselines by 5.72% on
AG News.

Next, we point out why GPFL outperforms other base-
lines with the experimental results. (1) GPFL v.s. Fed-
Per & FedRep & FedRoD: On each client, the feature
extractor trained in FedPer and FedRep only learns person-
alized feature information, while the feature extractor in
FedRoD only learns the global one. Unlike them, GPFL
locally learns both the global and personalized feature infor-
mation, so GPFL outperforms FedPer/FedRep/FedRoD by
12.23%/9.47%/10.92% on Cifar100 in the practical setting.
(2) GPFL v.s. FedProto & FedPHP: FedPHP/FedProto
guides feature extraction with global features/prototypes



Table 1. The test accuracy (%) on the CV and NLP tasks in label skew settings.

Settings Pathological Label Skew Setting Practical Label Skew Setting

FMNIST Cifar100 TINY FMNIST Cifar100 TINY TINY* AG News

FedAvg 80.41±0.08 25.98±0.13 14.20±0.47 85.85±0.19 31.89±0.47 19.46±0.20 19.45±0.13 87.12±0.19
FedProx 78.08±0.15 25.94±0.16 13.85±0.25 85.63±0.57 31.99±0.41 19.37±0.22 19.27±0.23 87.21±0.13

Per-FedAvg 99.18±0.08 56.80±0.26 28.06±0.40 95.10±0.10 44.28±0.33 25.07±0.07 21.81±0.54 87.08±0.26
pFedMe 99.35±0.14 58.20±0.14 27.71±0.40 97.25±0.17 47.34±0.46 26.93±0.19 33.44±0.33 87.08±0.18
Ditto 99.44±0.06 67.23±0.07 39.90±0.42 97.47±0.04 52.87±0.64 32.15±0.04 35.92±0.43 91.89±0.17
FedPer 99.47±0.03 63.53±0.21 39.80±0.39 97.44±0.06 49.63±0.54 33.84±0.34 38.45±0.85 91.85±0.24
FedRep 99.56±0.03 67.56±0.31 40.85±0.37 97.56±0.04 52.39±0.35 37.27±0.20 39.95±0.61 92.25±0.20
FedRoD 99.52±0.05 62.30±0.02 37.95±0.22 97.52±0.04 50.94±0.11 36.43±0.05 37.99±0.26 92.16±0.12
FedPHP 99.30±0.13 63.09±0.04 37.06±0.57 97.38±0.16 50.52±0.16 35.69±3.26 29.90±0.51 90.52±0.19
FedProto 99.49±0.04 69.18±0.03 36.78±0.07 97.40±0.02 52.70±0.33 31.21±0.16 26.38±0.40 96.34±0.58

GPFL 99.85±0.08 71.78±0.26 44.58±0.06 97.81±0.09 61.86±0.31 43.37±0.53 43.70±0.44 97.97±0.14

throughout the FL process, but the large backbone ResNet-
18 cannot learn to extract features well in early iterations.
Then, poor global features and prototypes mislead local train-
ing, so FedPHP and FedProto achieve low accuracy on the
large backbone ResNet-18. Besides, due to the classifica-
tion boundary intersection, FedProto performs worse on the
dataset with more categories (e.g., Tiny-ImageNet with 200
categories). By sharing the feature extractor and guiding
the feature extraction with the trainable global embeddings,
GPFL outperforms FedProto by 17.32% on TINY*.
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(b) Training loss curves in the feature shift setting.

Figure 3. Curves (smoothed) on Amazon Review dataset.

Feature shift setting. Using the Amazon Review dataset,
each client contains the data from one domain with the per-
sonalized task of classifying the samples into positive or
negative emotions. In other words, the data on every client
belong to two categories, which is different from the label

skew settings. In Figure 3a, we find that the traditional FL
methods FedAvg and FedProx achieve good performance
with a little gap compared to the pFL methods. It means
that traditional FL methods suffer more in the label skew
setting than in the feature shift setting. Besides, FedAvg can
maintain its performance after reaching the best accuracy.
In contrast, the accuracy curves of several pFL methods, in-
cluding Ditto, pFedMe, FedRep, FedProto, and Per-FedAvg,
exhibit a drop in accuracy after reaching the peak accu-
racy, despite their training having converged (Figure 3b),
which means overfitting. FedProto and Per-FedAvg achieve
poor performance with a significant drop. On the contrary,
GPFL performs the best and maintains its performance when
converged, as the global information in GCE mitigates the
overfitting of personalized models. FedRoD does not show
superiority here, as its BSM loss is only designed for the
label skew settings to tackle statistical heterogeneity.
Real world setting. From Table 2, we find that the
regularization-based pFL methods (pFedMe and Ditto) per-
form well on HAR and the regularization-based traditional
FL method FedProx outperforms FedAvg by 1.14%. How-
ever, most other pFL methods, e.g., Per-FedAvg, FedPer,
FedRep, FedPHP, and FedProto perform worse than tradi-
tional FL methods (FedAvg and FedProx). FedAvg out-
performs Per-FedAvg and FedPer by 10.08% and 11.62%,
respectively. The GCE stores the global embedding of each
activity, which guides the feature extractor to extract the
global characteristic of one kind of human activity. Mean-
while, the personalized task can also guide the feature extrac-
tor to extract user-specific characteristics. Thus, our GPFL
outperforms all baselines by up to 2.19% in this scenario.

4.4. Scalability

Based on MOON [28], we split the Cifar100 dataset into
20/30/50/100/500 sub-datasets to form 20/30/50/100/500
clients, respectively, in the practical label skew settings (β =



Table 2. The test accuracy (%) on the IoT task regarding effectiveness and the CV task regarding scalability.

Tasks Effectiveness Scalability

Clients N = 30 N = 30 N = 50 N = 100 N = 500 N = 10|50 N = 30|50
FedAvg 87.20±0.27 31.15±0.05 31.90±0.27 31.95±0.37 29.51±0.73 25.28±0.32 29.04±0.21
FedProx 88.34±0.24 31.21±0.08 31.94±0.30 31.97±0.24 29.84±0.81 25.65±0.34 29.04±0.36

Per-FedAvg 77.12±0.17 41.57±0.21 44.31±0.20 36.07±0.24 / 40.20±0.21 42.96±0.42
pFedMe 91.57±0.12 47.04±0.28 48.36±0.64 46.45±0.18 31.30±0.89 40.27±0.54 42.19±0.38
Ditto 91.53±0.09 52.53±0.42 54.22±0.04 52.89±0.22 30.24±0.72 48.23±0.35 50.98±0.29
FedPer 75.58±0.13 44.98±0.20 44.22±0.18 40.37±0.41 30.56±0.59 43.64±0.42 43.54±0.43
FedRep 80.44±0.42 50.24±0.01 47.41±0.18 44.61±0.20 31.92±0.71 46.85±0.12 47.63±0.26
FedRoD 89.91±0.23 50.11±0.03 49.38±0.01 46.65±0.22 34.61±0.98 46.32±0.02 49.15±0.12
FedPHP 87.94±0.54 49.28±0.06 52.44±0.16 49.70±0.31 30.26±0.84 45.71±0.21 48.65±0.24
FedProto 84.73±0.32 52.32±0.18 50.29±0.18 47.11±0.15 34.91±0.83 49.23±0.28 50.49±0.32

GPFL 93.76±0.16 60.96±0.65 60.98±0.32 57.11±0.21 37.28±0.63 53.26±0.39 59.18±0.53

0.1). We have shown the results for 20 clients in Table 1,
so we only show the results for 30/50/100/500 clients in
Table 2. The meta-learning in Per-FedAvg requires at least
two batches of data, which is invalid on some clients in our
unbalanced settings when N = 500. Since the total sample
amount is constant on Cifar100, the average sample amount
per client decreases when N increases and it is unreasonable
to compare results between different N .

In Table 2, GPFL still outperforms other baselines with
various N . When N = 500, it is hard to achieve personaliza-
tion without enough client data for pFL methods. Many pFL
baselines, e.g., Ditto, FedPer, and FedPHP perform similarly
with FedAvg in this situation. Since GCE provides extra in-
formation and relieves the data shortage issue on each client,
GPFL outperforms all baselines.

In practice, clients join the FL process with their data, and
more clients means more total data in FL. To simulate a more
realistic scenario, we randomly select 10/30/50 clients from
the 50 clients generated above to form a setting with a total
of 10/30/50 clients, denoted by N = 10|50 / N = 30|50
/ N = 50. In these settings, as shown in Table 2, all the
methods benefit from the client amount increase, and GPFL
still outperforms other baselines, showing the scalability of
GPFL in practice.

4.5. Fairness

According to the work [45], personalization may result
in poorer performance on some devices despite improving
the average. It is essential to improve both performance
and fairness when designing a pFL method. Here, follow-
ing Ditto [29], we evaluate the fairness of all the meth-
ods through the standard deviation of the local accuracy
on clients when reaching the best-averaged accuracy (i.e.,
the test accuracy mentioned above), as shown in Table 3.
To weaken the effect of the test accuracy magnitude for a

Table 3. The fairness, i.e., standard deviation (%, ↓) [the coefficient
of variation (×10−2, ↓)] of the local accuracy on clients when
reaching the best test accuracy on the CV, NLP, and IoT tasks in
pathological label skew (paLS), practical label skew (prLS, β =
0.1), feature shift, and real world settings.

Settings paLS prLS Feature Shift Real World

Clients N = 20 N = 100 N = 4 N = 30

Datasets TINY Cifar100 Amazon Review HAR

FedAvg 3.57 [25.14] 7.06 [22.10] 1.62 [1.84] 17.10 [19.61]
FedProx 3.51 [25.34] 7.08 [22.15] 1.60 [1.81] 17.35 [19.64]

Per-FedAvg 3.27 [11.65] 8.13 [22.54] 2.82 [3.29] 14.15 [18.35]
pFedMe 3.36 [12.12] 8.19 [17.63] 1.99 [2.25] 12.65 [13.81]
Ditto 3.84 [9.62] 9.89 [18.70] 2.12 [2.40] 13.20 [14.42]
FedPer 3.39 [8.51] 8.91 [22.07] 2.18 [2.47] 19.49 [25.79]
FedRep 3.53 [8.64] 8.99 [20.15] 2.15 [2.43] 21.16 [26.30]
FedRoD 3.46 [9.12] 8.87 [19.01] 2.24 [2.54] 16.93 [18.83]
FedPHP 3.81 [10.28] 9.45 [19.01] 1.96 [2.22] 13.81 [15.70]
FedProto 4.13 [11.23] 9.98 [21.18] 1.82 [2.08] 11.77 [13.89]

GPFL 3.21 [7.20] 8.05 [14.10] 1.62 [1.80] 8.42 [8.98]

more fair comparison, we also follow the work [22] to use
the coefficient of variation metric for fairness evaluation.

In Table 3, our GPFL outperforms other pFL methods,
especially in the real world setting and the settings with
many clients, because sharing global information among
clients promotes fairness. By learning both the global and
personalized feature information, GPFL achieves a higher
accuracy with lower discrimination compared to FedPer,
FedRep, and FedRoD, which focus on learning only one kind
of feature information during local training. The traditional
FL methods achieve a low standard deviation but a high
coefficient of variation, as their personalization performance
is poor. Clients in FedProto only share prototypes but keep
the model parameters secret, which limits the capacity of
global information and leads to low fairness.



4.6. Stability

Table 4. The test accuracy (%) of the pFL methods on Cifar100
with N = 50, β = 0.1, and ρ ≤ 1.

ρ = 1 ρ ∈ [0.5, 1] ρ ∈ [0.1, 1]

Per-FedAvg 44.31±0.20 43.66±1.38 43.63±1.07
pFedMe 48.36±0.64 43.28±0.85 41.71±1.02
Ditto 50.59±0.22 49.78±0.36 48.33±3.27
FedPer 44.22±0.18 44.12±0.21 44.07±0.27
FedRep 47.41±0.18 46.93±0.21 46.61±0.22
FedRoD 49.38±0.01 49.07±0.43 47.80±1.35
FedPHP 50.23±0.12 45.19±0.07 44.43±0.12
FedProto 50.29±0.18 49.45±0.21 46.05±4.03

GPFL 60.98±0.32 60.60±0.51 60.04±0.28

In real world scenarios, some clients cannot join the
whole FL process because of low battery, lack of compu-
tation resources, unstable network, etc. Here, we simulate
this scenario by varying the client joining ratio ρ in every
iteration on the Cifar100 dataset. Specifically, we uniformly
sample a value for ρ within the given range in each iteration.

In Table 4, our GPFL still maintains its superiority among
the pFL methods, while some baselines perform worse with
a more extensive range of ρ. For example, pFedMe and
FedPHP drop 6.65% and 5.80% from ρ = 1 to ρ ∈ [0.1, 1],
respectively. Furthermore, Per-FedAvg, pFedMe, Ditto, Fe-
dRoD, and FedProto achieve erratic performance (large stan-
dard deviations) in dynamic settings.

4.7. Privacy

Table 5. PSNR (dB, ↓) values for privacy evaluation on Cifar100 in
label skew setting. “Fed” is omitted for method names.

Per-fe Rep-fe Avg-fe Avg RoD-fe RoD GPFL-fe GPFL-sfe GPFL-sm

7.94 7.73 6.92 7.30 6.82 7.48 6.56 6.41 6.71

Following FedCG, we evaluate the privacy-preserving
ability of GPFL with representative baselines in Peak Signal-
to-Noise Ratio (PSNR) [20]. For FedPer, FedRep, FedAvg,
and FedRoD, we conduct DLG attack for feature extractor
(with suffix “-fe”). For FedAvg and FedRoD, we also con-
duct DLG attacks for the entire model. For GPFL, we
conduct DLG attack for feature extractor, pseudo feature
extractor (with suffix “-sfe”), and pseudo model (with suffix
“-sm”).

In Table 5, all the PSNR values that correspond to GPFL
are smaller than other baselines, which supports the analysis
in Sec. 3.3. Since the parameters of the last FC layer in
a backbone also contain class information [42], the entire
model is more susceptible to privacy leakage than the feature

extractor in FedAvg and FedRoD. However, due to the global
characteristic of GCE, GPFL-sm still maintains the privacy-
preserving ability.

5. Ablation Study
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Figure 4. Illustration of variants for ablation study.

To further show the effectiveness of each proposed mod-
ule, we remove them from GPFL and create five variants
(“w/o” is short for “without”): (a) w/o personalized condi-
tional input (PCI), (b) w/o CoV, (c) w/o Lmlg

i , (d) w/o GCE

(ĜCE also disappears), and (e) w/o CoV & GCE (FedPer).
As shown in Figure 4, we input the constant vector a and b
instead of the dynamic pi and g to remove PCI. We report
the test accuracy of GPFL and its five variants in Table 6.

Table 6. The accuracy (%) of GPFL and its variants on TINY*.

GPFL w/o PCI w/o CoV w/o Lmlg
i w/o GCE FedPer

43.70 42.74 40.23 41.72 39.48 38.45

We analyze each module according to Table 6. (a) Like
g, a and b are identical across clients, so GPFL inputs local
data distribution information for CoV while w/o PCI does
not. With this personalized information, GPFL performs
better than w/o PCI. Even with the identical a/b, w/o PCI
still performs well thanks to end-to-end training. (b) Re-
moving CoV causes a 3.47% accuracy decrease, as guiding
one feature vector to learn both global and personalized in-
formation simultaneously is confusing. (c) The accuracy
gap between GPFL and w/o Lmlg

i shows the effectiveness of
the magnitude-level global guidance, since w/o Lmlg

i only
removes the Lmlg

i objective. (d) The accuracy decreases
further when we remove the angle-level global guidance.
Without learning global information during local training,
the accuracy drops by 4.22%. As the trainable affine map-
ping adaptively adjusts the original features, w/o GCE still
slightly outperforms FedPer.



6. Conclusion
For the collaborative learning and personalization goals

of pFL, we propose GPFL to simultaneously learn global
and personalized information on the client. We show the
superiority of GPFL through extensive experiments regard-
ing effectiveness, scalability, fairness, stability, and privacy.
GPFL outperforms SOTA pFL methods by a large margin.
Besides, we show the effectiveness of each proposed module.

Acknowledgements
This work was supported in part by the Shanghai Key

Laboratory of Scalable Computing and Systems, National
Key R&D Program of China (2022YFB4402102), Inter-
net of Things special subject program, China Institute
of IoT (Wuxi), Wuxi IoT Innovation Promotion Center
(2022SP-T13-C), Industry-university-research Cooperation
Funding Project from the Eighth Research Institute in China
Aerospace Science and Technology Corporation (Shang-
hai) (USCAST2022-17), and Intel Corporation (UFunding
12679). This work was also partially supported by the Pro-
gram of Technology Innovation of the Science and Tech-
nology Commission of Shanghai Municipality (Granted No.
21511104700 and 22DZ1100103).

References
[1] Zareen Alamgir, Farwa K Khan, and Saira Karim. Federated

Recommenders: Methods, Challenges and Future. Cluster
Computing, 25(6):4075–4096, 2022. 1

[2] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra,
and Jorge L Reyes-Ortiz. Human activity recognition on
smartphones using a multiclass hardware-friendly support
vector machine. In Ambient Assisted Living and Home Care:
4th International Workshop, IWAAL 2012, Vitoria-Gasteiz,
Spain, December 3-5, 2012. Proceedings 4, pages 216–223.
Springer, 2012. 4

[3] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Ku-
mar Singh, and Sunav Choudhary. Federated Learning with
Personalization Layers. arXiv preprint arXiv:1912.00818,
2019. 1, 2, 4

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer Normalization. arXiv preprint arXiv:1607.06450, 2016.
3

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Repre-
sentation Learning: A Review and New Perspectives. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
35(8):1798–1828, 2013. 3

[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating Or Propagating Gradients Through Stochastic
Neurons for Conditional Computation. arXiv preprint
arXiv:1308.3432, 2013. 2

[7] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang
He. Federated Meta-Learning With Fast Convergence and
Efficient Communication. arXiv preprint arXiv:1802.07876,
2018. 2

[8] Hong-You Chen and Wei-Lun Chao. On Bridging Generic
and Personalized Federated Learning for Image Classification.
In ICLR, 2021. 1, 2, 4

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A Simple Framework for Contrastive Learning
of Visual Representations. In ICML, 2020. 3

[10] Yiqiang Chen, Wang Lu, Xin Qin, Jindong Wang, and Xing
Xie. MetaFed: Federated Learning Among Federations With
Cyclic Knowledge Distillation for Personalized Healthcare.
arXiv preprint arXiv:2206.08516, 2022. 1

[11] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A
Downsampled Variant of Imagenet as an Alternative to the
Cifar Datasets. arXiv preprint arXiv:1707.08819, 2017. 4

[12] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay
Shakkottai. Exploiting Shared Representations for Personal-
ized Federated Learning. In ICML, 2021. 1, 2, 4

[13] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Per-
sonalized Federated Learning with Theoretical Guarantees: A
Model-Agnostic Meta-Learning Approach. In NeurIPS, 2020.
2, 4

[14] Haozhe Feng, Zhaoyang You, Minghao Chen, Tianye Zhang,
Minfeng Zhu, Fei Wu, Chao Wu, and Wei Chen. KD3A: Un-
supervised Multi-Source Decentralized Domain Adaptation
via Knowledge Distillation. In ICML, 2021. 4, 5

[15] Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim,
Chandra Thapa, Kyuyeon Kim, Seyit A Camtep, Hyoung-
shick Kim, and Surya Nepal. End-to-end evaluation of feder-
ated learning and split learning for internet of things. In 2020
International Symposium on Reliable Distributed Systems
(SRDS), pages 91–100. IEEE, 2020. 2, 5

[16] Marta Garnelo, Dan Rosenbaum, Christopher Maddison,
Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye
Teh, Danilo Rezende, and SM Ali Eslami. Conditional Neural
Processes. In ICML, 2018. 2

[17] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and
Michael Moeller. Inverting Gradients-How Easy Is It to Break
Privacy in Federated Learning? In NeurIPS, 2020. 4

[18] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grau-
man, Tajana Rosing, and Rogerio Feris. Spottune: Transfer
Learning through Adaptive Fine-Tuning. In CVPR, 2019. 2,
3

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In CVPR,
2016. 4

[20] Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs.
ssim. In ICPR, 2010. 8

[21] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Feder-
ated Visual Classification With Real-World Data Distribution.
In ECCV, 2020. 1

[22] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al.
A Quantitative Measure of Fairness and Discrimination. East-
ern Research Laboratory, Digital Equipment Corporation,
Hudson, MA, 21, 1984. 7

[23] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov. Bag of Tricks for Efficient Text Classification. In
EACL, 2017. 4



[24] Peter Kairouz, H Brendan McMahan, Brendan Avent, Au-
rélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and Open Problems in Federated
Learning. arXiv preprint arXiv:1912.04977, 2019. 1

[25] Georgios A Kaissis, Marcus R Makowski, Daniel Rückert,
and Rickmer F Braren. Secure, Privacy-Preserving and Feder-
ated Machine Learning in Medical Imaging. Nature Machine
Intelligence, 2(6):305–311, 2020. 1

[26] Alex Krizhevsky and Hinton Geoffrey. Learning Multiple
Layers of Features From Tiny Images. Technical Report,
2009. 4

[27] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Fed-
erated Learning on Non-IID Data Silos: An Experimental
Study. In ICDE, 2022. 2, 5

[28] Qinbin Li, Bingsheng He, and Dawn Song. Model-
Contrastive Federated Learning. In CVPR, 2021. 3, 5, 6

[29] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith.
Ditto: Fair and Robust Federated Learning Through Personal-
ization. In ICML, 2021. 2, 4, 7

[30] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi,
Ameet Talwalkar, and Virginia Smith. Federated Optimization
in Heterogeneous Networks. In MLSys, 2020. 2, 4

[31] Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael Kamp,
and Qi Dou. FedBN: Federated Learning on Non-IID Features
via Local Batch Normalization. In ICLR, 2021. 2, 5

[32] Xin-Chun Li, De-Chuan Zhan, Yunfeng Shao, Bingshuai Li,
and Shaoming Song. FedPHP: Federated Personalization with
Inherited Private Models. In ECML PKDD, 2021. 1, 4

[33] Yuanzhi Li and Yang Yuan. Convergence Analysis of Two-
Layer Neural Networks with Relu Activation. In NeurIPS,
2017. 3

[34] Zexi Li, Qunwei Li, Yi Zhou, Wenliang Zhong, Guannan
Zhang, and Chao Wu. Edge-cloud collaborative learning with
federated and centralized features. In Proceedings of the
46th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2023. 1

[35] Zexi Li, Tao Lin, Xinyi Shang, and Chao Wu. Revisiting
weighted aggregation in federated learning with neural net-
works. In International Conference on Machine Learning,
2023. 1

[36] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi.
Ensemble Distillation for Robust Model Fusion in Federated
Learning. In NeurIPS, 2020. 2, 5

[37] Lanlan Liu and Jia Deng. Dynamic Deep Neural Networks:
Optimizing Accuracy-Efficiency Trade-Offs by Selective Ex-
ecution. In AAAI, 2018. 2

[38] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu,
Yuanyuan Chen, Lican Feng, Tianjian Chen, Han Yu, and
Qiang Yang. Fedvision: An Online Visual Object Detection
Platform Powered By Federated Learning. In AAAI, 2020. 1

[39] Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and
Jiashi Feng. No Fear of Heterogeneity: Classifier Calibration
for Federated Learning with Non-IID data. In NeurIPS, 2021.
4

[40] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-

Efficient Learning of Deep Networks from Decentralized
Data. In AISTATS, 2017. 2, 4, 5

[41] Milad Nasr, Reza Shokri, and Amir Houmansadr. Compre-
hensive privacy analysis of deep learning. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy (SP),
pages 1–15, 2018. 4

[42] Yifan Niu and Weihong Deng. Federated Learning for Face
Recognition With Gradient Correction. In AAAI, 2022. 8

[43] Boris Oreshkin, Pau Rodríguez López, and Alexandre La-
coste. Tadam: Task Dependent Adaptive Metric for Improved
Few-Shot Learning. In NeurIPS, 2018. 2, 3

[44] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment Matching for Multi-Source
Domain Adaptation. In ICCV, 2019. 4

[45] Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed,
Mike Rabbat, Maziar Sanjabi, and Lin Xiao. Federated Learn-
ing with Partial Model Personalization. In ICML, 2022. 7

[46] Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al.
Balanced Meta-Softmax for Long-Tailed Visual Recognition.
In NeurIPS, 2020. 2

[47] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik.
Personalized Federated Learning using Hypernetworks. In
ICML, 2021. 5

[48] Kihyuk Sohn. Improved Deep Metric Learning With Multi-
Class N-Pair Loss Objective. In NeurIPS, 2016. 3

[49] Canh T Dinh, Nguyen Tran, and Tuan Dung Nguyen. Per-
sonalized Federated Learning with Moreau Envelopes. In
NeurIPS, 2020. 1, 2, 4

[50] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang.
Towards Personalized Federated Learning. IEEE Transactions
on Neural Networks and Learning Systems, 2022. 1

[51] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua
Lu, Jing Jiang, and Chengqi Zhang. Fedproto: Federated
Prototype Learning across Heterogeneous Clients. In AAAI,
2022. 1, 3, 4

[52] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
Data Using T-SNE. Journal of Machine Learning Research,
9(11), 2008. 5

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is All You Need. In NeurIPS, 2017. 3

[54] Chi Wang, Yang Hua, Zheng Lu, Jian Gao, and Neil Robert-
son. Temporal Meta-Adaptor for Video Object Detection. In
BMVC, 2021. 3

[55] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and
H. Vincent Poor. Tackling the Objective Inconsistency Prob-
lem in Heterogeneous Federated Optimization. In NeurIPS,
2020. 5

[56] Yuezhou Wu, Yan Kang, Jiahuan Luo, Yuanqin He, Lixin
Fan, Rong Pan, and Qiang Yang. Fedcg: Leverage condi-
tional gan for protecting privacy and maintaining competitive
performance in federated learning. In NeurIPS, 2022. 4

[57] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.
Blockdrop: Dynamic Inference Paths in Residual Networks.
In CVPR, 2018. 2



[58] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017. 4

[59] Donggeun Yoo and In So Kweon. Learning loss for active
learning. In CVPR, 2019. 4

[60] Ming Zeng, Le T Nguyen, Bo Yu, Ole J Mengshoel, Jiang
Zhu, Pang Wu, and Joy Zhang. Convolutional neural networks
for human activity recognition using mobile sensors. In 6th
international conference on mobile computing, applications
and services, pages 197–205. IEEE, 2014. 5

[61] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wen-
chao Xu, and Feijie Wu. Parameterized Knowledge Transfer
for Personalized Federated Learning. In NeurIPS, 2021. 3

[62] Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui
Xue, Ruhui Ma, and Haibing Guan. FedALA: Adaptive Local
Aggregation for Personalized Federated Learning. In AAAI,
2023. 1

[63] Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhen-
gui Xue, Ruhui Ma, and Haibing Guan. Fedcp: Separating
feature information for personalized federated learning via
conditional policy. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2023.
1

[64] Jianqing Zhang, Dongjing Wang, and Dongjin Yu. TL-
SAN: Time-aware Long-and Short-term Attention Network
for Next-item Recommendation. Neurocomputing, 441:179–
191, 2021. 3

[65] Qiming Zhang, Jing Zhang, Wei Liu, and Dacheng Tao. Cate-
gory anchor-guided unsupervised domain adaptation for se-
mantic segmentation. In NeurIPS, 2019. 1

[66] Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Kr-
ishnamachari, and A Salman Avestimehr. Federated learning
for the internet of things: applications, challenges, and op-
portunities. IEEE Internet of Things Magazine, 5(1):24–29,
2022. 2, 5

[67] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-Level
Convolutional Networks for Text Classification. In NeurIPS,
2015. 4

[68] Zhilu Zhang and Mert Sabuncu. Generalized Cross Entropy
Loss for Training Deep Neural Networks With Noisy Labels.
In NeurIPS, 2018. 4

[69] Ligeng Zhu, Zhijian Liu, and Song Han. Deep Leakage from
Gradients. In NeurIPS, 2019. 4


