
Exploring the Benefits of Visual Prompting in Differential Privacy

Yizhe Li1, Yu-Lin Tsai2, Chia-Mu Yu2, Pin-Yu Chen3, and Xuebin Ren1

1School of Computer Science and Technology, Xi’an Jiaotong University
2National Yang Ming Chiao Tung University

3IBM Research

Abstract

Visual Prompting (VP) is an emerging and powerful
technique that allows sample-efficient adaptation to down-
stream tasks by engineering a well-trained frozen source
model. In this work, we explore the benefits of VP in con-
structing compelling neural network classifiers with dif-
ferential privacy (DP). We explore and integrate VP into
canonical DP training methods and demonstrate its sim-
plicity and efficiency. In particular, we discover that VP in
tandem with PATE, a state-of-the-art DP training method
that leverages the knowledge transfer from an ensemble of
teachers, achieves the state-of-the-art privacy-utility trade-
off with minimum expenditure of privacy budget. Moreover,
we conduct additional experiments on cross-domain image
classification with a sufficient domain gap to further unveil
the advantage of VP in DP. Lastly, we also conduct exten-
sive ablation studies to validate the effectiveness and contri-
bution of VP under DP consideration. Our code is available
at https://github.com/EzzzLi/Prompt-PATE.

1. Introduction
Originating from the domain of deep learning for natural

language processing, prompt engineering has gained signif-
icant popularity as an emergent technique for efficient adop-
tion and adaptation of pre-trained language models for solv-
ing different downstream tasks [24]. In recent years, the no-
tion of prompting has been extended to other domains and
data modalities, especially in computer vision and images
[18, 3]. Specifically, the term visual prompting (VP) has
been coined by [3], and the authors show competitive accu-
racy of VP on some downstream image classification tasks
over linear probing (i.e., attaching a trainable linear head to
a pre-trained model) when used with a large vision model
such as CLIP [35] (only the image encoder). It is worth not-
ing that VP in [3] can be viewed as a special case of model

reprogramming (MR) [8] on a pre-trained model. MR in-
serts an input transformation layer and an output mapping
layer into a pre-trained frozen model for fine-tuning down-
stream tasks. MR is equivalent to VP in [3] when the in-
put transformation is a trainable input perturbation and the
output mapping is a specified source-target label correspon-
dence or a set of text prompts for label inference (e.g., “a
photo of [predicted class]”). Throughout this paper, for ease
of elucidation, we will use VP and MR interchangeably.

VP has been extensively studied for various use cases,
ranging from image classification [3], enhancing adversar-
ial robustness [6], image-inpainting [4], cross-domain adap-
tation [39, 31], to name a few. In this paper, we explore yet
another benefit of VP with pre-trained models – deep learn-
ing with differential privacy (DP). In deep learning, scal-
ing the training parameters of a neural network often leads
to improved task performance (e.g., a classification model
with higher accuracy) [19]. However, with a DP budget,
training a larger neural network usually means more con-
sumption of data privacy [27]. Motivated by this dilemma
of the tradeoff between neural network capacity and DP, we
aim to study the following fundamental question:

Can VP with a pre-trained model (trained on non-private
data) improve the privacy-accuracy tradeoff in off-the-shelf

DP-training mechanisms?

In this paper, we give an affirmative answer to this question,
validated through a comprehensive analysis and empirical
comparisons. We purposely focus on existing DP-training
mechanisms, in order to study the benefit of improved per-
formance contributed by VP. Our proposed approach ap-
plies VP (at data inputs) to off-the-shelf DP-training mech-
anisms, together with a pre-trained model trained on non-
private data. Particularly, when VP is used in PATE (Pri-
vate Aggregation of Teacher Ensembles) [33], a DP training
mechanism, we show that the classification accuracy under
a privacy constraint can achieve the current state-of-the-art
performance (SOTA) (over 97%) on the common bench-
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mark of CIFAR-10 classification task. Furthermore, we also
demonstrate that the performance increases with minimum
expenditure of privacy budget. Consequently, our results
uncovered new benefits of VP in DP and offer new use cases
and insights into prompt engineering.
Contribution. We highlight our main contributions as fol-
lows. We are the first to explore the benefits of VP with pre-
trained models in the design of DP classifiers. By leverag-
ing VP, we present Prom-PATE as a training strategy for DP
classifiers. While sophisticated backbones are usually diffi-
cult to be used in DP training, Prom-PATE has great flexi-
bility in utilizing the high accuracy of the backbone without
compromising privacy. Overall, Prom-PATE enjoys the fol-
lowing characteristics. Prom-PATE relies on VP to resolve
the demand for huge data from PATE, improving practi-
cality and accuracy. In the design, the public pre-trained
models are utilized twice, significantly growing the accu-
racy. Through extensive experiments, we demonstrate that
Prom-PATE outperforms current DP classifiers on CIFAR-
10, showing an accuracy 97.07% under a privacy budget
of ϵ = 1.019. We also show significant accuracy gain of
Prom-PATE in other datasets over existing methods.

2. Related Work and Background
Visual Prompting (VP) and Model Reprogramming
(MR). Both VP and MR focus on the problem setup of
reusing a pre-trained model to perform a new task (either
in-domain or cross-domain) without changing the model
weights during fine-tuning (i.g., the pre-trained model is
“frozen”). MR was first studied through the lens of adver-
sarial machine learning (ML). Elsayed et al. [14] showed
that an attacker can “steal” an ML model’s computation re-
source to perform another task without the model owner’s
consent. Later on, MR was shown to deliver competi-
tive image classification results in data-limited and cross-
domain settings [39, 31], wherein the authors demonstrated
the possibility of reusing a pre-trained model from a source
domain (e.g., general image classifiers or language mod-
els) to solve challenging image classification problems in a
target domain (e.g., bio-medical measurements). We refer
the readers to the survey paper of MR in [8] for more de-
tails. VP through a trainable (padded) universal input per-
turbation is revisited in [3], and the authors showed com-
petitive results on some subset of 12 image classification
tasks over linear probing and full fine-tuning on pre-trained
image classifiers and the CLIP model [35]. Chen et al. [7]
improved VP by introducing iterative label mapping during
training. Beyond image classification, VP was extended to
image inpainting tasks [4]. In this paper, we note that we
limit the scope of VP to input-level prompt engineering as
studied in [3, 6], and we leave the broader notion of VP
via injecting trainable token embeddings (e.g., the visual
prompt tuning as in [18]) to different layers of a pre-trained

model as future work.

Differentially Private Classifiers. One of the most
widely used techniques to achieve DP deep learning is
DPSGD [1], where DP noise is added to the clipped gra-
dient updates during the training process. The definition
and properties of DP are provided in the Supplementary
Material. DPSGD suffers from information loss due to
the fact that the gradient clipping and the noise scale are
proportional to the norm of clipped gradient. Recent re-
search [10, 30] finds that we may overestimate the privacy
loss for DPSGD because the attacker does not have access
to the gradient in each training iteration. One of the current
trends in training a DP classifier is to privately fine-tune
large pre-trained models such as BERT variants and GPT-
2 [45, 44, 23]. This private fine-tuning strategy can also
be applied to the realm of images [16, 27, 21, 37, 11, 5].
For example, Tramèr and Boneh [37] improved the model
utility by conducting private fine-tuning with SimCLR fea-
tures [9]. De et al. [11] also pre-trained the model with the
public data. After that, they apply many techniques includ-
ing large batch size and weight standardization to improve
accuracy. Bu et al. [5]’s DP classifier relies on the notion of
ghost clipping to calculate the clipped gradient required by
DPSGD.

PATE [33, 34] is another approach that trains a DP clas-
sifier. In PATE, the sensitive dataset is first partitioned into
slices, with each teacher model trained on a different slice
of the data (through SGD). Then, the non-sensitive sam-
ples labeled by the DP noisy votes from teacher models are
used to train a student model, which turns out to be a DP
classifier. Compared to DPSGD, fewer research efforts are
put into the improvement of PATE. For example, Private-
kNN [46] relies on the private release of k-nearest neighbor
(kNN) queries to avoid splitting the training set in PATE.

Visual Prompting with DP. A recent work that combines
VP and DP is Reprogrammable-FL [2]. Reprogrammable-
FL is designed for DP federated learning (FL). More specif-
ically, Reprogrammable-FL considers multiple clients, each
with a common pre-trained model in each server-client in-
teraction. The aim is to learn privatized visual prompts
and label mappings for each client using DPSGD [1], en-
abling DPFL with more efficient use of the privacy bud-
get. Reprogrammable-FL outperforms methods that rely on
private fine-tuning from pre-trained models, currently con-
sidered the standard for achieving high accuracy in DPFL.
However, in each training round of Reprogrammable-FL,
the update of visual prompts and label mapping for each
client is still subject to clipped noisy gradient updates to
ensure privacy. As a result, the overall performance may
still degrade compared to the non-private setting of visual
prompting [3], as will be demonstrated in this paper.



3. Main Approach
In this section, we aim to investigate how VP can im-

prove the privacy-utility trade-off of deep learning models.

Notations. As VP was originally proposed for model re-
utilization, we denote a source model fS(θS ;x) which
is trained from a large, source (pubic) dataset DS :=
{(xS , yS)} with xS , where xS denotes the feature and yS
denotes the label, both from the source domain. We denote
our target (private) dataset DT := {(xT , yT )} with xT in
which we re-utilize model fS(θS ;x) to accomplish the task
in DT via VP without modifying the weights θS .

3.1. Design Challenges for DP Classifiers

Though PATE outperforms DPSGD because of the re-
duced noise scale and no information loss from the gradi-
ent clipping, we identify three challenges for designing DP
classifiers based on PATE.

• (C1) The performance of PATE is sensitive to data par-
titioning. In particular, the teacher models may per-
form badly when the sensitive data is limited in size.
As also shown in [46], each teacher model has an accu-
racy under 50% due to only 200 images for each par-
tition, given 250 teacher models for CIFAR-10. One
might leverage transfer learning (TL), as suggested in
[27], to train teacher models in PATE. Specifically, this
involves using a public pre-trained model and fine-
tuning it on the private dataset. However, Table 1
shows that this TL-based method leads to inefficient
performance in PATE1.

• (C2) A current trend in training a high-accuracy clas-
sifier in a DP manner is to take advantage of either
public labeled data or a public pre-trained model. For
example, De et al. [11] pre-train the model with Im-
ageNet (seen as a public dataset) and then fine-tune
the model with CIFAR-10 (seen as a private dataset)
through DPSGD. De et al. achieve the predicting ac-
curacy 94.7% under ϵ = 1. While many pieces of
evidence show that properly exploiting public datasets
and models may significantly improve accuracy, a nat-
ural question that arises is whether exploiting public
datasets and models more times in the design of DP
classifiers benefits accuracy.

• (C3) Privately training a model pre-trained on the pub-
lic dataset is a promising solution for DP-classifiers.
However, take ImageNet and CIFAR-10 as examples.
They may share a similar distribution and so make the
above training strategy doubtful in DP guarantee [38].

1The poor accuracy of the TL-based method can be attributed to the
over-partitioning of the sensitive data. In such a case, data are insufficient
for the training of each teacher model.

CIFAR-10 Prom-PATE (ours) TL-based method
ϵ 1.019 1.021

Accuracy ± Std(%) 97.07 ± 0.50 76.93 ± 0.81

Table 1. Comparison of Prom-PATE and TL-based method.

3.2. Prom-PATE

Here, we present a new approach, Prom-PATE, which
leverages VP and PATE for private learning. The workflow
of Prom-PATE is shown in Figure 1. Prom-PATE is a simple
yet effective approach to training a classifier in a DP man-
ner. Basically, Prom-PATE follows all of the steps in PATE
[34, 33] except that each teacher model in PATE is repro-
grammed from a pre-trained source model to a re-teacher
model. The structure of re-teacher model is also shown in
Figure 1. Such simplicity of Prom-PATE also enjoys the
direct inheritance of DP guarantee from PATE.

Prom-PATE Procedures. Prom-PATE consists of three
steps: (a) training re-teacher models, (b) executing pri-
vate aggregation, and (c) training a student model. Step
(a) considers a public pre-trained model as a source model
and trains visual prompting and label mapping on sensitive
data. In particular, we are aimed to train only the prompting
parameter ω while the pre-trained source model is always
fixed. The prompting parameter ω (including trainable pa-
rameters ω1 and ω2 in Eq. (1) and Eq. (2), respectively)
and collectively called re-teacher model (see Figure 1). We
note that the re-teacher model is trained on the sensitive
dataset through SGD, and hence does not fulfill DP. The
next step contributes to the DP guarantee of Prom-PATE.
Step (b) uses PATE to aggregate the predictions of the re-
teacher models; i.e., when a sample is fed into re-teacher
models, all of them have votes and use the DP noisy top-1
outcome as the label. In step (c), a student model is trained
using semi-supervised learning with a pre-trained classifier.
In particular, certain unlabeled public samples with labels
from the DP noisy votes are used to train the student model,
which serves as the resulting DP classifier. One can easily
prove that Prom-PATE satisfies DP; the proof can be found
in the Supplementary Materials.

Training re-teacher Models. During the training of each
re-teacher model, we keep the source model fixed while
conducting SGD to update only the label mappings and vi-
sual prompts. The visual prompt x̂S can be expressed as

x̂S = M ⊙ ω1 + (I −M)⊙ ZeroPad(xT ), (1)

where ⊙ stands for Hadamard product, ω1 denotes the train-
able noise parameter, and M denotes the binary mask of
the same dimension with the source data xS (i.e. M ∈
{0, 1}dS , where dS denotes the dimension of the source do-
main image). On the other hand, upon obtaining the pre-



Figure 1. An overview of the proposed Prom-PATE framework.

Figure 2. Illustration of different strategies for label mapping. Left:
we follow the convention setting in VP [3] and apply randomly as-
signed label mapping that is pre-determined before training. Right:
we simply apply a trainable fully-connected layer for the model to
learn the appropriate mapping as proposed in [2]

trained model output ŷS := fS(θS ; x̂S), we further render
it through a label mapping function fℓ(ω2; ·) that maps the
source labels to target labels and obtain the final prediction
ŷT which has the following form

ŷT = softmax(fℓ(ω2; ŷS)). (2)

Algorithmic Details of Prom-PATE. Figure 2 illustrates
different label mapping techniques used in Prom-PATE. To
have a correspondence in label classes between the target
and source domains, in the first approach, we conduct ran-
dom label mapping [3, 39]. Particularly, before training,
we establish a random mapping between the labels of two
domains and train the model according to the predetermined
label mapping (e.g., ImageNet label i→ CIFAR-10 label j).

In this case, ω2 specifies the source-target label correspon-
dence in VP. For the second approach, we consider using
fully connected (FC) layers as part of the label mapping for
greater expressiveness, as studied in [2]. This allows Prom-
PATE to learn how to adapt labels from the source domain to
the target domain. Overall, the re-teacher models in Prom-
PATE only need to train the parameters ω := {ω1, ω2} on
the private/sensitive dataset.

To enforce DP in Prom-PATE, we adopt the DP aggrega-
tion from PATE by considering Confident-GNMax [34, 33].
Specifically, given an unlabelled public data sample x, the
aggregation mechanism would collect the response from ev-
ery re-teacher model, establishing votes for each j-th class,
nj(x). The aggregation then proceeds to determine whether
the noisy votes are consent among re-teachers above a
threshold T . Namely,

max
j

{nj(x)}+N (0, σ2
1) ≥ T. (3)

If the inequality is met, then the aggregation would proceed
to offer noisy votes of re-teachers model as follows.

argmax
j

{nj(x) +N (0, σ2
2)}. (4)

Otherwise, the aggregation would output nothing.
To limit the privacy budget and further enhance perfor-

mance in Prom-PATE, we use a subset of the public training
data and label it using the private aggregation mechanism
while conducting training for the rest of the training data in
a semi-supervised fashion. Similar to PATE, this approach
allows us to improve the privacy-utility trade-off by reduc-
ing the amount of data that needs to be labeled while still
achieving high accuracy.



Since re-teacher models can adapt to the private domain
under small sample complexity, we adopt the approach pre-
sented in [40] for our semi-supervised learning of the stu-
dent model. We explain the details of this approach in Sec-
tion 4.2, where we compare it to other baseline settings.
Using this approach, we can achieve a better privacy-utility
trade-off and improve overall performance of Prom-PATE.

3.3. Why Prom-PATE is Beneficial to DP?

This section provides an explanation as to why Prom-
PATE, as a combination of VP and PATE, can attain an im-
proved privacy-utility trade-off by overcoming the design
challenges (C1)∼(C3).

• (C1) As mentioned in Section 3.1, though PATE is su-
perior to DPSGD from the perspectives of noise scale
and information loss, it can apply only to huge datasets
because, otherwise, the teacher models fail to have de-
cent accuracy, leading to poor student classifier accu-
racy. However, VP has proven to successfully transfer
knowledge from large source domains to small target
domains [39]. Thus, considering each partitioned slice
of the sensitive dataset as a small target domain enables
re-teacher models in Prom-PATE to avoid the problem
of data insufficiency when increasing the number of
re-teacher models, amplifying the benefits of ensem-
ble learning in the ordinary PATE.

• (C2) Prom-PATE is featured by utilizing the public
data twice; once in training re-teacher models and an-
other one in training the student classifier. This can be
attributed to our finding that PATE, in essence, can eas-
ily be modified to take advantage of pre-trained models
(see the design of Prom-PATE in Section 3.2). Such ef-
ficient re-use of the public data can be highly beneficial
to the resulting DP classifier accuracy, as shown in Ta-
ble 2, where Prom-PATE, Prom-PATE w/o pre-trained
classifier, and PATE means utilizing public data two,
one, and zero times, respectively. Obviously, the ac-
curacy grows with the increased number of times for
utilizing public data.

• (C3) Due to cross-domain capability of VP/MR [39, 8,
42], even if the distribution of the dataset for the source
model (used in training re-teacher models) is highly
different from the distribution of the sensitive dataset,
re-teacher models can still successfully attain high ac-
curacies, which consequently improve the accuracy of
the resulting DP classifier. Experiment evidence can
be found in Section 4.4.

4. Experiments
In this section, we empirically evaluate the effectiveness

of Prom-PATE on different datasets, with ImageNet serving

CIFAR-10 Prom-PATE Prom-PATE w/o pre-trained classifier PATE
ϵ 1.019 1.019 1.028

Accuracy ± Std(%) 97.07 ± 0.50 82.20 ± 1.14 32.53 ± 2.57

Table 2. Effect on the pre-trained classifier.

as the public dataset for pre-training models. Additional
experiments can be found in the Supplemental Materials.

4.1. Datasets and Implementation Details

We mainly use CIFAR-10 to benchmark image classifi-
cation. However, we also report the results for CIFAR-100
in the Supplementary Material.

Cross Domain Dataset. To evaluate how Prom-PATE be-
haves in private domain adaptation with a large domain gap,
we consider Blood-MNIST in our experiments. The Blood-
MNIST dataset [43] contains images of blood cells sam-
pled from uninfected patients, with an original shape of
3 × 360 × 363. It contains 17,092 images of 8 different
blood cells (11,959 of training and 3421 of testing) and has
been processed to the size of 3× 28× 28 [43]. We note that
the sample distribution of Blood-MNIST is highly different
from the sample distribution of ImageNet because the im-
ages in Blood-MNIST are taken under microscopic devices
and planar in sight. Due to the large domain gap between
Blood-MNIST and ImageNet, we consider Blood-MNIST
in our experiments to resolve the concern of (C3). Please
see Section 4.4 for more details.

Implementation Details. All of the experiment results
below are derived by averaging the results from three inde-
pendent experiments. We use the official pre-trained mod-
els provided by PyTorch and set the parameters to default
values for all pre-trained models. Regarding the training
of each re-teacher model, since the source model is pre-
trained on ImageNet, the visual prompt has a dimension of
224 × 224. When training the re-teacher model, we opti-
mize the model with Adam whilst using a learning rate of
0.05 with a decay rate of 70%, batch size of 16, and training
epoch of 10. In Section 4.7, we also investigate the effect of
the binary mask M on visual prompt performance. For la-
bel mapping, we randomly select ten classes from the 1,000
source classes as a one-to-one mapping. We also use FC
layers as the label mapping function in Section 4.8.

For the training of the student model, similar to the set-
ting in PATE [34], in the case of CIFAR-10, the student has
access to 9,000 samples that are partially labeled through
the noisy aggregation mechanism (step (b) in Prom-PATE)
in Section 3.2. The performance is evaluated on the remain-
ing 1,000 samples in the testing set. Meanwhile, in the case
of Blood-MNIST [43], the student has access to 2,421 sam-
ples that are as well partially labeled with privacy. The per-
formance is evaluated on the remaining 1,000 samples in



the testing set.

Privacy Parameter Setting. We use Rényi DP (RDP, see
the definition in the Supplementary Materials) privacy ac-
countant2 to calculate the privacy budget ϵ. We adopt the
δ ≈ 1

n convention and set δ = 10−5.

Evaluation Metrics. As the focus in this line of research
mainly lies on image classification, we follow the conven-
tion and use the top-1 accuracy on CIFAR-10 as the metric.

4.2. Ablation Study of Prom-PATE

We conduct an ablation study on Prom-PATE for mul-
tiple baselines that can arise from our setting. In Prom-
PATE, two key components for significant improvement of
accuracy are re-teacher models and the use of a pre-trained
classifier in student training. Thus, there are two dimen-
sions for the ablation study: (i) VP-based re-teacher mod-
els, transfer learning-based teacher models, and train-from-
scratch teacher models and (ii) using pre-trained or train-
from-scratch classifiers in semi-supervised learning of the
student model. Note that these pre-trained classifiers are
all trained on ImageNet. The experiment results are shown
in Table 3, where the setting A corresponds to Prom-PATE
while the setting F corresponds to the ordinary PATE.

Teacher Student Training ϵ Accuracy ± Std(%)
A VP-based re-teacher models pre-trained 1.019 97.07 ± 0.50
B VP-based re-teacher models train-from-scratch 1.019 82.20 ± 1.14
C transfer learning pre-trained 1.021 96.10 ± 0.46
D transfer learning train-from-scratch 1.021 76.93 ± 0.81
E train-from-scratch pre-trained 1.028 49.00 ± 8.97
F train-from-scratch train-from-scratch 1.028 32.53 ± 2.57

Table 3. Ablation study of Prom-PATE.

From Table 3, we can observe that by comparing A with
C and B with D, VP-based re-teacher models in Prom-
PATE indeed hold an advantage over transfer learning-
based teacher models when adapting the target domain of
meager data, exceeding by a maximum of 5%. Secondly,
suppose we compare A with B, C with D, and E with F,
we can also see that utilizing a public pre-trained classi-
fier in student training in Prom-PATE allows us to gain an-
other performance improvement, ranging from 15% to 20
%. However, we particularly note that simply making use
of a pre-trained classifier is not sufficient to have a great in-
crease in accuracy, because the settings A and E, both con-
taining a pre-trained classifier in the student training, have
a difference of approximately 40% in terms of the predict-
ing accuracy. The above results support the importance of
re-teacher models in Prom-PATE. Lastly, we note that al-
beit holding a small difference against Prom-PATE and the
transfer learning baseline, we note that under a sufficient

2https://github.com/tensorflow/privacy/tree/
master/research/pate_2018

domain gap, the re-teacher tends to perform much better at
these diverse private domains. We refer the readers to Sec-
tion 4.4 for more details.

ϵ sanitized ϵ Accuracy on CIFAR-10
Arif et al. [2] 1.04 1.04 87.55%

Luo et al. [27] 1 1 76.64%
1.5 1.5 81.57%

Tramer et al. [37] 2 2 92.7%

Yu et al. [44] 1 1 94.3%
2 2 94.8%

De et al. [11] 1 1 94.7%
2 2 95.4%

Bu et al. [5] 1 1 96.7%
2 2 97.1%

Prom-PATE
1.019 1.209 99.17%
1.505 1.670 99.07%
1.943 2.250 99.10%

Table 4. Comparison between Prom-PATE and prior work.

4.3. Comparison with Existing DP Classifiers

We further compare Prom-PATE against the existing
work including SOTA DP classifiers. Table 4 shows the
comparison results, where the accuracies of the other meth-
ods are directly excerpted from the original papers except
that Yu et al.’s experiment results are from [5]. Since Prom-
PATE deploys a data-dependent bound in privacy calcula-
tion, we further follow [34] to sanitize our privacy bud-
get using smooth sensitiy analysis, preventing data leakage.
The smoothed budget is marked as sanitized ϵ in Table 4.

Table 4 shows that Prom-PATE achieves competitive per-
formance over current existing works. In the low budget
regime (ϵ ≈ 1), Prom-PATE outperforms all the other mod-
els and achieves the best accuracy of 99.17%. While the
SOTA classification accuracy of CIFAR-10 (through ViT-
H/14 [13]) in the non-private setting is 99.5%3, Prom-PATE
achieves a meaningful improvement in accuracy. The rea-
son that Prom-PATE with ϵ = 1.019 achieves 99.17% in
Table 4 but achieves 97.07% in Tables 1∼3 can be at-
tributed to our choice of implementations. In particular,
the pre-trained model for re-teachers, the pre-trained model
for semi-supervised learning, and the algorithm for semi-
supervised learning of Prom-PATE in Table 4 are Swin
Transformer [25], EVA [15], and FreeMatch [41], respec-
tively, while those of Prom-PATE in Tables 1∼3 are Swin
Transformer [25], ViT [13], and FixMatch [36]. In addition,
unlike the other approaches [16, 27, 21, 37, 11, 5], Prom-
PATE enjoys great flexibility in replacing source models (in
re-teacher models) by the latest classifiers and up-to-date
semi-supervised training method, so as to effortlessly im-
prove the accuracy.

3https://paperswithcode.com/sota/
image-classification-on-cifar-10 (last access: 2023/7)

https://github.com/tensorflow/privacy/tree/master/research/pate_2018
https://github.com/tensorflow/privacy/tree/master/research/pate_2018
https://paperswithcode.com/sota/image-classification-on-cifar-10
https://paperswithcode.com/sota/image-classification-on-cifar-10


4.4. Cross-Domain Dataset Evaluation

We evaluate Prom-PATE under a cross-domain setting,
where the re-teacher models with public pre-trained models
are visually prompted toward a small private target domain.
As mentioned in Section 4.1, we evaluate Prom-PATE on
Blood-MNIST [43]. The experiment results are shown in
Table 5, where Transfer-PATE is considered to use the same
backbone source model of Prom-PATE and performs partial
fine-tuning when training the teacher models.

Blood-MNIST Prom-PATE Transfer-PATE Arif et al. [2]
ϵ 1.973 1.983 1.971

sanitized ϵ 2.521 2.508 1.971
Queries 1000 1000 -

Answered Queries 455 408 -
Answer Accuracy(%) 79.3 76.7 -

Threshold T 480 490 -
σ1 150 150 -
σ2 20 20 -

Accuracy(%) 69.93 61.33 63.45

Table 5. Effect on cross-domain datasets.

As one can see from Table 5, when adapting to a
target domain with sufficient domain gap, Prom-PATE
is able to manage the advantage of VP and maximize
the accuracy gain given a fixed amount of privacy bud-
get to vote for highly accurate labels that are beneficial
for downstream student training, exceeding the Transfer-
PATE by roughly 8%. On the other hand, Prom-PATE is
also compared against Reprogrammable-FL [2], because
the latter improves accuracy in the context of FL. Prom-
PATE outperforms Reprogrammable-FL by approximately
2%. This can be attributed to much noisy perturbation
of Reprogrammable-FL as stated in Section 2. Most im-
portantly, due to the high discrepancy between ImageNet
and Blood-MNIST, the high accuracy from such a train-on-
ImageNet and test-on-Blood-MNIST setting also eliminates
the suspicion (C3) from [38].

4.5. Numbers of Re-Teacher Models

In this section, we investigate the model performance
under different numbers of re-teacher models. Table 6 re-
ports the results, where Swin Transformer [25] is used as the
source model for re-teacher models. As shown in Table 6,
the best utility is achieved when using 1000 re-teacher mod-
els under a privacy budget of ϵ ≈ 1. We also note that the
accuracy of all settings with 250, 500, and 1000 re-teacher
models already exceed the performance of PATE [34] under
a privacy budget of ϵ ≈ 1.

Number of re-teachers 100 250 500 1000
ϵ 1.095 1.095 1.04 1.019

Queries 1000 1000 1000 1000
Answered Queries 18 46 90 684

Threshold T 430 500 650 500
σ1 150 150 150 200
σ2 50 100 100 50

Accuracy%) ± Std 59.20 ± 0 85.87 ± 0.55 96.53 ± 0.74 97.07 ± 0.50

Table 6. Effect on different numbers of re-teacher models.

4.6. Different Pre-Trained Models

We study the effect of different pre-trained source mod-
els on Prom-PATE. Table 7 reports the results. In particu-
lar, using Swin Transformer [25] as the pre-trained source
model results in the best performance of 99% on CIFAR-10.
This is consistent with the theoretical relationship presented
in [42], which states that the population risk on the target
task of the reprogrammed model can be upper bounded by
the source risk with an additional term in misalignment er-
ror. Therefore, as we can see from Table 8, which includes
the accuracy of pre-trained models on the source domain
(i.e., source risk), Swin Transformer has the least empirical
risk and serves as a natural choice for the source model.

ImageNet Accuracy
ResNet50 79.3

ResNet152 78.5
WideResNet 78.1

ViT 84.0
Swin Transformer 85.2

Table 8. Test accuracy of ImageNet source models.

4.7. Binary Mask in Visual Prompting

We further study how the different visual prompting
techniques affect classification accuracy. Specifically, we
consider two settings on whether to apply the binary mask
M or not. Table 9 reports the results, where Swin trans-
former [25] as the source model with 1000 re-teacher mod-
els is considered.

Prompting Technique Without Mask M With Mask M

ϵ 1.017 1.019
Queries 1000 1000

Answered Queries 675 684
Answer Accuracy(%) 94.8 94.7

Threshold T 600 600
σ1 200 200
σ2 50 50

Accuracy ± Std(%) 96.53 ± 0.32 97.07 ± 0.50

Table 9. Effect on visual prompting technique

One can observe from Table 9 that using M could en-
hance performance. The rationale is that by utilizing M , we
can control the amount of noise placed in the visual prompt,
hence controlling the ratio of target data xT and noise pa-
rameter ω1. This leads to a better trade-off between accu-



ϵ Queries Answered Queries Answered Accuracy(%) Threshold T σ1 σ2 Accuracy ± Std(%)
ResNet50 1.081 1000 461 91.3 650 200 50 95.27 ± 0.80

ResNet152 1.009 1000 604 93.9 620 200 50 95.40 ± 0.40
WideResNet 1.068 1000 555 90.8 620 200 50 94.37 ± 0.25

ViT 1.007 1000 660 93.6 600 200 50 95.53 ± 0.51
Swin 1.019 1000 684 94.7 600 200 50 97.07 ± 0.50

Table 7. Effect on different pre-trained models.

racy and the meager amount of private data each re-teacher
model owns.

4.8. Label Mapping Techniques

Next, we proceed to investigate the effect of label map-
ping on Prom-PATE. Particularly, we consider the settings
of using random label mapping (RLM), one fully-connected
layer, and two fully-connected layers (see Figure 2). Ta-
ble 10 shows the experiment results, where Swin trans-
former [25] as the source model with 1000 re-teacher mod-
els is considered. In particular, using one FC layer allows
Prom-PATE to achieve the best performance. Furthermore,
we note that randomly selecting ten classes for mapping
would disrupt the behavior of the pre-trained model, as the
mapping relations among source and target labels are ran-
domly given but other remaining source classes might con-
tain valuable information for the prediction. Such an expla-
nation can be confirmed by the accuracy (i.e., noisy label ac-
curacy) of RLM, which is only 22.9%, demonstrating that
even with a high consensus of the re-teacher models, the
ensemble prediction is likely to be wrong as well. On the
other hand, while using two FC layers allows for more ex-
pressiveness, the number of training parameters is increased
as well, leading to a slight degradation in accuracy with lim-
ited training data for each re-teacher model.

Mapping Technique RLM 1-Layer FC 2-Layer FC
ϵ 1.042 1.019 1.026

Queries 1000 1000 1000
Answered Queries 109 684 336

Answer Accuracy(%) 22.9 94.7 92.6
Threshold T 650 600 670

σ1 200 200 200
σ2 50 50 50

Accuracy ± Std(%) 33.4 ± 0.66 97.07 ± 0.50 96.13 ± 0.41

Table 10. Effect on label mapping techniques.

4.9. Rescale Ratio in Visual Prompting

Usually, in VP/MR, the image from the target domain
needs to be rescaled and surrounded by trainable noises,
as shown in Eq. (1). The resulting x̂S can then be fed
into the source model. A higher rescale ratio generally
leads to better performance. The rationale is that a higher
rescale ratio provides more information from the target do-
main, which enables the re-teacher model to generate better

visual prompts that can more effectively guide the source
model in learning the relevant features of the target domain.
However, a too-high rescale ratio could potentially result
in overfitting to the target domain, leading to poor general-
ization performance. Hence, one strikes a balance between
providing sufficient information from the target domain and
avoiding overfitting. In our experiments, a rescale ratio of
0.6 achieves the best performance.

Rescale Size ϵ AQ AA(%) T σ1 σ2 Accuracy ± Std(%)
64× 64 1.028 408 86.3 650 200 50 93.03 ± 1.0

128× 128 1.016 662 92.6 610 200 50 95.83 ± 0.1
160× 160 1.016 655 93.7 610 200 50 95.07 ± 0.3
192× 192 1.019 684 94.7 600 200 50 97.07 ± 0.5
210× 210 1.016 655 93.7 610 200 50 95.30 ± 0.5

Table 11. Effect on the rescale ratio of target Data. The number
of queries is 1,000. AQ, AA, and T denote answered queries, an-
swered accuracy (%), and threshold, respectively.

As observed from Table 11, rescaling xT to 192×192 for
visual prompting achieved the highest utility. As explained
in Section 4.7, the rescale size provides a ratio between the
trainable parameter ω1 and target data xT . Too many noise
parameters and a small target image might degrade perfor-
mance due to the quality of the target image and insufficient
data. Conversely, a larger target image and fewer param-
eters of ω1 might cause sub-optimal input transformation
from target to source, leading to a poor prompt.

5. Conclusion
In this paper, we conducted a comprehensive study and

discovered a new benefit of VP in DP. In particular, we pro-
pose Prom-PATE, a new VP-empowered training method
for constructing DP classifiers. Prom-PATE leverages VP
to assist in the adaptation of pre-trained models in a more
efficient way without losing privacy. Empirical evaluations
show that Prom-PATE provides SOTA performance com-
pared to several baselines and existing works. We also find
that Prom-PATE achieves an even better accuracy gain when
the target task has a sufficient domain gap against the pre-
trained model (i.e., the ImageNet to Blood-MNIST setting),
demonstrating the generality of Prom-PATE. Our findings
suggest that VP is a promising approach to facilitating fur-
ther research in building DP classifiers that improve or even
extinguish the privacy-utility trade-off.
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private learning with pate. In International Conference on
Learning Representations (ICLR), 2018.

[35] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021.

[36] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence.
Advances in neural information processing systems, 33:596–
608, 2020.
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6. Supplementary Material
The supplementary material has two parts; the privacy

analysis of Prom-PATE in Section 6.1 and the additional
experiment results in Section 6.2.

6.1. Privacy Analysis of Prom-PATE

Here, we first present the definitions for (ϵ, δ)-
differential privacy ((ϵ, δ)-DP) and its variant, Rènyi Differ-
ential Privacy (RDP). After that, we prove that Prom-PATE
satisfies (ϵ, δ)-DP.

Definition 1 (Differential Privacy, DP) A randomized al-
gorithm M is (ε, δ)-DP if for all S ⊆ Range(M) and for
any neighboring datasets D and D′,

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ. (5)

In Definition 1, D and D′ are neighboring if D can be
obtained by adding or removing one sample from D′

Definition 2 (Rènyi Differential Privacy, RDP) A ran-
domized algorithm M is (α, ϵ(α))-RDP with α > 1 if for
any neighboring datasets D and D′,

Dα(M(D)||M(D′
)) =

1

α − 1
log Ex∼M(D′)

[(
Pr[(D) = x]

Pr[(D′) = x]

)α−1
]

≤ ϵ(α),

(6)

where Dα is the Rényi divergence of order α.

Theorem 1 (Sequential Composition on RDP [28]) If
the mechanism M1 satisfies (α, ϵ1)-RDP and the mecha-
nism M2 satisfies (α, ϵ2)-RDP, then M2 ◦ M1 satisfies
(α, ϵ1 + ϵ2)-RDP.

Theorem 2 (Translation of RDP [29]) If a mechanism M
satisfies (α, ϵ)-RDP, then M satisfies (ϵ + log(1/δ)

α−1 , δ)-DP
for any δ ∈ (0, 1).

With the above definition and results, in Theorem 3 we
prove that Prom-PATE satisfies (ϵ, δ)-DP.

Theorem 3 Prom-PATE satisfies (ϵ, δ)-DP.

Proof 1 Basically, Prom-PATE follows the framework of
PATE. One can find that the re-teacher models will not be
released according to the design of PATE. Therefore, the
only step that Prom-PATE “touches” the sensitive dataset
is when the student model queries the re-teacher ensem-
ble for labeling the unlabelled samples. Hence, by lever-
aging proposition 8 in [34], we know that the Confident-
GNMax fulfills (α, α

2σ2 )-RDP guarantee. Here, consider
the case where Prom-PATE has T unlabeled samples that
need to be labeled by the Confident-GNMax result before

the training of the student model. According to Theorem 1,
Prom-PATE satisfies (α, T · α

2σ2 )-RDP. Hence, equivalently,
Prom-PATE satisfies (ϵ, δ)-DP for any δ ∈ (0, 1), where
ϵ = T · α

2σ2 + log(1/δ)
α−1 according to Theorem 2.

We convert the current data-independent proof to the
data-dependent proof. However, the data-dependent proof
for Prom-PATE is identical to Proposition 7 and Theorem 6
in [34] due to the design of Prom-PATE. Therefore, we skip
the proof here.

6.2. Additional Experiments

We start by presenting the characteristics and settings of
the datasets used in our experiments in Table 12. Then, we
present additional experiment results for the cross-domain
tasks and high-resolution images.

Additional Experiment Results for Cross-Domain
Tasks. As the source model is trained on ImageNet, we
evaluate in Section 4.4 the performance of Prom-PATE
on Blood-MNIST to demonstrate the superiority of Prom-
PATE under a cross-domain setting. Here, we provide more
experiment results (Tables 13∼ 17) on different datasets. In
Tables 5, 6, 9, 10, 13∼ 17, the row Rescale Ratio means
that the image from the target task is rescaled to a specific
size. The row Queries denotes the number of unlabeled
samples that asks for the labels from the noisy aggregation
result. Because Prom-PATE follows the design from [34],
Confident- GNMax does not always return a label. Thus,
the row Answered Queries shows the actual number of la-
bels returned by the noisy aggregation result. The row An-
swer Accuracy corresponds to the accuracy of the noisy la-
bel. The rows Threshold T , σ1, and σ2 are the parameters in
Confident- GNMax [34] that determines when a noisy label
will be returned.

In our experiments, we considered image datasets
SVHN [20], EuroSAT [17], PathMNIST [43], TissueM-
NIST [43], and DermaMNIST [43] as our cross-domain
tasks. SVHN contains the street-view house numbers. Eu-
roSAT contains the Sentinel-2 satellite images for land use
and land cover classification. PathMNIST, TissueMNIST,
and DermaMNIST are collections of standardized biomed-
ical images. In Table 13∼Table 17, we compare Prom-
PATE with Transfer-PATE (see Section 4.4 for the setting
of Transfer-PATE) to show the superiority of Prom-PATE.
In particular, depending on the different characteristics of
datasets, Prom-PATE reaches different accuracies. How-
ever, one can see that Transfer-PATE goes worse than Pro-
PATE because the cross-domain task requires more fine-
tuning and thus more samples in Transfer-PATE.



Channel No. Class No. Re-Teacher Models Training Data Size Student Model Training Data Size Testing Data Size
SVHN [32] 3 10 73,257 25,032 1,000

EuroSAT [17] 3 10 10,000 16,000 1,000
PathMNIST [43] 3 9 89,996 6,180 1,000

TissueMNIST [43] 1 8 165,466 46,280 1,000
DermaMNIST [43] 3 7 7,007 1,505 500
CelebA-Gender [26] 3 2 162,770 18,962 1,000

CelebA-Hair [26] 3 3 108,358 10,668 1,000
FFHQ-Gender [20] 3 2 50,000 18,471 1,000

CIFAR-100 [22] 3 100 50,000 9,000 1,000
Table 12. Characteristics and experiment settings of different datasets.

SVHN [20] Prom-PATE Transfer-PATE
ϵ 3.022 3.055

Rescale Ratio 192×192 -
Number of Re-Teachers 250 250

Source Model WideResNet WideResNet
Queries 2000 2000

Answered Queries 105 88
Answer Accuracy(%) 86.67 79.55

Threshold T 244 230
σ1 50 50
σ2 10 10

Accuracy ± Std(%) 49.13 ± 3.13 42.57 ± 0.23

Table 13. SVHN Performance

EuroSAT [17] Prom-PATE Transfer-PATE
ϵ 3.018 3.029

Rescale Ratio 160×160 -
Number of Re-Teachers 250 250

Source Model WideResNet WideResNet
Queries 1,000 1,000

Answered Queries 150 140
Answer Accuracy(%) 90.7 90.7

Threshold T 250 250
σ1 100 100
σ2 10 10

Accuracy ± Std(%) 94.37 ± 0.15 93.87 ± 0.80

Table 14. EuroSAT Performance.

PathMNIST [43] Prom-PATE Transfer-PATE
ϵ 1.024 1.021

Rescale Ratio 128×128 -
Number of Re-Teachers 1,000 1,000

Source Model WideResNet WideResNet
Queries 1,000 1,000

Answered Queries 91 83
Answer Accuracy(%) 100 98.80

Threshold T 1030 1050
σ1 100 100
σ2 50 50

Accuracy ± Std(%) 68.50 ± 0.40 64.00 ± 2.07

Table 15. PathMNIST Performance.

TissueMNIST [43] Prom-PATE Transfer-PATE
ϵ 2.008 2.017

Rescale Ratio 160×160 -
Number of Re-Teachers 1,000 1,000

Source Model WideResNet WideResNet
Queries 2,000 2,000

Answered Queries 842 665
Answer Accuracy(%) 71.85 72.86

Threshold T 650 630
σ1 100 100
σ2 50 50

Accuracy ± Std(%) 49.87 ± 0.57 49.30 ± 0.56

Table 16. TissueMNIST Performance.



DermaMNIST [43] Prom-PATE Transfer-PATE
ϵ 1.861 1.852

Rescale Ratio 192×192 -
Number of Re-Teachers 500 500

Source Model WideResNet WideResNet
Queries 1,000 1,000

Answered Queries 806 749
Answer Accuracy(%) 61.17 61.28

Threshold T 300 300
σ1 100 100
σ2 200 200

Accuracy ± Std(%) 60.34 ± 0.31 59.60 ± 0.20

Table 17. DermaMNIST Performance.

Additional Experiment Results for High-Resolution Im-
ages. Here, we present additional experiment results for
high-resolution images. CelebA is a popular dataset that
contains colorful celebrity images of different sizes. All
of CelebA images were rescaled into 64 × 64 colorful im-
ages in our experiments. Based on CelebA, we consider
CelebA-Gender and CelebA-Hair. In particular, CelebA-
Gender is for binary classification with gender as the label.
CelebA-Hair is for the three-class classification with hair
color (black/blonde/brown) as the label. On the other hand,
FFHQ contains 70000 128×128 colorful facial images with
gender as labels.

With the comparison between Table 4 and Ta-
bles 18∼ 20, we can see that when images of higher resolu-
tions are considered, Prom-PATE reaches a lower accuracy.
A potential explanation is that because the images from the
target task will be rescaled, certain features in the images
from the target task will disappear and consequently have a
negative impact on the resulting accuracy.

With the comparison among Tables 18, 19, and 20,
we can see that Prom-PATE outperforms Transfer-PATE in
nearly all cases. Nonetheless, we can also find in Table 18
that Prom-PATE only slightly outperforms Transfer-PATE.
Such a minor victory of Prom-PATE comes from the fact
that the number of labels returned by the noisy aggregation
in Prom-PATE does not have a significant increase com-
pared to that in Transfer-PATE (e.g., see the row Answered
Queries in Table 18). The similarity between the numbers
of labels returned by the noisy aggregation in Prom-PATE
and Transfer-PATE can be attributed to the similar training
result of the teacher models. A potential explanation for
such a phenomenon is that the CelebA-Gender is a binary
classification task, which is easy for both Prom-PATE and
Transfer-PATE. By comparing Table 18 and Table 19, we
can see that the accuracy difference between Prom-PATE
and Transfer-PATE is becoming clear because CelebA-Hair
is a three-class classification task. When considering Ta-
ble 5 and Table 19, despite the different context in CIFAR-

10 and CelebA-Hair, we can use them as evidence for claim-
ing that Prom-PATE works especially better than Transfer-
PATE in the multi-class classification task.

Tables 18, 19, and 20 also report the accuracies when
two different semi-supervised learning methods, FixMatch
[36] and FreeMatch [41], are used. We can only see the
minor difference between using two SOTA semi-supervised
learning methods.

Additional Experiment Result for Benchmark Task
Here, we present an additional experiment conducted on
CIFAR-100 which is considered as the new benchmark task
for DP classifiers. The result and comparison against SOTA
classifiers are shown in Table 21. Here, the pre-trained
model for re-teachers, the pre-trained model for semi-
supervised learning, and the algorithm for semi-supervised
learning of Prom-PATE in Table 21 are EVA [15], EVA [15],
and FreeMatch [41], respectively.

As one can see from Table 21, Prom-PATE achieves
SOTA under a similar budget comparison against other
methods, demonstrating the benefits of exploring model re-
programming for parameter-efficient fine-tuning [12] of DP
models.



CelebA-Gender [26] Prom-PATE Prom-PATE Prom-PATE Transfer-PATE Transfer-PATE Transfer-PATE
ϵ 1.555 1.55 1.528 1.552 1.547 1.536

Rescale Ratio 192×192 192×192 192×192 - - -
Number of Re-Teachers 1,000 1,000 2,000 1,000 1,000 2,000

Source Model Swin ViT Swin Swin ViT Swin
Queries 1,000 1,000 1,000 1,000 1,000 1,000

Answered Queries 707 669 794 696 673 789
Answer Accuracy(%) 97.17 97.16 97.86 97.70 97.33 97.85

Threshold T 900 900 1,800 800 900 1,800
σ1 100 100 1,000 100 100 1,000
σ2 200 200 500 200 200 500

FixMatch Accuracy ± Std(%) 93.17 ± 0.06 92.23 ± 0.25 92.83 ± 0.20 92.87 ± 0.15 91.83 ± 0.23 92.63 ± 0.35
FreeMatch Accuracy ± Std(%) 93.20 ± 0.10 91.77 ± 0.40 92.33 ± 0.42 92.83 ± 0.25 91.17 ± 0.21 92.33 ± 0.23

Table 18. CelebA-Gender Performance.

CelebA-Hair [26] Prom-PATE Prom-PATE Prom-PATE Transfer-PATE Transfer-PATE Transfer-PATE
ϵ 1.531 1.521 1.527 1.522 1.530 1.534

Rescale Ratio 192×192 192×192 192×192 - - -
Number of Re-Teachers 1,000 1,000 2,000 1,000 1,000 2,000

Source Model Swin ViT Swin Swin ViT Swin
Queries 1,000 1,000 2,000 1,000 1,000 2,000

Answered Queries 378 359 517 376 330 535
Answer Accuracy(%) 91.53 93.31 90.52 92.55 90.30 90.09

Threshold T 780 800 1,500 790 780 1,500
σ1 100 100 100 100 100 100
σ2 200 200 450 200 200 500

FixMatch Accuracy ± Std(%) 85.40 ± 0.40 87.73 ± 0.15 81.97 ± 0.67 84.73 ± 0.83 84.77 ± 0.31 81.20 ± 0.17
FreeMatch Accuracy ± Std(%) 86.23 ± 0.45 88.13 ± 0.35 83.97 ± 0.47 87.23 ± 0.30 85.03 ± 0.46 83.80 ± 0.53

Table 19. CelebA-Hair Performance.

FFHQ-Gender [20] Prom-PATE Prom-PATE Prom-PATE Transfer-PATE Transfer-PATE Transfer-PATE
ϵ 1.599 1.605 1.52 1.604 1.602 1.562

Rescale Ratio 192×192 192×192 192×192 - - -
Number of Re-Teachers 1,000 1,000 2,000 1,000 1,000 2,000

Source Model Swin ViT Swin Swin ViT Swin
Queries 1,000 1,000 2,000 1,000 1,000 2,000

Answered Queries 663 630 1,331 653 620 1,270
Answer Accuracy(%) 95.47 93.33 94.21 94.79 94.52 94.17

Threshold T 800 800 1,500 800 800 1,500
σ1 100 100 90 100 100 100
σ2 200 200 450 200 200 500

FixMatch Accuracy ± Std(%) 86.93 ± 0.21 86.13 ± 0.25 85.87 ± 0.35 86.07 ± 0.06 84.47 ± 0.21 84.83 ± 0.40
FreeMatch Accuracy ± Std(%) 86.77 ± 0.21 86.47 ± 0.05 86.43 ± 0.31 86.47 ± 0.15 85.50 ± 0.36 84.90 ± 0.98

Table 20. FFHQ-Gender Performance.

CIFAR-100 [22] ϵ Sanitized ϵ Accuracy

De et al. [11] 4 4 79.2%
8 8 81.8%

Bu et al. [5] 4 4 87.7%
8 8 88.4%

Prom-PATE 4.089 5.043 88.33%
8.078 10.026 91.47%

Table 21. Comparison among DP classifiers on CIFAR-100.


