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Abstract

Recent studies indicate that Vision Transformers (ViTs)
are robust against out-of-distribution scenarios. In partic-
ular, the Fully Attentional Network (FAN) - a family of ViT
backbones, has achieved state-of-the-art robustness. In this
paper, we revisit the FAN models and improve their pre-
training with a self-emerging token labeling (STL) frame-
work. Our method contains a two-stage training frame-
work. Specifically, we first train a FAN token labeler (FAN-
TL) to generate semantically meaningful patch token labels,
followed by a FAN student model training stage that uses
both the token labels and the original class label. With the
proposed STL framework, our best model based on FAN-
L-Hybrid (77.3M parameters) achieves 84.8% Top-1 ac-
curacy and 42.1% mCE on ImageNet-1K and ImageNet-
C, and sets a new state-of-the-art for ImageNet-A (46.1%)
and ImageNet-R (56.6%) without using extra data, outper-
forming the original FAN counterpart by significant mar-
gins. The proposed framework also demonstrates signifi-
cantly enhanced performance on downstream tasks such as
semantic segmentation, with up to 1.7% improvement in ro-
bustness over the counterpart model. Code is available at
https://github.com/NVlabs/STL.

1. Introduction
Vision Transformers (ViTs) [1] have recently achieved

remarkable success in visual recognition tasks. Such suc-
cess is not only attributed to their self-attention representa-
tion but also to the newly developed training recipes. For
instance, refinements in training techniques such as strong
data augmentation and knowledge distillation [2] greatly
alleviate ViT’s issue of being data-hungry and make them
more accessible for training on ImageNet-1K.

Another important development in the training recipe is
token labeling [3], where patch tokens are assigned with
labels to ViTs in a dense manner. In some sense, token la-
beling can also be considered as an alternative form of hard
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Figure 1. Results of zero-shot robustness against ImageNet-
A and ImageNet-R. Models trained on ImageNet-1K with self-
emerging token labels from FAN show superior robustness to the
out-of-distribution data. Our best model (with only 77.3M param-
eters) achieves robust accuracy of 46.1% and 56.6% and sets a new
record on ImageNet-A and ImageNet-R.

knowledge distillation. However, the dense nature of token
labeling allows ViTs to leverage more fine-grained infor-
mation in an image and take different categories and object
localization into account. Compared to traditional knowl-
edge distillation methods, token labeling enables ViTs to
exploit a wider range of information in the image, lead-
ing to more accurate results. The success of token la-
beling depends on carefully-designed token-level annota-
tors (i.e., token-labelers) that can provide accurate location-
specific information (i.e., token labels) to patch tokens.
In [3], this is done by a special re-labeling process [4] us-
ing convolutional neural networks (CNNs) [5] pre-trained
on ImageNet-1K. While Vision Transformers have shown
great promise in representation learning, less exploration
has been conducted on modeling them as token-labelers.
This raises two interesting questions:

1. Can Transformer-based models self-produce meaning-
ful token labels?

2. Can one improve the pre-training of ViTs with self-
produced knowledge instead of external teachers?
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Our approach: In this paper, we aim to answer the
above questions. We propose a self-emerging token label-
ing (STL) framework that employs the self-produced token
labels by ViT token-labelers instead of relying on CNNs.
Our work is built on the recently proposed Fully Atten-
tional Network (FAN) [6] for two reasons. First, FAN ex-
hibits excellent self-emerging visual grouping on token fea-
tures, which can be leveraged to generate high-quality to-
ken labels. Second, FAN is a family of ViT backbones with
state-of-the-art accuracy and robustness. We aim to further
improve this family of powerful backbones through a prin-
cipled token-labeling design and validate its effectiveness.
Our contributions can be summarized as follows:

• Our work demonstrates that ViT models can be effective
token-labelers. We propose a simple yet effective way to
train a FAN token-labeler that can produce semantically
meaningful token labels.

• We perform an in-depth analysis and show critical con-
tributors to the accuracy of token labels. On top of
the observations, we design a solution that retains more
accurate token labels of the target object for improved
model pre-training.

• Our models trained with STL set a new record on out-
of-distribution datasets without using extra data than
ImageNet-1K. Our best model achieves robust accuracy
of 46.1% on ImageNet-A and 56.6% on ImageNet-R
with only 77M parameters, as shown in Fig. 1.

• Experiments on downstream tasks demonstrate that the
improved performance in backbone models is transfer-
able to semantic segmentation and object detection.

Our STL framework is akin to the teacher-student train-
ing strategy introduced in knowledge distillation and con-
sists of two stages:
First stage: We train a FAN token-labeler (FAN-TL) model
to generate token-level annotations. Our task is essentially
a “chicken or the egg” problem since there is no explicit su-
pervision on how the token labels are generated. We tackle
this by assigning supervising both the class token and the
global average-pooled token. This produces semantically
meaningful token labels as shown in Fig. 2(b).
Second stage: We train a FAN student model using the
original class labels and the token labels from FAN-TL. Ob-
serving the imperfect quality of token labels, we introduce
a token selection approach based on Gumbel-Softmax that
adaptively selects tokens with high confidence. Labels of
the selected tokens are of better quality and object ground-
ing in general, leading to improved pre-training.

2. Related Work
2.1. Vision Transformers

Vision Transformers [1] are a family of visual recogni-
tion models built upon Transformers [7]. ViT splits an input
image into a series of small patches, projects each as an em-
bedding (a.k.a patch token) and appends with position em-
beddings. The resulting patch tokens and an extra learnable
class token that aggregates global information for classifi-
cation are then fed into a sequence of Transformer encoders
consisting of multi-head self-attention and FFN blocks. A
linear projection layer is appended to the class token to pre-
dict the class probabilities.

2.2. Fully Attentional Networks

Several concurrent works point out that ViTs exhibit ex-
cellent zero-shot robustness against out-of-distribution sam-
ples [8–11]. Some works propose to use negative data aug-
mentation [12] and adversarial training [13, 14] to further
enhance the robustness. Recently, FAN [15] was introduced
as a family of ViT backbones with state-of-the-art accuracy
and robustness. FAN inherits the self-attention blocks of
plain ViT but additionally introduces a channel attention
block that adopts an attention-based design that aggregates
the cross-channel information in a more holistic manner,
leading to improved representation.

2.3. Token Labeling

Token labeling [3] has been proposed to improve ViT
pre-training. From the perspective of training strategy, it
is similar to knowledge distillation [2, 16] since both adopt
a teacher-student mode. It is also related to ReLabel [17],
which provides images with multi-label annotations instead
of single ones. However, both ReLabel and knowledge dis-
tillation depend on image-level labels as global supervision
while token labeling assigns labels to each image patch to-
ken and supervises the student model in a dense manner.
Token labeling is also inherently related to tokenization in
BEiT [18], where an offline pre-trained discrete VAE is em-
ployed as the tokenizer to encode patches into visual tokens
(i.e., code from a visual codebook). Different from token
labels, these visual tokens do not possess explicit semanti-
cally meanings since they originate from an unsupervisedly
trained codebook. Our method differs from prior token la-
beling and distillation methods where pre-trained convolu-
tional neural networks are widely used as the token-labeler.
Instead, our approach to unifies both teacher and student un-
der homogeneous Vision Transformer architectures to gen-
erate high-quality token labels.

2.4. Emerging Properties of ViTs

It was found that the localization of objects emerges
in image classification with CNNs. This interesting phe-



nomenon, also known as class activation maps (CAM) [19],
lays the foundation for token labeling. Recent studies
reveal that ViTs demonstrate excellent capability for ob-
ject localization without explicit supervision. For instance,
DINO [20] shows that self-supervised ViT features generate
semantically meaning object segmentation. Methods like
GroupViT [21] show that semantic segmentation emerges
in ViTs using only text supervision. Similarly, FAN reveals
that the robustness of ViT models is correlated to their ex-
cellent visual grouping capability. This feature motivates us
to develop self-emerging token labeling on top of the FAN
models.

3. Method
As mentioned, we propose a self-emerging token label-

ing (STL) framework that uses self-produced token labels
to improve ViT pre-training. STL consists of two stages: 1)
training an effective token-labeler, and 2) training a student
model with self-emerging token labels.

In the first stage, we train a FAN token-labeler (FAN-
TL) to generate high-quality token labels. As discussed in
Sec. 1 and Sec. 2, FAN demonstrates strong robustness and
capability to obtain semantically meaningful visual group-
ing that can correctly captures the object gestalt. These
great features of FAN allow us to obtain high quality to-
ken labels without bells and whistles. In the second stage,
we then train a FAN student model with image-level labels
and self-emerging token labels from FAN-TL. At high level,
FAN-TL and FAN student models follow the same archi-
tectural design as FAN but slightly modify the structure of
patch tokens. We attach a linear layer to each patch token to
accommodate token labels, similar to the classification head
added to the class token in the original FAN and ViT design.
The rest of this section describes the implementation details
of the above two-stage pipeline.

3.1. Training FAN Token-Labelers

The original FAN employs the training paradigm that
only takes image-level labels as supervision. We de-
note the input image as I, the sequence of small patches
as [Ip1 , Ip2 , . . . IpN

], the output of FAN encoder as
[Tcls,Tp1 , . . . ,TpN

], where N is the number of patch to-
kens, Tcls represents the class token and Tp1

, . . . ,TpN
rep-

resent the patch tokens, respectively. The training objective
can be mathematically expressed as follows:

L = H(Tcls,Ycls), (1)

where H(·) is the softmax cross entropy loss and Ycls is the
image-level label of the corresponding class.

The key to token labeling is the generation of accurate to-
ken labels that provide location-specific information. How-
ever, following the conventional training paradigm in Eq. 1,

(a) (b) (d)(c)

(e)

Background tokens and some foreground 
tokens have low confidence, indicating less 
accurate token labeling.

Tokens with high confidence indicates high 
accuracy and are critical to the robustness 
improvment.

Figure 2. Illustration of token labels generated by FAN-TL and
the token label confidence score distribution. (a). original im-
age (class: “tench”), (b). binary color map of token labels (yellow:
tokens classified as “tench”, dark blue: tokens not classified as
“tench”) (c). trinary color map of token labels (cyan: foreground
tokens with low confidence, yellow: foreground tokens with high
confidence), (d). binary color map of foreground tokens selected
by Gumbel-Softmax, (e). token label confidence score distribution
of a batch of 16 images.

token outputs of FAN models are not semantically well-
guided since they are not supervised during training. We
propose a simple yet effective method to address this is-
sue. Our idea is inspired by the intriguing phenomenon in
ViTs training that meaningful object segmentation naturally
emerges [20]. Unlike the self-supervised training in DINO,
we leverage FAN’s strong capability of visual grouping [22]
and devise a fully supervised approach that allows FAN to
generate accurate and semantically meaningful token labels.
We perform global average-pooling on all patch tokens and
then simultaneously assign the class label to the class and
the average-pooled tokens. The training objective of FAN-
TL can be written as follows:

L = H(Tcls,Ycls) + α · H(
1

N

N∑
i=1

Tpi
,Ycls), (2)

where α weights the importance of two loss functions. We
set α to 1 in our experiments. We demonstrate a visualiza-
tion example of the token labels generated by FAN-TL in
Fig. 2(b). The yellow area (i.e., foreground) represents the
tokens with the same labels as the image-level label (we
term foreground tokens). In contrast, the dark blue area
(i.e., background) represents the tokens with different labels
from the image-level label (we term background tokens).
It can be seen that the self-emerging token labels show a
meaningful segmentation of the target object “tench”.
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Figure 3. Illustration of Stage 2: Training student models with self-emerging token labels. In the training, token labels are generated
by FAN-TL and assigned to patch tokens of student models. We incorporate the token labels and class labels to train student models
jointly. FAN-TL can self-identify the incorrect token labels upon the confidence score. Tokens with high confidence scores offer a more
accurate segmentation of objects and are crucial to robustness improvement. By applying spatial-only data augmentation to the inputs and
Gumbel-Softmax to the token outputs of FAN-TL, we obtain the most accurate and critical token labels.

3.2. Training Student Models with STL

Training student models is straightforward. As illus-
trated in Fig. 3, we take the token outputs of FAN-TL and
assign them as the labels for patch tokens of student mod-
els. We then incorporate token labels with class labels and
jointly optimize the loss on the class token and all patch
tokens. The training objective is shown as follows:

L = H(Tcls,Ycls) + β · 1

N

N∑
i=1

H(Tpi
,F(Ipi

)) (3)

where F(·) represents the patch token outputs of FAN-TL
and β is the hyper-parameter to balance two loss functions.
β is set to 1 in our experiments. Note the correctness of to-
ken labels (especially the foreground tokens) is critical since
wrong labels introduce worthless local information. Thus,
we propose several implementation tricks to generate and
retain highly accurate token labels based on the following
two observations.

Observation 1: Data augmentations remarkably af-
fect the accuracy of token labels. Recent studies [2, 23]
indicate data augmentations improve the classification ac-
curacy and robustness of ViT models. However, most aug-
mentations undermine the accuracy of token labels. For
example, augmentations in RandAug [24], such as poster-
ize and solarize, alter pixel values, CutOut [25] randomly
erases a part of images, Mixup [26] and CutMix [27] mix
content from two images, which all make it difficult for
FAN-TL to assign correct labels to patch tokens. To this
end, we disable these data augmentations and keep spatial-

Model (Stage) Spatial RandAug CutOut MixUp CutMix

FAN-TL (Stage1) ✓ ✓ ✓ ✓ ✓

Student (Stage2) ✓ ✓ ✓ ✓ ✓

FAN-TL (Stage2) ✓ ✗ ✗ ✗ ✗

Table 1. Detailed settings of data augmentations. We apply
spatial-only data augmentations to inputs of FAN-TL in stage 2
to improve the accuracy of token labels.

only ones (i.e., flip, rotate, shear and translation) for FAN-
TL when generating token labels. Note that we still apply
full data augmentations for the student model. The con-
crete settings of data augmentations are summarized in Ta-
ble 1. Moreover, the strong data augmentations can be re-
garded as noises akin to corruptions and perturbations in
out-of-distribution datasets. The input data augmentation
discrepancy between FAN-TL and the student model en-
ables the self-emerging token labels to provide clean and
correct information regardless of the noise, thus improving
the model’s robustness.

Observation 2: Not all the self-emerging token la-
bels are correct, even with spatial-only data augmenta-
tions. For example, as shown in Fig. 2(b), some patches
(red squares) that only contain “human” and “lake” are mis-
classified as the target object “tench” by FAN-TL. It is par-
ticularly crucial to ensure the accuracy of foreground to-
ken labels as they contain the target object of the image
that dominates the prediction result. However, it is chal-
lenging to determine which labels are incorrect due to the
lack of patch-level ground truth. Interestingly, FAN-TL can



self-identify these misclassified foreground tokens accord-
ing to the token label confidence score, which may also be
attributed to its visual grouping ability. The token label con-
fidence score is defined as the maximal class probability of
each token output. We find that tokens with correct labels
tend to have higher confidence scores than those with incor-
rect labels. As shown in Fig. 2(c) and Fig. 2(e), the yellow
area indicates the foreground tokens with high confidence
scores (0.7 ∼ 0.9). These tokens yield a highly accurate
segmentation of the target object. Contrastly, the cyan area
represents the foreground tokens with low confidence scores
(0 ∼ 0.2), which are coincidentally the ones with incorrect
labels.

We attempt to assign highly accurate labels to the target
object (i.e., foreground tokens). However, it is intractable to
exhaustively examine the confidence score of each patch to-
ken for all the images as it significantly increases the train-
ing time and requires much more computational resources.
Therefore, we propose a lightweight alternative by apply-
ing the Gumbel-Softmax [28] on the top of token outputs.
Mathematically, it can be expressed as:

yi =
e(log(πi)+Gi)/τ)∑k
j=1 e

(log(πj)+Gj)/τ)
(4)

where y is the k-dimension softmax vector, π are class
probabilities, G ∼ Gumbel(0, 1) are i.i.d. samples drawn
from the standard Gumbel distribution and τ is the softmax
temperature. Token labels with high confidence scores re-
main unchanged after applying Gumbel-Softmax, while la-
bels with low confidence scores are highly likely to change.
As shown in Fig. 2(d), we preserve the correct token la-
bels and eliminate the incorrect ones in a simple yet ef-
fective way, achieving high accuracy of foreground tokens
labels and more precise segmentation of the object. Fur-
thermore, since the training objective of the patch tokens
side can be considered a self-training process [29–31], we
convert the softmax outputs to “one-hot” probability distri-
bution (i.e., hard labels) as [32] shows that the use of hard
labels in self-training encourages the model’s predictions to
be high-confidence via entropy minimization [33]. Follow-
ing the aforementioned spatial-only data augmentation, we
can then rewrite the training objective of the student model:

L = H(Tcls,Ycls) + β · 1

N

N∑
i=1

H(Tpi , F̂(Îpi)) (5)

where F̂(·) is the one-hot encoded Gumbel-Softmax out-
puts of FAN-TL and [Îp1

. . . ÎpN
] are image patches with

the spatial-only data augmentation. Meanwhile, we notice
that all background tokens (i.e., the dark blue area) also have
low confidence scores. This is probably because these to-
kens neither contain apparent features associated with the

target object nor clear features related to any other class in
the dataset. Nevertheless, we keep all tokens (even those
with low confidence scores) in training, following the prac-
tice in [3] as involving more tokens for loss computation
yields better performance.

4. Experiments
4.1. Datasets and Evaluation Metrics

We evaluate our method on the image classification task
and its transferability to downstream semantic segmentation
and object detection tasks.

Datasets. For image classification, we test model per-
formance and robustness on ImageNet-1K (IN-1K) [34],
ImageNet-C (IN-C) [35], ImageNet-A (IN-A) [36] and
ImageNet-R (IN-R) [37]. IN-C contains natural corrup-
tions from noise, blur, weather, and digital categories and is
widely used to evaluate model’s robustness against shifted
distribution data. IN-A and IN-R consist of images with
different distributions from ImageNet training distribution,
such as natural adversarial examples and pictures gener-
ated by artistic rendition, thus are widely used to measure
the robustness against out-of-distribution data. For seman-
tic segmentation and object detection, we evaluate mod-
els on Cityscapes (City) [38], Cityscapes-C (City-C) and
COCO [39]. Similar to IN-C, City-C has corruptions from
the same four categories.

Metrics. We adopt standard evaluation metrics for im-
age classification: clean accuracy for IN-1K and robust ac-
curacy for IN-C, IN-A and IN-R. We also report mean cor-
ruption error (mCE) [35] on IN-C. For semantic segmen-
tation and object detection, we evaluate the model perfor-
mance using the clean and robust mean Intersection over
Union (mIoU) on City and City-C and the mean average
precision (mAP) on COCO. Additionally, we use retention
rate as the metric to reflect the resilience of the model ro-
bustness and fairly compare models with different capaci-
ties. The retention rate is defined as R = Robust Acc.

Clean Acc. .

4.2. Implementation Details

Experiments are conducted on 8 NVIDIA Tesla V100s
and codes are built upon Pytorch [40], timm [41] library
and MMSegmentation [42] toolbox. We adopt FAN-Hybrid
as the model architecture for FAN-TL and student models.
For image classification, we train the models on ImageNet-
1K using AdamW optimizer with a learning rate of 4e-3 and
batch size of 2048 for 350 epochs. We employ the cosine
scheduler with a decay rate of 0.1 to adjust the learning rate
every 30 epochs. The loss weight α in Eq. 2 and β in Eq. 5
are set to 1. We apply spatial, RandAug, CutOut, Mixup
and CutMix data augmentation in the training and a label
smoothing ratio of 0.9 to class and token labels. As dis-
cussed in Sec. 3, we apply spatial-only data augmentations



Model Param./FLOPs IN-1K IN-C Retention

ResNet18 [45] 11M/1.8G 69.9 32.7 46.8%
MBV2 [46] 4M/0.4G 73.0 35.0 47.9%
EffiNet-B0 [47] 5M/0.4G 77.5 41.1 53.0%
PVTV2-B0 [48] 3M/0.6G 70.5 36.2 51.3%
PVTV2-B1 [48] 13M/2.1G 78.7 51.7 65.7%
LV-ViT-T [3] 9M/2.1G 79.1 51.6 65.2%
FAN-T-Hybrid [15] 7M/3.5G 80.1 57.4 71.4%
STL (FAN-T-Hybrid) 8M/3.6G 79.9 58.2 72.8%

ResNet50 [45] 25M/4.1G 79.0 50.6 64.1%
DeiT-S [2] 22M/4.6G 79.9 58.1 72.7%
Swin-T [43] 28M/4.5G 81.3 55.4 68.1%
ConvNeXt-T [49] 29M/4.5G 82.1 59.1 71.9%
LV-ViT-S [3] 26M/6.6G 83.3 59.7 71.7 %
FAN-S-Hybrid [15] 26M/6.7G 83.5 64.7 77.5%
STL (FAN-S-Hybrid) 27M/6.8G 83.4 65.5 78.5%

Swin-S [43] 50M/8.7G 83.0 60.4 72.8%
ConvNeXt-S [49] 50M/8.7G 83.1 61.7 74.2%
LV-ViT-M [3] 56M/16.0G 84.0 62.0 73.8%
FAN-B-Hybrid [15] 50M/11.3G 83.9 66.4 79.1%
STL (FAN-B-Hybrid) 51M/11.4G 84.5 68.2 80.7%

DeiT-B [2] 89M/17.6G 81.8 62.7 76.7%
Swin-B [43] 88M/15.4G 83.5 60.4 72.3%
ConvNeXt-B [49] 89M/15.4G 83.8 63.0 75.2%
FAN-L-Hybrid [15] 77M/16.9G 84.3 68.3 81.0%
STL (FAN-L-Hybrid) 77M/17.0G 84.7 68.8 81.2%

Table 2. Results on image classification. We report clean and
robust accuracy on ImageNet-1K and ImageNet-C. Retention rate
is defined as Robust Acc.

Clean Acc. . LV-ViTs are vanilla ViTs trained with a
CNN token-labeler. Our models trained with STL achieve superior
robustness and retention rate in all cases. Meanwhile, our method
also improves the clean accuracy of models with a larger capacity
(e.g., FAN-B-Hybrid and FAN-L-Hybrid).

on inputs of FAN-TL and Gumbel-Softmax on patch token
outputs to obtain accurate token labels. We employ pre-
trained image classification models for semantic segmen-
tation as encoders and the SegFormer [11] head as the de-
coder. We follow the same training recipe as SegFormer and
train our models on Cityscapes using AdamW with a learn-
ing rate of 6e-5 and a batch size of 8 for 160K iterations.
The learning rate scheduler is set to “poly” with a default
factor of 1.0. Random resizing, flipping, and cropping are
applied as data augmentations in training. For object detec-
tion, we follow the same practice as Swin Transformer [43]
+ Cascade Mask R-CNN [44] and employ AdamW (initial
learning rate of 1e-4, weight decay of 0.05, and batch size
of 16) to train our models on COCO for 36 epochs.

4.3. Results on Image Classification

We first show the performance of models trained with
STL on the image classification task and compare them with
other SOTA models in Table 2. To evaluate the zero-shot
robustness against the distributional shift, all models are

Model Params (M) Clean IN-A IN-R mCE (↓)

Swin-T [50] 28.3 81.2 21.6 41.3 59.6
ConvNext-T [49] 28.6 82.1 24.2 47.2 53.2
RVT-S [51] 23.3 81.9 25.7 47.7 51.4
XCiT-S12 [52] 26.3 81.9 25.0 45.5 51.5
LV-ViT-S [3] 26.0 83.3 33.9 45.8 52.9
FAN-S-Hybrid [15] 26.3 83.5 33.9 50.7 47.8
STL (FAN-S-Hybrid) 26.5 83.4 38.2 51.8 47.3

Swin-S [50] 50.0 83.4 35.8 46.6 52.7
ConvNext-S [49] 50.2 82.1 31.2 49.5 51.2
XCiT-S24 [52] 47.7 82.6 27.8 45.5 49.4
LV-ViT-M [3] 56.0 84.0 35.2 47.2 50.5
FAN-B-Hybrid [15] 50.4 83.9 39.6 52.9 45.2
STL (FAN-B-Hybrid) 50.9 84.5 42.6 55.3 43.6

Swin-B [50] 87.8 83.4 35.8 46.6 54.4
MAE-ViT-B [53] 86.0 83.6 35.9 48.3 51.7
ConvNext-B [49] 88.6 83.8 36.7 51.3 46.8
RVT-B [51] 91.8 82.6 28.5 48.7 46.8
DAT-AugReg-ViT [14] 86.0 81.5 30.2 47.3 44.7
FAN-L-Hybrid [15] 76.8 84.3 41.8 53.2 43.0
STL (FAN-L-Hybrid) 77.3 84.7 46.1 56.6 42.5

Table 3. Results on out-of-distribution datasets. We report
the mean corruption error (mCE) for ImageNet-C, a lower value
indicates better robustness. The improved robustness of mod-
els trained with STL is well generalized to out-of-distribution
datasets and achieves even better robustness on ImageNet-A and
ImageNet-R.

trained on ImageNet-1K data and directly used for infer-
ence on ImageNet-C without finetuning. We use the same
model type for FAN-TL and the student model. It can be
seen that Transformer-based models are more robust than
CNN-based models in general. At all size levels, our mod-
els show superior robust accuracy and retention rate to other
models, including the original FAN models trained solely
with the class labels, indicating the effectiveness of STL in
improving model robustness. Notably, our models surpass
LV-ViTs [3] (i.e., vanilla ViT models trained with a CNN
token-labeler) in both clean and robust accuracy by signif-
icant margins, which validates the importance of channel
attention block in FAN and reveals the potential of self-
emerging token labels from Transformer-based models.

4.4. Robustness against Out-of-distribution Data

Token labels embed rich local information of image
patches. We adopt spatial-only data augmentation and
Gumbel-Softmax on FAN-TL to retain highly accurate la-
bels for foreground tokens to ensure that self-emerging to-
ken labels always provide correct information for student
models. The practice promotes the generalization perfor-
mance of student models as they can make robust predic-
tions even with different input data distributions. To ver-
ify this, we then evaluate model robustness against out-of-
distribution data, and results are summarized in Table 3.
Similarly, models are not fine-tuned for testing. We find that



Model Encoder Size City City-C Retention

DeepLabv3+ (R50) [54] 25.4M 76.6 36.8 48.0%
DeepLabv3+ (R101) [54] 47.9M 77.1 39.4 51.1%
DeepLabv3+ (X65) [54] 22.8M 78.4 42.7 54.5%
DeepLabv3+ (X71) [54] - 78.6 42.5 54.1%

ICNet ( [55]) - 65.9 28.0 42.5%
FCN8s ( [56]) 50.1M 66.7 27.4 41.1%
DilatedNet ( [57]) - 68.6 30.3 44.2%
ResNet38 ( [58]) - 77.5 32.6 42.1%
PSPNet ( [59]) 13.7M 78.8 34.5 43.8%
ConvNeXt-T ( [49]) 29.0M 79.0 54.4 68.9%

SETR ( [60]) 22.1M 76.0 55.3 72.8%
SWIN-T ( [43]) 28.4M 78.1 47.3 60.6%
SegFormer-B0 ( [11]) 3.4M 76.2 48.8 64.0%
SegFormer-B1 ( [11]) 13.1M 78.4 52.7 67.2%
SegFormer-B2 ( [11]) 24.2M 81.0 59.6 73.6%
SegFormer-B5 ( [11]) 81.4M 82.4 65.8 79.9%

FAN-B-Hybrid [15] 50.4M 82.2 66.9 81.5%
STL (FAN-B-Hybrid) 50.9M 82.5 68.6 83.2%

FAN-L-Hybrid [15] 76.8M 82.3 68.7 83.5%
STL (FAN-L-Hybrid) 77.3M 82.8 69.2 83.6%

Table 4. Results on semantic segmentation. We use mIoU as the
evaluation metric. ‘R-’ and ‘X-’ refer to ResNet and Xception, re-
spectively. Models trained with STL demonstrate an impressive
transferability to the downstream task and achieve significantly
better mIoU than other models on Cityscapes and Cityscapes-C.

LV-ViTs and original FAN models generalize well to out-
of-distribution data, while other Transformer-based mod-
els and the SOTA CNN-based ConvNext models perform
weaker. Despite the impressive performance of original
FAN models, models trained with STL demonstrate an even
better generalization ability and outperform all other mod-
els. The performance gains on IN-A and IN-R are more
significant than IN-C and set a new state-of-the-art, indicat-
ing that the accurate self-emerging token labels are crucial
to robustness against out-of-distribution data.

4.5. Transferability to Semantic Segmentation

[61] shows pre-trained models using different training
recipes perform differently in downstream tasks. [3] val-
idates that token labeling with CNN token-labelers bene-
fits semantic segmentation and improves the clean mIoU.
We also evaluate the transferability of STL to semantic seg-
mentation. As shown in Table 4, pre-trained models with
STL reveal better transferability than original FAN coun-
terparts and other prestigious backbones. Remarkably, our
approach achieves superior results on both clean and cor-
rupted datasets. As far as we know, this is the first work
to reveal that applying dense supervision in backbone pre-
training improves not only the clean performance but also
the robustness of the downstream task.

Model Encoder Size COCO (mAP)

Cascade Mask-RCNN 3× schedule

ResNet-50 [45] 25M 46.3
ResNeXt-101-32 [62] - 48.1
ResNeXt-101-64 [62] - 48.3
Swin-T [43] 28M 50.4
ConvNeXt-T [49] 29M 50.4
FAN-S-Hybrid [15] 26M 53.3
STL (FAN-S-Hybrid) 26M 53.4
Swin-S [43] 50M 51.9
ConvNeXt-S [49] 50M 51.9
FAN-B-Hybrid [15] 50M 53.5
STL (FAN-B-Hybrid) 50M 53.9

Swin-B [43] 88M 51.9
ConvNeXt-B [49] 89M 52.7
FAN-L-Hybrid [15] 77M 54.1
STL (FAN-L-Hybrid) 77M 54.1

Table 5. Results on object detection. Models trained with STL
outperform most CNN-based and transformer-based backbones.
Even compared with original FAN models, our models achieve at
least on par or even better mAP on COCO, indicating our method
can also benefit object detection.

4.6. Transferability to Object Detection

We also validate STL’s transferability to the object de-
tection task on COCO and present the results in Table 5.
Models trained with STL outperform most CNN-based and
Transformer-based backbones. Even compared with orig-
inal FAN models, STL brings a notable performance gain
for FAN-B while achieving comparable mean average pre-
cision on FAN-L and FAN-S. We notice the overall im-
provement in object detection is not as good as in image
classification and semantic segmentation, possibly because
the semantic segmentation task is more similar to token la-
beling from the perspective of dense prediction, while ob-
ject detection involves different techniques such as regres-
sion [63, 64] and multi-stage refinement [44, 63].

5. Ablation Study

5.1. Impacts of Different Data Augmentation

We apply spatial-only data augmentation on FAN-TL to
obtain accurate token labels that provide clean and correct
information toward student models, which is vital to model
robustness. The strategy is a “clean teacher noisy student”
design, where the student still uses all the augmentations.
Our motivation behind this design is to let the teacher and
student spatially aligned, with the teacher being as clean as
possible to generate high quality token labels (Strong aug-
mentations make it harder to generate good token labels as
shown in Fig. 4). We compare the impacts of different data
augmentation imposed on FAN-TL in Table 6. Experiments
are conducted on the FAN-S-Hybrid model. The student



 

Figure 4. Visualization results of token labels generated by
FAN-TL with full data augmentations. Strong augmentations
significantly affect the quality of token labels.

Spatial RandAug CutOut MixUp CutMix IN-1K IN-C

✓ ✗ ✗ ✗ ✗ 83.4 65.5
✓ ✓ ✓ ✗ ✗ 82.6 63.5
✓ ✓ ✓ ✓ ✓ 83.6 64.9

Table 6. Ablation on impact to the student model using various
data augmentations on FAN-TL. The different data augmenta-
tions are only imposed on the token-labeler’s inputs, while the stu-
dent model’s inputs are fully augmented. Strong data augmenta-
tions on FAN-TL undermine token label accuracy and significantly
affect the student model’s robust accuracy.

model trained with token labels generated by spatial-only
data augmentation achieves the best robustness while ap-
plying stronger augmentations harms the robust accuracy.
Interestingly, applying the consistent full data augmenta-
tion on FAN-TL and the student model yields better clean
accuracy, which reveals that different combinations of data
augmentation may play different roles in improving model
robustness and clean performance.

5.2. Impacts of Gumbel-Softmax

We propose to use Gumbel-Softmax as a lightweight so-
lution to retain correct token labels for foreground tokens
and eliminate incorrect ones, which yields a more accu-
rate segmentation of the object. We evaluate the impact
of Gumbel-Softmax using the FAN-S-Hybrid model in Ta-
ble 7. As can be seen, models trained with token labels gen-
erated by Softmax and Gumbel-Softmax achieve compara-
ble clean accuracy while Gumbel-Softmax improves robust
accuracy. This further validates that accurate foreground to-
ken labels are critical to model robustness.

Token Labeling IN-1K IN-C mCE (↓) IN-A IN-R

Softmax 83.4 65.2 47.6 37.2 51.7
Gumbel-Softmax 83.4 65.5 47.3 38.2 51.8

Table 7. Comparison of Softmax and Gumbel-Softmax. Both
methods achieve comparable clean accuracy while token labels
generated by Gumbel-Softmax yield better robustness.

5.3. Training with Heterogeneous Token-Labelers

In the previous experiments, we train student mod-
els with isomorphic FAN token-labelers (e.g., FAN-TL-S-
Hybrid for FAN-S-Hybrid). We are interested in the impacts

Model Token-Labeler IN-1K IN-C mCE (↓)

FAN-S-Hybrid - 83.5 64.7 47.8
FAN-S-Hybrid FAN-TL-S-Hybrid 83.4 65.5 47.3
FAN-S-Hybrid FAN-TL-B-Hybrid 83.3 65.8 46.8
FAN-S-Hybrid FAN-TL-L-Hybrid 83.5 65.5 47.4

FAN-B-Hybrid - 83.9 66.4 45.2
FAN-B-Hybrid FAN-TL-S-Hybrid 84.4 68.5 43.2
FAN-B-Hybrid FAN-TL-B-Hybrid 84.5 68.2 43.6
FAN-B-Hybrid FAN-TL-L-Hybrid 84.3 68.1 43.5

FAN-L-Hybrid - 84.3 68.3 43.0
FAN-L-Hybrid FAN-TL-S-Hybrid 84.7 69.0 42.4
FAN-L-Hybrid FAN-TL-B-Hybrid 84.8 69.2 42.1
FAN-L-Hybrid FAN-TL-L-Hybrid 84.7 68.8 42.5

Table 8. Performance comparison of training with different to-
ken labelers. The robustness of student models can be further
improved by training with a heterogeneous token labeler.

of training with a heterogeneous token-labeler and conduct
the ablation in Table 8. For each student model, we train
with three different FAN token-labelers of model sizes from
small to large. Models trained with heterogeneous FAN-
TL can achieve at least comparable or even superior perfor-
mance to ones trained with isomorphic token-labelers. Our
large model trained with FAN-TL-B-Hybrid further boosts
the clean and robust accuracy to 84.8% and 69.2% with the
mCE of 42.1%. This indicates STL is robust to different
token-labelers. Such robustness enables us to train a larger
student model with a smaller token-labeler, which can re-
duce the training cost.

Model Token-Labeler IN-1K IN-C mCE (↓)

FAN-S-Hybrid - 83.5 64.7 47.8
FAN-S-Hybrid NFNet-F6 (CNN) 83.2 65.8 46.9
FAN-S-Hybrid FAN-TL-B-Hybrid 83.3 65.8 46.8

FAN-B-Hybrid - 83.9 66.4 45.2
FAN-B-Hybrid NFNet-F6 (CNN) 83.5 67.4 44.9
FAN-B-Hybrid FAN-TL-S-Hybrid 84.4 68.5 43.2

FAN-L-Hybrid - 84.3 68.3 43.0
FAN-L-Hybrid NFNet-F6 (CNN) 83.9 68.3 43.2
FAN-L-Hybrid FAN-TL-B-Hybrid 84.8 69.2 42.1

Table 9. Comparison to the prior SOTA token labeling method.
Our proposed method that employs self-emerging token labels al-
ways yields better robustness than NFNet-F6, which validates the
benefit of encoding local information of image patches via self-
attention.

5.4. Comparison to Prior Token Labeling Method

As shown in Sec. 4.3 and Sec. 4.4, models trained with
FAN-TL demonstrate superior performance and robustness
than LV-ViTs [3] trained with a CNN token-labeler (i.e.,
NFNet-F6 [5]), which may attribute to the self-emerging to-
ken labeling and the channel attention design of FAN mod-
els. To better understand the effect of token labeling, we



train the same FAN models with different methods. Re-
sults are summarized in Table 9. It can be seen that STL
still significantly outperforms the CNN token-labeler even
with the same student model. Note that NFNet-F6 has more
than 400M parameters and achieves an 86.3% Top-1 accu-
racy on ImageNet-1K while the largest FAN-TL (i.e., FAN-
TL-L-Hybrid) only has 77.3M parameters and 84.3% Top-1
accuracy. However, FAN-TL consistently yields better re-
sults than NFNet-F6. The rationale behind this is possibly
because self-emerging token labels provide self-consistent
information to student models.

5.5. Impacts of Loss Weight

Choosing good loss weights is important when multiple
losses are jointly optimized. To study the impact of loss
weights and verify STL’s robustness against different loss
weights when training student models, we vary β with vari-
ous values and present the results in Table 10. We find STL
not sensitive to β. Both clean and robust accuracy fluctuates
in a small range. We thus set β = 1 to balance the loss with
equal weights for simplicity. Similarly, for the training of
token-labelers, α is also set to 1.

β IN-1K IN-C mCE (↓) IN-A IN-R

0.5 83.5 65.5 47.3 38.5 51.7
1.0 83.4 65.5 47.3 38.2 51.8
2.0 83.5 65.6 47.2 37.3 51.1

Table 10. Ablation study of loss weight β.

6. Conclusion
In this paper, we propose a self-emerging token label-

ing (STL) framework built on Transformer-based models
instead of CNNs. STL enables FAN token-labelers to self-
produce accurate and semantically meaningful token la-
bels for training student models with dense supervision.
Through extensive experiments and ablation studies, we
demonstrate that models trained with STL significantly sur-
pass the original FAN counterparts trained only with image-
level labels and achieve remarkable robustness improve-
ment in various visual recognition tasks. Our study vali-
dates that the self-produced knowledge from ViTs can in-
deed benefit their pre-training. We hope this work sheds
light on the potential and understanding of self-emerging
token labeling from ViTs and motivates future research.
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A. Appendix
A.1. Additional Implementation Details

We show the detailed training settings in Table 11. We
use multi-node training for FAN base and large models and
single-node for tiny and small models. The default batch
size and learning rate are adjusted to 1024 and 2e-3 for the
single-node training. The training settings are the same for
FAN-TL models in the first stage and FAN student models
in the second stage.

STL (T) STL (S) STL (B) STL (L)
Epoch 350 350 350 350
Batch Size 1024 1024 2048 2048
Weight decay 0.05 0.05 0.05 0.05
LR 2e-3 2e-3 4e-3 4e-3
LR decay cosine (0.1) cosine (0.1) cosine (0.1) cosine (0.1)

Dropout 0 0 0 0
Drop path 0.05 0.25 0.35 0.45
CutOut prob. 0.3 0.3 0.3 0.3
CutMix alpha 1.0 1.0 1.0 1.0
MixUp alpha 0.8 0.8 0.8 0.8
RandAug 9/0.5 9/0.5 9/0.5 9/0.5
Smoothing 0.1 0.1 0.1 0.1

Table 11. Detailed hyper-parameters for training with STL. “T”,
“S”, “B” and “L” stand for FAN “Tiny”, “Small”, “Base” and
“Large” hybrid models. Note that we use single-node training for
the tiny and small models, and thus the total batch size and learn-
ing rate are decreased accordingly.

We also try two additional ways to train FAN-TL, but
none works well in generating valid token labels. First, we
train FAN-TL by only optimizing the loss on the class to-
ken (following the conventional training paradigm). Token
labels generated by FAN-TL trained with such a method are
meaningless and thus can not improve the pre-training. Sec-
ond, we train FAN-TL by jointly optimizing the losses on
the class token and the global average-pooled token while
stopping the gradients back-propagating from the global
average-pooled token. We aim to evaluate the importance
of the gradients that come from the patch tokens side. FAN-
TL trained with the second method can not self-identify the
misclassified labels for foreground tokens, as the confidence
scores of all tokens are high. Therefore, token labels gener-
ated by FAN-TL trained with the second method are less ac-
curate. The experiment results indicate that gradients from
the class token and global average-pooled token sides are
crucial in training FAN-TL.

A.2. Detailed Results on ImageNet-C

We comprehensively evaluate model robustness against
different types of corruption and summarize the per-
category results in Table 12. For each category, we average
the robust accuracy of all five severity levels. The original
FAN models already show stronger robustness than other

models. Despite this, models trained with STL achieve
comparable robustness against blur and noise corruptions
and perform exceptionally well against digital and weather
corruptions, yielding even higher overall robustness and
making them particularly suitable for real-world applica-
tions such as autonomous vehicles.

A.3. Detailed Results on Cityscapes-C

Similar to the image classification task, we present the
per-category robustness of models on the semantic segmen-
tation task in Table 13. We follow the practice in Seg-
Former [11] and compute the average mIoU of the first three
severity levels for the noise category. For the remaining cat-
egories, we compute the average of all five severity levels.
Experiment results show that models trained with STL show
superior performance in almost all categories than other
CNN-based and Transformer-based models, including the
original FAN counterparts.

A.4. Visualization of Token Labels

As shown in Fig. 2, FAN-TL can generate semantically
meaningful token labels. By applying the spatial-only data
augmentation and Gumbel-Softmax, we further retain more
accurate token labels of the target object. We demon-
strate more visualization results of token labels generated
by FAN-TL with spatial-only data augmentation in Fig 5.
It can be seen that FAN-TL performs consistently well in
capturing the object gestalt and generating accurate token
labels for images with rotation, crop, shear and translation.



Model Param. Average
Blur Noise Digital Weather

Motion Defoc Glass Gauss Gauss Impul Shot Speck Contr Satur JPEG Pixel Bright. Snow Fog Frost

Mobile Setting (< 10M)

ResNet-18 ( [45]) 11M 32.7 29.6 28.0 22.9 32.0 22.7 17.6 20.8 27.7 30.8 52.7 46.3 42.3 58.8 24.1 41.7 28.2
MobileNetV2 ( [46]) 4M 35.0 33.4 29.6 21.3 32.9 24.4 21.5 23.7 32.9 57.6 49.6 38.0 62.5 28.4 45.2 37.6 28.3
EfficientNet-B0 ( [47]) 5M 41.1 36.4 26.8 26.9 39.3 39.8 38.1 47.1 39.9 65.2 58.2 52.1 69.0 37.3 55.1 44.6 37.4
PVT-V2-B0 ( [48]) 3M 36.2 30.8 24.9 34.0 35.8 33.1 35.2 44.2 50.6 59.3 50.8 36.6 61.9 38.6 50.7 45.9 41.8
PVT-V2-B1 ( [48]) 13M 51.7 45.7 41.3 30.5 43.9 48.1 46.2 46.6 55.0 57.6 68.6 59.9 50.2 71.0 49.8 56.8 53.0
FAN-T-Hybrid 8M 57.4 52.6 46.7 34.3 50.3 55.5 55.8 54.5 61.4 65.8 73.3 63.8 47.9 74.5 55.0 61.4 52.8
STL (FAN-T-Hybrid) 8M 58.2 52.7 48.0 34.9 51.3 56.8 56.5 55.4 61.8 66.0 73.1 62.8 47.6 74.7 56.9 64.9 57.2

GPU Setting (20M+)

ResNet-50∗ ( [45]) 25M 50.6 42.1 40.1 27.2 42.2 42.2 36.8 41.0 50.3 51.7 69.2 59.3 51.2 71.6 38.5 53.9 42.3
ViT-S ( [1]) 22M 54.2 49.7 45.2 38.4 48.0 50.2 47.6 49.0 57.5 58.4 70.1 61.6 57.3 72.5 51.2 50.6 57.0
DeiT-S ( [2]) 22M 58.1 52.6 48.9 38.1 51.7 57.2 55.0 54.7 60.8 63.7 71.8 64.0 58.3 73.6 55.1 61.1 60.7
FAN-S-Hybrid 26M 64.7 60.8 56.0 44.5 58.6 65.6 66.2 64.8 69.7 67.5 77.4 68.7 61.0 78.4 63.2 66.1 62.4
STL (FAN-S-Hybrid) 27M 65.8 61.7 56.0 42.6 58.6 65.4 65.6 64.5 69.4 71.9 78.0 70.0 59.8 79.1 65.6 71.6 65.3

GPU Setting (50M+)

ResNet-101 ( [61]) 45M 59.2 57.0 51.9 35.6 55.0 51.9 51.2 51.2 61.2 67.8 75.5 67.3 59.9 53.6 66.2 66.4 56.4
Swin-S ( [43]) 50M 60.4 56.7 51.4 34.8 53.4 60.1 58.4 57.8 62.3 65.9 73.8 66.4 62.4 76.0 55.9 67.4 60.7
FAN-B-Hybrid 50M 66.4 62.5 58.0 47.2 60.9 67.6 67.9 67.1 71.2 70.8 78.0 69.3 62.1 78.9 64.8 69.8 63.3
STL (FAN-B-Hybrid) 51M 68.5 65.0 58.7 47.4 61.0 69.1 69.3 68.6 72.6 73.7 79.1 71.9 65.5 80.1 66.8 72.9 67.3

GPU Setting (80M+)

ViT-B∗ ( [1]) 88M 59.7 60.2 55.6 50.0 57.6 54.9 52.9 53.2 62.0 52.3 71.5 68.7 71.7 74.9 52.8 57.1 41.7
DeiT-B ( [2]) 89M 62.7 56.7 52.2 43.6 55.1 64.9 63.5 61.2 65.7 68.2 74.6 66.9 61.7 76.2 59.7 68.2 64.9
Swin-B-IN22k ( [43]) 88M 68.6 66.1 62.1 48.2 63.2 67.3 66.2 66.4 70.5 71.7 77.8 73.5 74.0 80.3 66.2 74.0 66.9
ConvNeXt-B ( [49]) 89M 63.6 59.6 52.9 39.2 55.2 65.5 64.8 63.7 66.7 69.9 76.2 68.9 64.6 77.8 59.2 66.7 64.3
FAN-L-Hybrid 77M 68.3 65.1 59.2 49.2 61.9 70.1 71.1 69.4 72.7 72.4 77.6 71.8 66.6 79.6 65.6 71.3 65.7
STL (FAN-L-Hybrid) 77M 69.2 67.1 59.4 48.6 61.7 69.5 71.0 69.1 73.3 74.5 79.7 73.2 65.6 80.6 66.9 71.6 68.4

Table 12. Comparison of model robust accuracy on ImageNet-C (%). Models trained with STL reveal stronger robustness than other
models (i.e., models other than FAN) under all corruption categories. They also outperform the original FAN counterparts in most cases
(especially against digital and weather corruption) and yield a higher robust accuracy overall. ‘ResNet-50∗’ results are reproduced with the
same training and augmentation recipes for a fair comparison.

Model Average
Blur Noise Digital Weather

Motion Defoc Glass Gauss Gauss Impul Shot Speck Bright Contr Satur JPEG Snow Spatt Fog Frost

DLv3+ (R50) 36.8 58.5 56.6 47.2 57.7 6.5 7.2 10.0 31.1 58.2 54.7 41.3 27.4 12.0 42.0 55.9 22.8
DLv3+ (R101) 39.4 59.1 56.3 47.7 57.3 13.2 13.9 16.3 36.9 59.2 54.5 41.5 37.4 11.9 47.8 55.1 22.7
DLv3+ (X65) 42.7 63.9 59.1 52.8 59.2 15.0 10.6 19.8 42.4 65.9 59.1 46.1 31.4 19.3 50.7 63.6 23.8
DLv3+ (X71) 42.5 64.1 60.9 52.0 60.4 14.9 10.8 19.4 41.2 68.0 58.7 47.1 40.2 18.8 50.4 64.1 20.2

ICNet ( [55]) 28.0 45.8 44.6 47.4 44.7 8.4 8.4 10.6 27.9 41.0 33.1 27.5 34.0 6.3 30.5 27.3 11.0
FCN8s ( [56]) 27.4 42.7 31.1 37.0 34.1 6.7 5.7 7.8 24.9 53.3 39.0 36.0 21.2 11.3 31.6 37.6 19.7
DilatedNet ( [57]) 30.3 44.4 36.3 32.5 38.4 15.6 14.0 18.4 32.7 52.7 32.6 38.1 29.1 12.5 32.3 34.7 19.2
ResNet-38 32.6 54.6 45.1 43.3 47.2 13.7 16.0 18.2 38.3 60.0 50.6 46.9 14.7 13.5 45.9 52.9 22.2
PSPNet ( [59]) 34.5 59.8 53.2 44.4 53.9 11.0 15.4 15.4 34.2 60.4 51.8 30.6 21.4 8.4 42.7 34.4 16.2
ConvNeXt-T ( [49]) 54.4 64.1 61.4 49.1 62.1 34.9 31.8 38.8 56.7 76.7 68.1 76.0 51.1 25.0 58.7 74.2 35.1

SETR (DeiT-S) ( [65]) 55.5 61.8 61.0 59.2 62.1 36.4 33.8 42.2 61.2 73.1 63.8 69.1 49.7 41.2 60.8 63.8 32.0
Swin-T ( [43]) 47.5 62.1 61.0 48.7 62.2 22.1 24.8 25.1 42.2 75.8 62.1 75.7 33.7 19.9 56.9 72.1 30.0
SegFormer-B0 ( [11]) 48.9 59.3 58.9 51.0 59.1 25.1 26.6 30.4 50.7 73.3 66.3 71.9 31.2 22.1 52.9 65.3 31.2
SegFormer-B1 ( [11]) 52.6 63.8 63.5 52.0 29.8 23.3 35.4 56.2 76.3 70.8 74.7 36.1 56.2 28.3 60.5 70.5 36.3
SegFormer-B2 ( [11]) 55.8 68.1 67.6 58.8 68.1 23.8 23.1 27.2 47.0 79.9 76.2 78.7 46.2 34.9 64.8 76.0 42.1

FAN-B-Hybrid 66.9 70.0 69.0 64.3 70.3 55.9 60.4 61.1 70.9 81.2 76.1 80.0 57.0 54.8 72.5 78.4 52.3
STL (FAN-B-Hybrid) 68.6 70.1 71.0 66.4 71.9 58.6 62.3 63.8 73.0 81.5 77.4 80.6 62.4 54.1 71.7 79.3 53.2
FAN-L-Hybrid 68.7 70.0 69.9 65.3 71.6 60.0 64.5 63.3 71.6 81.4 76.2 80.1 62.3 53.1 73.9 78.9 54.4
STL (FAN-L-Hybrid) 69.2 71.4 70.0 66.1 70.7 58.7 66.8 65.1 74.8 81.9 77.3 81.3 58.1 55.2 74.5 79.9 53.6

Table 13. Comparison of model robust accuracy on Cityscapes-C (%). Models trained with STL show stronger robustness in almost
all corruption categories than other CNN-based and Transformer-based models (including the original FAN models). “DLv3+” stands for
DeepLabv3+ [66]. The mIoUs of CNN models are replicated from [54].
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Figure 5. More visualization results of token labels generated by FAN-TL. FAN-TL performs consistently well in capturing the object
gestalt and generating accurate token labels for images with spatial-only data augmentations.


