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Abstract

One-shot Neural architecture search (One-shot NAS) has
been proposed as a time-efficient approach to obtain opti-
mal subnet architectures and weights under different com-
plexity cases by training only once. However, the subnet
performance obtained by weight sharing is often inferior
to the performance achieved by retraining. In this paper,
we investigate the performance gap and attribute it to the
use of uniform sampling, which is a common approach in
supernet training. Uniform sampling concentrates training
resources on subnets with intermediate computational re-
sources, which are sampled with high probability. However,
subnets with different complexity regions require different
optimal training strategies for optimal performance.

To address the problem of uniform sampling, we propose
ShiftNAS, a method that can adjust the sampling probabil-
ity based on the complexity of subnets. We achieve this
by evaluating the performance variation of subnets with
different complexity and designing an architecture genera-
tor that can accurately and efficiently provide subnets with
the desired complexity. Both the sampling probability and
the architecture generator can be trained end-to-end in a
gradient-based manner. With ShiftNAS, we can directly ob-
tain the optimal model architecture and parameters for a
given computational complexity. We evaluate our approach
on multiple visual network models, including convolutional
neural networks (CNNs) and vision transformers (ViTs),
and demonstrate that ShiftNAS is model-agnostic. Experi-
mental results on ImageNet show that ShiftNAS can improve
the performance of one-shot NAS without additional con-
sumption. Source codes are available at GitHub.

1. Introduction

Deep neural networks (DNNs) have been widely ap-
plied to the field of computer vision with remarkable suc-
cess [0, 8]. However, the deployment of these vision net-
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Figure 1: A conceptual overview of our ShiftNAS. Focus-
ing on the computational resource (e.g. FLOPs), Shift-
NAS split a search space into several parts where subnets
have close computational complexity. In stochastic super-
net training, ShiftNAS first samples computational com-
plexity according to probability, then an architecture gen-
erator samples the subnet with desired computational com-
plexity. The probability distribution is dynamically updated
with stochastic training by estimating the performance vari-
ation of each sub-space.

works on edge devices still has some limitations, such as the
massive model sizes and excessive computation overhead
[9, 10, 20, 24]. In addition, designing architectures artifi-
cially in a trial-and-error manner is a resource-consuming
task that requires not only architectural skills but also do-
main expertise. Consequently, how to acquire optimal ar-
chitectures that balance latency and accuracy efficiently is
of paramount importance.

Recent advancements in neural architecture search
(NAS) methods, such as [22, 7, 30, 37], have led to signifi-
cant improvements in the performance of practical applica-
tions by automatically searching for optimal architectures
within a defined search space. However, traditional NAS
methods typically require a substantial computation budget
[23, 37]. In order to speed up training and reduce the re-
source consumption of the training process, one-shot NAS
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methods [18, 7] have adopted a two-stage training approach
based on weight sharing. Specifically, a supernet is trained
in the first stage, and subnets with better performance are
searched for in the second stage. In some cases, post-
processing methods (e.g., retraining and finetuning) are also
necessary in the second stage since the performance of these
subnets inherited from the supernet is often inferior to that
of models trained from scratch. However, the downside of
such methods is that the training consumption increases lin-
early with the number of architectures, which can be prob-
lematic. To address this issue, some one-shot NAS methods
[3, 4, 29, 33] have utilized a weight entanglement training
strategy to share the weights in each operation, eliminat-
ing the need for additional finetuning or retraining. Fur-
thermore, a high-quality supernet is essential for candidate
architectures to inherit weights directly [33], as well as for
accurately ranking candidate architectures [ 14].

However, there is still potential for breakthroughs in
training a better supernet. In the first stage, previous meth-
ods [7, 4] assume that all candidate architectures are equally
important and should be sampled with equal probability
during training. However, subnets with different numbers of
parameters require different amounts of training resources
[2]. For instance, subnets with 1.0 GFLOPs may converge
after 30000 iterations, while subnets with 2.0 GFLOPs may
require 50000 iterations. Additionally, only the optimal
subnet will be deployed, while others will be ignored at
the same computational complexity. Therefore, subnets that
occupy more training resources may not be distributed in
regions corresponding to resource constraints, resulting in
sub-optimal performance of the final deployed model. We
find that when all subnets are sampled with equal proba-
bility, the resulting computational resource distribution is
approximately normal. Consequently, subnets trained un-
der this distribution may appear to be under-fitting or over-
fitting in different regions.

To address the challenge of efficiently training a
high-performance supernet, we propose a novel method,
probability-Shift Neural Architecture search (ShiftNAS).
In ShiftNAS, the sampling probability of subnets is not uni-
form and can be dynamically adjusted during the training
process. The training sufficiency of each subnet is mea-
sured by evaluating its performance variation under dif-
ferent computational constraints. The subnets with high-
performance variance are identified as undertrained, and
their sampling probabilities are increased to tilt training re-
sources dynamically towards them. This enables us to al-
locate resources more effectively and efficiently to achieve
better performance for the subnets that need more training
resources.

In spite of having an optimal sampling distribution, effi-

ciently and accurately sampling subnets with a desired com-
putational constraint still poses a challenge. To address this

issue, we propose an LSTM-based architecture generator
(AG) that can be optimized differentiably with a resource
constraint loss function. The AG’s output is then processed
by Gumbel Softmax [12] to generate a one-hot vector policy
for each searched operation. To suit the weight-entangled
search space [32, 4], we employ a matrix mapping tech-
nique that can convert the one-hot vector into a differen-
tiable mask. The mask is multiplied by the operation to
obtain a differentiable subnet. The AG and supernet can
be jointly trained to learn how to generate the best subnets
with desired computational constraints. During evaluation,
the AG can generate a corresponding subnet immediately
for any given computational constraint. The weights of the
searched subnet can be directly inherited from the well-
trained supernet, making ShiftNAS free from any additional
search or retrain costs.

The overall contribution can be summarized as follows:

* A learnable sampling strategy, called probability shift,
is proposed to relief the bias of uniform sampling
which leads to performance gap between supernet
training and subnet deployment.

* We propose an LSTM-based AG to precisely and effi-
ciently offer the best subnet with desired resource con-
straints. AG training can be differentiably trained with
supernet under weight-entangled search space.

e We achieve state-of-the-art or competitive results on
both CNN and ViT models. Therefore, ShiftNAS is a
model-agnostic search method.

2. Related Work

The one-shot NAS method [3, 29, 33] can automatically
search for the optimal architecture in a predefined search
space [4, 9, 18], which can be formulated by maximizing
an expected accuracy over the space A4, i.e.,

gleig Lyal (U)* | O{)

s.t. w* = argmin Ly, (w | «) (1)

We

complexity(a) < T

where w and « represent the weight and architecture of sub-
nets. L,q; and L;,q;r, are loss functions in the validation and
train dataset, respectively. The computational complexity of
« can be calculated by the complexity function. 7 denotes
the complexity threshold for alpha. To solve this optimiza-
tion problem, a two-stage approach based on weight sharing
is usually employed.

In the first stage, a high-quality supernet is trained by
sampling a large number of subnets in the defined search
space. Notably, in order to obtain subnets that need to be in-
corporated into the training phase, the following approaches
are commonly used in recent one-shot NAS works [4, 7].



First is the uniform sampling method, which is also the
most common strategy. The Uniform sample method con-
siders that all architectures in the supernet are equally im-
portant, that is, they should be sampled with exactly equal
probability. The weight optimization equation in the first
stage can be formulated as:

min Eq A [Lirain(w | @)]

a=o0'Udc*U...Uo” ()
o' ~ U (0,n;)

where D, n denotes the total operation and candidate num-
ber in certain operations, respectively. o’ denotes the i th
selected operation, which follows a uniform distribution.

Since there is a gap between the training process and
practical deployment, AttentiveNAS [29] proposes the
Pareto-aware sampling method. Specifically, models de-
ployed on edge devices are generally around the Pareto
frontier, but they are uniformly sampled during training,
which leads to the waste of training resources to a certain
extent. To bridge the gap between training and deploying,
each iteration extracts multiple subnets with equal size and
selects the best or worst architecture for training.

Similar to AttentiveNAS, GreedyNAS [31] screen the
weak subnets and just sample from the potentially-good
subnets instead of all subnets, thus capturing another op-
portunity to improve the accuracy of target models.

However, these uniformly sampled architectures appear
to be an approximately normal distribution of the computa-
tional cost. To further reduce the gap between training and
deployment, Focusformer [19] proposes that all the sam-
pled subnets should be based on resource distribution and
focuses more on the Pareto frontier architectures through
an architecture sampler. In addition, FairNAS [5] also rein-
forces the sampling process with a stricter standard of fair-
ness, that is, the parameters of each choice block are up-
dated the same number of times at any stage.

When the first stage is over, this well-trained supernet
can be used as the performance estimator of the candidate
architecture. And the weight of candidate architectures can
be directly inherited from the supernet.

In the second stage, we need to search for the best candi-
date architecture under different resource constraints in the
supernet, which can be formulated as

a = argminL,q (w | )
a€cA 3)
s.t. complexity(a) < T

Since there are so many architectures in the supernet that
need to be evaluated, the consumption of computing re-
sources is also unacceptable. Therefore, recent works re-
sort to random search [17], evolution algorithms [4, 7, 23]
or reinforcement learning [37] to find the most promising

architecture among all architectures. In the end, these se-
lected architectures need some post-processing operations
such as retraining to improve the architecture performance,
but this also brings additional computational consumption.

In order to alleviate the above-mentioned resource con-
sumption problem, some one-shot NAS methods train a
high-quality supernet so that candidate architectures can di-
rectly inherit supernet weights without retraining, such as
Autoformer [4], attentiveNAS [29], BigNAS [33], Focus-
Former [19].

3. Nerual Architecture Search with Probability
Shift

In this section, we first discuss the training resources al-
location problem caused by uniform sampling in one-shot
NAS. To solve the above-mentioned problem, we present
ShiftNAS, an end-to-end supernet training framework. In
ShiftNAS, a learnable sampling strategy is proposed, which
can dynamically adjust the training resources allocation by
shifting the sampling probability. Then, an LSTM-based
AG is designed to accurately obtain the expected subnet for
each sampling. We show the overview of our method in
Figure 1.

3.1. Rethinking the Sampling of One-shot NAS

In one-shot NAS, an overparameterized supernet S is
formed with multiple operations, where each operation con-
tains several choices. The supernet S contains D opera-
tions, and the d th operation 0% can be selected from n can-
didates o1, . . ., 0,,, which represent various design choices,
such as kernel size and channels in CNN search space [33],
or heads number and MLP ratio in ViT search space [4]. A
subnet a sampled from the supernet can be represented by a
tuple of size D, i.e.,a = (o',...,0").

In previous one-shot NAS methods, the sampling proba-
bility of each operation candidate o; is given by p (0;) = %,
which assumes that all candidates are equally important.
However, in reality, one-shot NAS is more concerned with
the computational resources of the subnets. To address this,
we introduce the notion of computational resource for each
operation candidate o?, denoted by b% € by,...,b,. The
computational resource of a subnet a randomly sampled
from the supernet can then be computed as B, = 25:1 b,
where b? follows a uniform distribution.

Remark 1 Ifwe assume that the computational resource of
each operation b® is independently sampled from a uniform
distribution, then the total computational resource B, of a
subnet a sampled from the supernet follows an Irwin-Hall
distribution. As the number of operations D in the supernet
increases, the Irwin-Hall distribution converges to a normal
distribution [2]].
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Figure 2: During supernet training, operations are sampled
from a uniform distribution in each iteration. The subnet
consists of the sampled operations and its computational re-
source follows an approximated normal distribution.

Upon analyzing Remark 1, it is evident that the uni-
form sampling strategy results in subnets being sampled
with moderate computational resources, as depicted in Fig-
ure 2. This observation implies that subnets with moderate
computational resources can be trained effectively, whereas
subnets with large or small computational resources cannot
be fully trained. Insufficiently-trained subnets lead to in-
accurate ranking [14, 15] and inherit unreasonable weights
from the supernet without retraining [1].

3.2. Shifting Probability with Greedy Sample

One-shot NAS methods rely on the assumption that the
supernet can effectively rank the performance of subnets
with arbitrary computational resources, and therefore re-
quire each subnet to be fully trained with optimal train-
ing strategies. However, in practice, subnets with differ-

ent computational resources may require different training
strategies, and the uniform sampling strategy used in previ-
ous one-shot NAS methods may lead to insufficient training
of subnets in certain computational regions. For example,
subnets with extreme computational resources may not be
fully trained even when subnets with moderate computa-
tional resources are fully trained. To address this issue, we
propose a learnable greedy sampling strategy that takes into
account the training sufficiency of subnets in different com-
putational regions.

For any subnet, we judge whether the subnet has con-
verged by calculating the following gradient of the subnet.

V= vaval(wya | b) “4)

where L,,; represents the task loss (e.g. cross entropy)
in the validation dataset, w,« and b denote the weight,
architecture and sampled computational resource of the
subnet, respectively. When the subnet with b computa-
tional resource converges, V,, will tend to zero. In other
words, insufficiency-trained subnets have a large gradient
and should be sampled more times. Therefore, we can
greedily adjust the sampling distribution of B by optimiz-
ing the computational resource distribution at each training
step

arg]rgnabeNB [V Lyar(w, o | b)] (5)

To optimize B end to end based on gradient-based methods,
we discrete computational resources into several parts, e.g.
[1.3G,1.4G, ..., 2.0G] FLOPs, and uniformly initialize its
probability distribution. In each training step, one compu-
tational resource can be sampled by Gumbel Softmax G.
Formally, Eq. 5 can be rewritten as

arg maxVy, Lyqi(w, a | G(B)) (6)
B

In this way, the gradient of B in ¢th update can be obtained
by applying chain rule to Eq. 6

Vs, =V, 5, Loalw, o | G(B))Vp,G(B) (7)

where ¢t denotes the update times of B. w; represents the
supernet weight when B has been updated ¢ times. How-
ever, evaluating the gradient of B; requires an expensive
matrix-vector product in its second term. Inspired by darts
[18], the complexity can be substantially reduced using the
finite difference approximation. We use two training steps
to approximate the gradient of w, therefore, Eq. 7 can be
rewritten as

VBt = VBtLval (wt,a | G(Bt)) vBtG(Bt)

_vBtLval (wtfla « | G(Bt)) vBtG(Bt) (8)

In the implementation, the distribution B is only updated
every few iterations, so there is no excessive computational
overhead. The iterative procedure is outlined in Appendix.
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Figure 3: An overview of architecture generator training process. AG is given a sampled resource constraint B and generates
several one-hot policies sequence by sequence. Then, one-hot policies will be mapped to corresponding masks to keep

differentiable.

3.3. Generating Architectures with Arbitray Com-
putational Resources

The probability shift is able to sample subnets accord-
ing to their corresponding training sufficiency. However, a
crucial question emerges: given a certain computational re-
source b, how can we rapidly sample a subnet that satisfies
the desired resource constraint? A straightforward approach
would be to keep sampling subnets until one is found that
meets the resource constraint. Nevertheless, as illustrated
in Figure 2, subnets with large or small computational re-
sources have an extremely low probability of being sam-
pled, which makes sampling these subnets computationally
inefficient.

To address this issue, we propose an architecture gener-
ator (AQG) that can provide the corresponding subnet archi-
tecture according to any resource constraint. The AG is de-
signed to stably generate a subnet architecture that satisfies
the desired resource constraint. Inspired by previous works
[37], which formulate the NAS problem as a sequence pre-
diction problem, we also use an LSTM network to gener-
ate each operation sequence by sequence. To update the
sampling probability B, we use differentiable neural archi-
tecture search (DNAS) [1 1, 18] to jointly train the AG and
the supernet. DNAS is preferred over other search meth-
ods, such as RL-based or evolutionary-based methods, as it
converges faster.

This section presents an overview of the AG (Architec-
ture Generator) training process with clarity and academic
rigor. Figure 3 provides a visual representation of the AG

training process. During the training of AG and supernet,
the sample distribution B remains static and is not updated.
To enable end-to-end updates of AG, the policy of each op-
eration is generated using Gumbel Softmax with a one-hot
vector, such as [1, 0, 0].

It is important to note that the focus of this paper is
on weight entanglement. This means that each operation
shares weights for their common parts, and weights with
small indices are always activated. As a result, policies
cannot be directly involved in forward and backward pro-
cesses. To overcome this issue, a matrix map trick is em-
ployed. More specifically, given an one-hot policy p € 1 xn
where n denotes the candidate number in this operation, the
mapped policy p’ can be computed using the following

pI:M'pT:[mgvm{v“"mg]'pT )
where M consists of several masks and m? represents the
mask of ¢ th candidate. We show the matrix map exam-
ple in Figure 3. Assume a ViT block has three heads and
the heads number can be selected in [1, 2, 3], their weight-
entangle masks can be designed as m° = [1,0,0],m!* =
[1,1,0] and m? = [1,1, 1], respectively. With Eq. 9, the
one-hot policy p participates in the forward of the supernet
while the gradient of AG is automatically calculated by the
chain rule.

Since our goal is to make AG learn how to accurately
generate a subnet architecture with arbitrary resource con-
straints, the objective function of AG is designed to reduce
task loss L4, while minimizing the gap L rc between the
resource constraint of the sampled subnet and the target.



Model | Parameters(M) | FLOPs(G) | Cost(GPU Days) | Top-1 Acc.(%) | Top-5 Acc.(%)
DeiT-tiny[28] 5.7 1.2 24 72.2 91.1
AutoFormer-tiny[4] 5.7 1.3 30 74.7 92.3
FocusFormer-tiny[ 19] 6.2 1.4 26 75.1 93.1
ShiftFormer-T(Ours) 5.8 1.3 24 76.0 93.1
DeiT-S[28] 22.1 4.7 30 79.9 95.0
T2T-ViT-14[35] 21.5 6.1 32 81.7 -
ViT-S/16[6] 22.9 5.1 - 78.8 -
BoTNet-S1-59[26] 33.5 7.3 - 81.7 95.8
AutoFormer-small[4] 22.9 5.1 35 81.4 95.6
FocusFormer-small[ 1 9] 23.7 5.0 32 81.6 95.6
ShiftFormer-S(Ours) 23.6 5.0 30 82.2 95.8
DeiT-B[28] 86.6 17.6 43 81.8 95.6
ViT-B/16[6] 86.6 17.6 - 79.7 -
AutoFormer-base[4] 52.8 11.0 43 81.4 95.7
FocusFormer-base[ 19] 52.8 11.0 41 81.9 95.6
ShiftFormer-B(Ours) 52.8 11.0 40 82.8 96.1
MobileNetV2 0.75x[24] 2.6 0.21 18 69.8 -
MobileNetV3 1.0x[9] 5.4 0.22 3791 75.2 -
DS-MBNet-M[ 16] - 0.33 24 73.2 -
BigNAS-S[33] 4.5 0.24 112 76.5 -
Once-For-All[3] 4.4 0.23 105 76.4 -
GreedyNAS-C[31] 4.7 0.28 32 76.2 92.5
Shift CNN-S(Ours) 4.5 0.24 32 77.2 93.1
MobileNetV2 1.3 x[24] 5.3 0.50 21 72.8 -
MobileNetV3 1.25x[9] 8.1 0.35 3791 76.7 -
EfficientNet-BO[27] 5.4 0.39 3791 77.1 93.3
DS-MBNet-S[16] - 0.57 24 74.8 -
BigNAS-M[33] 5.5 0.42 112 78.9 -
GreedyNAS-A[31] 6.5 0.37 40 77.1 93.3
Shift CNN-B(Ours) 5.6 0.42 32 79.6 93.6

Table 1: ShiftNAS models performance on ImageNet with comparisons to other models. We group the models according to
their FLOPs. We use ShiftFormer and ShiftCNN to denote the models searched by ShiftNAS. Cost represents the total GPU

days including training, searching and retraining.

Therefore, the joint loss L is given by

L = Lk + ALRrc

D n
Lrc= |2 D bpf—C

i=1 j=1

(10)

where b and p/ represents the computational resource and
policy of j th candidate in ¢ th operation, C' indicates the
target resource constraint sampled from sampling distribu-
tion B. ) is the coefficient of L. In the implementation,
we jointly optimize the AG and the supernet on the train
dataset with Eq. 10. After few epochs, AG can generate the
corresponding subnets with given resource constraint.

4. Experiment
4.1. Experimental Setup

Dataset and evaluation metrics. We conduct main ex-
periments on ImageNet [ 13] which contains about 1.2M im-
ages for training and 50 K images for validation. We use the
Top-1 accuracy and the number of giga floating-point oper-
ations(GFLOPs) to measure the performance and efficiency
of networks.

Implementation details. ShiftNAS is a model-agnostic
search method. Therefore, we search the models with var-
ious resource constraints on both CNN and ViT search
space. We split the computational resource range into K
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Figure 4: The effectiveness of probability shift. FLOPs/Accuracy tradeoffs of ShiftNAS with and without probability shift
on search space (a) ViT-tiny; (b) ViT-small; (c¢) ViT-base; (d) CNN.

Model ‘ Inherit(%) ‘ Finetune(%) ‘ Retrain(%)

ShiftFormer-T 76.0 75.9(-0.1) 76.1(+0.1)
ShiftFormer-S 82.0 82.0(0.0) 82.0(0.0)
ShiftFormer-B 82.4 82.3(-0.1) 82.6(+0.2)
ShiftCNN-S 77.2 77.0(-0.2) 77.3(+0.1)
ShiftCNN-B 79.6 79.5(-0.1) 79.6(0.0)

Table 2: Comparison of subnets Top-1 accuracy with inher-
ited, finetuned and retrained weights.

parts with 0.1 GFLOPs step. The sampling distribution will
be represented by a 1 x K learnable vector. We randomly
split 50 K images from ImageNet and use Adam optimizer
with le-3 learning rate to update the sampling distribution
vector. The AG consists of an LSTM cell with 64 hidden
numbers and 4/10 fully connected layers for ViT/CNN su-
pernet and will be updated jointly with the supernet. In
the first 50 training epochs, we only optimize the supernet
weight and the AG since the AG cannot generate the cor-
responding subnets at the beginning. After 50 epochs, the
sampling distribution vector is updated per 100 iteration.
We discuss more hyperparameter settings in the Appendix,
such as the split step of the computational resource and the
updated frequency of the sampling distribution vector. The
training strategies for both CNN and ViT are given in Ap-
pendix. All the models are trained on 8 Nvidia Tesla A100
GPUs.

For CNN search space, we follow BigNAS [33] where
the search space contains kernel size, channel number,
depth and input resolution. The supernet will be split into 7
stages. Each stage has multiple choices of the block number
and the first block of each stage has no residual path. The
policy of kernel size will be generated block-wise, where
the small kernel size is center cropped from the large ker-
nel size. The policies of channel number and depth will be
predicted stage-wise, where the lower-index channels and
blocks are preferentially kept.

For ViT search space, we follow AutoFormer [4] which
searches embed dim, head number, MLP ratio and depth

with three different scale settings. The policies of head
number and MLP ratio will be given block-wise. As CNN,
the lower-index heads and neurons are preferentially kept.

After training, we directly sample the candidate with
the max probability given by the AG. It is noted that the
obtained model inherits weights from the trained supernet
without retraining or fine-tuning. Therefore, no search or
retraining cost exists in ShiftNAS.

4.2. Main Results

We search ViT and CNN architectures on ImageNet with
different FLOPs constraints. We compare searched mod-
els with multiple ViT and CNN models on model perfor-
mance (Top-1 Acc., Top-5 Acc.) and efficiency (FLOPs,
parameters). It is seen from Table 1 that our ShiftFormer
models surpass the recent manual and autoML-based trans-
former models under diverse model sizes. It is worth
noting that ShiftFormer-tiny achieves a top-1 Acc. of
76.0 with only 1.3 GFLOPs, being 1.3% and 0.9% better
than AutoFormer-tiny and FocusFormer-T which are also
autoML-based methods, respectively. Compared to CNN
models, ShiftCNN models also achieve better accuracy
than all compared networks under similar FLOPs restric-
tions. For example, ShiftCNN-S and ShiftCNN-B achieve
0.7% and 0.7% higher top-1 accuracy than BigNAS-S and
BigNAS-M, respectively. Specifically, ShiftCNN and Big-
NAS models are searched from the same search space. Big-
NAS models spend more than 2x GPU time than Shift CNN
models since the sandwich rule is used to train BigNAS su-
pernet, which demonstrates the efficiency and outstanding
performance of ShiftNAS. For fairness, we do not compare
our models with others obtained from better search spaces
[15, 29] in Table 1. The experiments on AttentiveNAS
search space can be found in the Appendix.

4.3. Ablation Study

The effectiveness of probability shift. To demonstrate
the effectiveness of the proposed sampling probability shift,
we trained a ShiftNAS supernet and its baseline counter-
part under ViT-tiny, ViT-small, ViT-base, and CNN search
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Figure 6: The ranking correlation of architecture generator.

spaces. In the baseline supernet training, we uniformly sam-
pled FLOPs in each step and did not update FLOPs proba-
bility. The training settings for all supernets are provided
in the Appendix. As illustrated in Figure 4, the supernet
trained with probability shift is capable of covering a wide
range of accuracy-FLOPs curves and outperforms the base-
line supernet trained without probability shift by a signif-
icant margin, demonstrating the effectiveness of the pro-
posed sampling probability shift mechanism.

The ranking correlation of architecture generator.
The experiment is based on ShiftFormer-tiny supernet. We
measure the ranking correlation by randomly sampling 25
subnets from the ShiftFormer-tiny supernet. For fast eval-
uation, The sampled subnets are inherited weights from
the supernet and are further finetuned to reach the optimal
weights. As for the model ranking test, we evaluate sam-
pled subnets in both supernets to get their inherited perfor-
mance. As shown in Figure 6, the inherited performance is
highly correlated with finetuned performance in good sub-
nets (Inherited Topl-Acc > 65%). Despite the correlation
with bad subnets is not obvious, we focus more attention on
good subnets since bad subnets are not deployed in practice.

Subnet performance without retraining. We further
study the performance of ShiftNAS models when models

are independently fine-tuned or trained from scratch. Fol-
lowing Autoformer, we finetune or retrain the selected sub-
net with 40 epochs or 300 epochs on ImageNet. Table 2
shows that finetuning cannot improve or even harm the per-
formance of subnets inherited from supernet. Besides, re-
training can slightly improve the subnet performance but
cost extra training resources which prevents the implemen-
tation of NAS.

The optimal sampling strategy. ShiftNAS learns the
optimal sampling probability for each subnet with different
FLOPs. To figure out what sampling strategy is the best,
we visualize the various sampling probability in different
search spaces (ViT-tiny, ViT-small, ViT-base and CNN) at
different training steps. As can be seen in Figure 5, our
method learns to sample more subnets with large computa-
tional complexity. For example, the sampling probabilities
of 1.6 to 1.9 GFLOPs subnets are clearly higher than 1.3
and 1.4 GFLOPs subnets in the ViT-tiny search space. This
is intuitive since the large subnet contains more parameters
and needs more computational resources to update.

5. Conclusion

In this paper, we presented ShiftNAS, a one-shot su-
pernet training framework that can complexity-wise adjust
the sampling probability. To automatically adjust the sam-
pling probability, we proposed probability shift that can be
learned according to the subnets training sufficiency. To fast
obtain the subnets with desired complexity, AG is designed
that can be jointly trained with the supernet in an end-to-end
manner. Experiments on ImageNet showed that our method
achieves SOTA results on ViT/CNN search spaces, and cov-
ers a wide range of efficiency/accuracy trade-offs without
any extra retraining.

Limitation. ShiftNAS is designed for efficient search
on weight-entanglement search spaces, so it cannot work
on darts-like search spaces [18, 25].
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A. Training Settings

The training settings for ViT and CNN models are fol-
lowing Table 3.

Algorithm 1 The Pytorch-style algorithm of supernet train-

ing.

Require: Supernet architecture S and weight w; Archi-
tecture generator AG; Sampling distribution B; training
dataset (X,Y); criterion C; update frequency ¢; Opti-
mizer for w and «, optimizer.

Ensure: Trained supernet weight w.

Initialize frequency count and checkpoint weight, count
=0 and w;_1=w;
while not convergence do
Clear gradients, optimizer.zero_grad();
Sample a subnet computational resourceb, b ~ B;
Sample a subnet architecture a, a = AG(b|a) ;
Sample mini-batch of data, (z,y) < (X,Y);
Compute loss, loss=C(S(z|w, a), y);
Compute V,, V., loss.backward();
Update w and a, optimizer.step();
count+=1;
if count==q then
Update wy=w and count=0;
Do Algorithm 2 with w; and w;_1;
Update w;_1=wy;
end if
end while

Algorithm 2 The Pytorch-style algorithm of distribution
update.

Require: Supernet architecture .S; Checkpoint and current
weights w;_1, wy; Architecture generator AG; Sampling
distribution B; validation dataset (X',Y”); criterion C;
Optimizer for B, optimizer_B.

Ensure: Updated distribution B.

Clear gradients, optimizer_B.zero_grad();
Sample a subnet computational resource, b ~ B;
Sample a subnet architecture a, a = AG(b|a) ;
Sample mini-batch of data, (z',y’) + (X', Y”);
Compute [0ss;_1, loss;—1 = C(S(2'|wi—1,a),y);
Compute and save Vg, ,, loss;_1.backward();
Clear gradients, optimizer_B.zero_grad();
Compute l0sst, lossy = C(S (2 |we, a),y);
Compute and save V p,, loss;.backward();
Compute Vp=Vp, ,-Vp,;

Update B, optimizer_B.step();

B. Training Algorithm

We provide a detailed account of the supernet training
process in Algorithm 1. Unlike the uniform sampling ap-
proach, we propose a dynamic distribution B to sample sub-
nets in each iteration. The sampling distribution B is up-
dated every q iterations as shown in Algorithm 2. We cal-
culate V g by performing two forward and backward passes
on the current and former supernet weight w; and w;_;. It
should be noted that only a batch of data is used in each
B update, which keeps the time overhead at an acceptable
level.

C. More Ablation Study

Correlation between the gradient and the training
sufficiency. In ShiftNAS, we utilize the gradient of
V p=Vp,_,-Vp, to quantify the training sufficiency of sub-
nets, and there is a curiosity about the relationship between
the two. To address this, we conducted an experiment on
ViT-tiny space to investigate their correlation. Specifically,
we followed the steps: 1) We trained a supernet with few
epochs using a uniform sampling strategy. 2) We randomly
selected 30 subnets from the supernet and calculated their
scores V=V p, ,-Vp, based on the validation dataset. 3)
These subnets were independently finetuned for one epoch.
4) After finetuning, the loss variations of the sampled sub-
nets on the validation dataset were recorded.

The Kendall’s tau values between the scores Vg and
the loss variations are presented in Table 4. Our results
demonstrate a strong correlation between the gradient and
the training sufficiency after training the supernet for 60
epochs.

Split steps of search space. In ShiftNAS, the search
space is divided into several parts based on computational
complexity, e.g., FLOPs. The effect of steps on model per-
formance is discussed here, using experiments carried out
on ViT-tiny space where each supernet is trained under the
same training setting. The search space is split from 1.3
GFLOPs to 1.9 GFLOPs with 0.2, 0.1, and 0.05 GFLOPs
steps, respectively. As shown in Figure 7, it can be ob-
served that the 0.1 step obtains the best performance in most
cases. Empirically, a larger step leads to a smaller search
space since the AG only needs to search the optimal subnets
along the steps. Therefore, these subnets sampled from a
smaller search space can be trained more sufficiently, which
is also mentioned in [ | 9]. However, a large step means that
we cannot obtain a fine-grained optimal subnet. Therefore,
0.1 steps are chosen for ShiftNAS to balance performance
and deployment.

Update frequency of the sampling distribution vec-
tor. To investigate the effect of different update frequency,
we conducted experiments by setting the update frequency
q as 50, 100, 500, and 1000 iterations. The results, shown



Model ‘ Epochs ‘ Batch size ‘ Learning rate ‘ Weight decay ‘ Optimizer ‘ Augmentation
CNN ‘ 500 ‘ 1024 ‘ Se-1 ‘ ‘ SGD ‘ CropFlip+AutoAugment
VIT | 500 1024 le-3 AdamW CropHlip+RandAugment
+Cutmix+Mixup+random erasing

Table 3: Experimental configurations.

Epoch | 30 | 60 | 90 | 120
Kendall’s tau | 0.24 | 0.63 | 0.75 | 0.72

Table 4: The Kendall’s tau values in different training
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in Figure 8, indicate that the subnet performance decreases
as the update frequency decreases, for different computa-
tional constraints. This phenomenon suggests that the op-
timal sampling distribution varies under different training
stages, and frequent updates can help to better adapt to the
changing training dynamics.

The efficiency of architecture generator. To validate
the efficiency of the architecture generator (AG), we com-
pared the time required for AG and without AG when sam-
pling subnets of different FLOPs. Without AG, we ran-
domly sample subnets until it finds one that meets the com-
putational constraint. The experimental results, as shown in
Figure 9, demonstrate that AG can directly infer architec-
tures of any computational complexity, while random sam-
ple takes hundreds or thousands of times longer. For ex-
ample, during searching ViT-tiny on ImageNet-1k, an addi-
tional 52 hours (1250¢ters x 500epochs x 0.4s) is required.

Table 5: Comparison of the effectiveness with Attentive-
NAS.

D. Comparisons under AttentiveNAS search
space

AttentiveNAS [29] has introduced a method to dynam-
ically sample subnets during supernet training. However,
this method employs a more comprehensive search space
than ours, as illustrated in Figure 9 in the AttentiveNAS
Appendix. To ensure a fair comparison, we have trained the
supernet with 500 epochs on AttentiveNAS search space.
The comparative results are presented in Table 5. Notably,
our ShiftCNN models can outperform the AttentiveNAS
models under comparable FLOPs constraints. Additionally,
it is worth mentioning that ShiftNAS consumes fewer train-
ing epochs than AttentiveNAS due to the utilization of the
sandwich rule [34] in training the supernet.
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Backbone ‘ Acc.@1 ‘ FLOPs(G)
ViT-Base 48.2 120.9

ShiftFormer-B 49.8 90.4

Table 6: Comparison of the effectiveness on the segmen-
taion task.

E. Transfer for Segmentation Tasks

To assess the transferability of our proposed approach
to other computer vision tasks, we have conducted experi-
ments on segmentation using the ADE20k dataset. In this
regard, we have employed SegViT [36] as our framework
and have replaced its backbone with ShiftFormer-B. For fair
comparison, the baseline backbone is ViT-Base [6], pre-
trained on ImageNetlk. The experimental results are re-
ported in Table 6.

F. Visualization of the Searched Architectures

We show the searched architectures of ShiftNAS
family models in Figure 10, including ShiftFormer-T,
ShiftFormer-S, ShiftFormer-B, ShiftCNN-S and ShiftCNN-
B.
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Figure 10: The searched architectures of ShiftNAS family models.



