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Abstract

Currently, one main research line in designing a more
efficient vision transformer is reducing the computational
cost of self attention modules by adopting sparse attention
or using local attention windows. In contrast, we pro-
pose a different approach that aims to improve the per-
formance of transformer-based architectures by densifying
the attention pattern. Specifically, we proposed forward
cross attention for hybrid vision transformer (FcaFormer),
where tokens from previous blocks in the same stage are
secondary used. To achieve this, the FcaFormer leverages
two innovative components: learnable scale factors (LSFs)
and a token merge and enhancement module (TME). The
LSFs enable efficient processing of cross tokens, while the
TME generates representative cross tokens. By integrat-
ing these components, the proposed FcaFormer enhances
the interactions of tokens across blocks with potentially dif-
ferent semantics, and encourages more information flows
to the lower levels. Based on the forward cross attention
(Fca), we have designed a series of FcaFormer models that
achieve the best trade-off between model size, computa-
tional cost, memory cost, and accuracy. For example, with-
out the need for knowledge distillation to strengthen train-
ing, our FcaFormer achieves 83.1% top-1 accuracy on Im-
agenet with only 16.3 million parameters and about 3.6 bil-
lion MACs. This saves almost half of the parameters and a
few computational costs while achieving 0.7% higher accu-
racy compared to distilled EfficientFormer.

1. Introduction

With the rapid adoption of transformer structures in
the computer vision community, several types of atten-
tion patterns have been proposed to enhance the perfor-
mance or speed of transformer models. For instance,
ViT [5] employs the vanilla global multi-head self-attention,
Swin Transformers [19] uses local windowed attention,
MaxViT [30] incorporates grid attention across interleaved
tokens, and Dynamic ViT [26] utilizes attention on progres-
sively pruned tokens. These approaches aim to sparsify the

attention patterns of the original ViT to achieve a better
trade-off between speed and accuracy.

In contrast, we propose a new model block as well as
a family of models called FcaFormer, which improves the
performance of vision transformers by further densifying
the attention patterns at a limited extra cost. Specifically, we
propose to connect the input of the standard multi-head at-
tention (MHA) module with extra tokens transformed from
previous blocks in the same stage, while still restricting the
attention module to output the original amount of tokens. To
further reduce the computational cost, we merge the tokens
from previous blocks by using depthwise convolutions with
large strides. These tokens are further calibrated by scaling
them with learned parameters, before being taken into the
attention units in subsequent blocks.

The new forward cross attention connection has several
advantages: 1) it helps transformers further exploit the in-
teractions of tokens across different levels; 2) it reuses the
previously generated tokens so that some of the informa-
tion no longer needs to be preserved by the subsequent
transformer operations, leading to potentially smaller mod-
els with similar accuracy; 3) similar to the residual connec-
tions in ResNet, this extra cross layer connection encour-
ages more information flows to the lower levels of the net-
work, which further accelerate the convergence.

The newly densified connections come with a limited in-
crease in computational cost. As explained in Section 3.3,
this cost increase is linear rather than quadratic, since we
keep the number of output tokens the same as in standard
ViTs. Furthermore, most of the computation cost in most
hybrid vision transformer architectures is in the feed for-
ward network (FFN) rather than the MHA part of trans-
former blocks. Thus, the linear growth of computational
complexity from densified connections does not signifi-
cantly affect the overall computation cost. Finally, to further
reduce the number of extra inputs, we use depthwise con-
volutions with large kernels and long strides to aggregate
tokens from previous blocks.

We have incorporated the proposed Fca design into two
typical classes of transformer models: the plain ViT model
used in DeiT, and the hybrid ConvNet and transformer



structures frequently seen in recent works [22, 9, 17]. Our
experiments demonstrate that the Fca block can seamlessly
replace the corresponding transformer blocks in these ar-
chitectures, leading to significantly improved performance
compared to their corresponding baselines. Specifically,
FcaFormer-L1 achieves a top-1 accuracy of 80.3% with
approximately 6.2 million parameters and about 1.4 bil-
lion MACs. This is achieved while saving almost half the
number of parameters, and achieving 1.1% higher accuracy
compared to the recently proposed EfficientFormer. Table 2
displays the comparison results.

The contribution of this paper is summarized as follows.

* Opposite to many recent works that use sparse atten-
tions to improve transformer models, we propose to
design more efficient models by densifying the atten-
tion connection patterns, which open up a new and
worthwhile research avenue for consideration.

* We propose the FcaFormer block, which leverages ex-
isting tokens and enhance interactions across different
levels. To achieve this, we introduce two new com-
ponents: learnable scale factors (LSFs) and a token
merge and enhancement module (TME). The LSFs
allow us to effectively process cross tokens, while
the TME generates representative cross tokens. To-
gether, these components improve the performance of
the FcaFormer models.

* Based on the proposed FcaFormer block, we con-
structed several new models which have demonstrated
better performance than various other recently pro-
posed models.

2. Related Works
2.1. Pure vision transformers

Dosovitskiy et al. introduced transformer model into
vision tasks and proposed the ViT [5]. It cropped an im-
age into 16 x 16 patches as an input token sequence to the
transformer and used positional encoding to model spatial
relations among tokens. DeiT [29] lowered the difficulty of
ViT model training by knowledge distillation, and achieved
competitive accuracy with less pretraining data. To Fur-
ther improve the model architecture, researchers attempted
to optimize the ViT toward improving its computational ef-
ficiency. Among them, the Swin transformer [19] computes
self attention among shifted local windows. The MaxViT
[30] uses block attention and grid attention alternatively to
keep spatially global information exchange while signifi-
cantly reduce the number of tokens involved in the self at-
tention computation. The DynamicViT [26] prunes redun-
dant tokens progressively and dynamically depending on

the input features. Mohsen et al. [7] proposed a differen-
tiable parameter-free adaptive token sampler and plugged it
into ViTs to sample part tokens for attention computation.
Except for the DeiT, all methods above keep pure vision
transformer architectures and seek to achieve better accu-
racy speed trade-off by using sparse attention via reducing
the number of tokens in attention patterns. In contrast, we
propose to achieve this goal by densifying the attention pat-
tern, reusing existing tokens from previous blocks. Such
interactions promote attentions across features of different
semantic levels, which is very common in ConvNets and
many methods before the wide adoption of deep learning.

2.2. Hybrid ConvNet and vision transformers

Rather than simplifying ViTs, another popular line of
research is to combine elements of ViTs and ConvNets to
form new backbones. Two early attempts can be found
in [9, 37], where ConvNet blocks are employed to extract
low level information in early stages and ViT blocks are
adopted in deep stages. Such a hybrid structure improves
optimization stability and model performance. Similarly,
BoTNet [28] replaces the standard convolution with multi-
head attention in the last few blocks of ResNet. In [22], the
deeper stages of MobileNetv2 [27] are replaced with their
proposed MobileViT block. There are other hybrid mod-
els which mix convolution operation with self attention and
channel mixer operations. For example, ConViT[6] incor-
porates soft convolutional inductive biases via a gated po-
sitional self-attention. CMT [10] and Next-ViT [15] insert
both convolution operataion and self attention module into
a single block. PVT vl [34], PVT v2 [35], LIT [25] and
LIT v2 [24] insert convolutional operations into each stage
of ViT models to reduce the number of tokens, and build
hybrid multi-stage structures.

Generally speaking, hybrid models achieve better trade-
off between model cost and accuracy compared with pure
vision transformer models. Therefore, we mainly focus on
applying forward cross attention design on hybrid models
to evaluate its effects. Our work is complementary to these
hybrid design attempts, and can be used to replace the trans-
former part for most of these models.

2.3. Skip connections in ConvNets

In retrospect, our work is also related to several key im-
provements in ConvNets design that introduces extra con-
nections to improve the information flows.

ResNet [13] employs shortcut connections to overcome
the degradation problem, where accuracy gets saturated and
then degrades rapidly with the increasing convolutional net-
work depth. DenseNet [14] connects each layer to ev-
ery other layer in a feedforward fashion. As with ResNet
that builds the whole network by stacking several residual
units, DenseNet consists of multiple dense blocks. Wang et
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Figure 1. A FcaFormer stage which consists of L FcaFormer blocks. Compared with standard ViT blocks, we add token merge and
enhancement (TME) part, which uses long stride large kernel convolutions to merge tokens spatially as cross tokens, and small kernel
convolutions to further enhance tokens for channel mixing (FFN). The cross tokens are then used in later blocks as extra tokens for
multi-head attention, after being calibrated by multiplying them with learned scaling factors (LSFs, o).

al. [33] further improve DenseNet by using two-way dense
layers to obtain different receptive fields. With limited ex-
tra computational cost, these model design choices solved
bottlenecks existed in ConvNets and are still widely used in
both academia and industry.

Our proposed forward cross attention is similar to the
works above in that it reuses existing intermediate results
and introduces extra connections to the overall network
structure. As experiments show, our work introduces simi-
lar benefits to transformer models such as better model per-
formance and faster model convergence.

2.4. Cross attention transformers

In transformers, cross attention is usually used to mix
two different embedding sequences. In [32, 8], the output of
encoder is fed to decoder via cross attention. CrossViT [1]
mixes small-patch and large-patch tokens with cross atten-
tion to extract multi-scale feature. Our proposed FcaFormer
shares the basic idea of integrating information with cross
attention. However, unlike previous models, our FcaFormer
integrates tokens from different semantic levels using TME
and LSFs to overcome their distinct characteristics.

3. The proposed FcaFormer
3.1. FcaFormer block and FcaFormer stage

Fig.1 shows the major parts and connection relations of
a FcaFormer stage which consists of L FcaFormer blocks.
Each FcaFormer block is composed of three major parts,
which are cross multi-head attention (CMHA), token merge
and enhancement (TME), and feed forward network (FFN)
respectively.

CMHA and LSFs. Different from the standard ViT
block, our proposed FcaFormer block receives two sets of
tokens as input. The block in turn generates two sets of to-
kens as well, which are denoted as z! and Z' respectively.
Taking the block at depth [ as an example, the inputs are

the regular tokens from its previous block 2!~! and a set of
block cross tokens (z!=2, #/73...z!) from earlier blocks in
the stage. The CMHA takes both x'~! and (z'=2, z!=3...z1)

as input, but only generates n tokens y* as its output.

It is worth noting that the cross tokens are scaled
by learned calibration coefficients (learnable scale factors
LSFs) « before they are used in the CMHA. We found that
the statistics of tokens from different semantic levels are
very different. Without this calibration operation, cross to-
kens are hard to integrate to regular tokens in current blocks
to work as we expected. Details are shown and analyzed in
our ablation study part.

Specifically, given the inputs above, the query, key and
value for multi-head attention modules are constructed as:

Q = Wl )
K — wk [xlq, (1al)T ® (5172, ... ’jl)] )
vV o= WY ad) T e @2 3] )

where WX WV, W are the three weight matrices trans-
forming input into key, value and query tokens respectively.
Elements in o € R¥*! are the learnable scale factors for
cross tokens and ® denotes the element-wise multiplication
where each token in z is multiplied by a corresponding scal-
ing scalar in a.

The computed @, K,V are then connected to the stan-
dard dot product attention operators as in the original trans-
former [32], which computes the globally mixed intermedi-
ate tokens /.

T
y=a"t+wP {Softmax <K + B> V] @)
Vd
The B in Eqn.4 is a learnable matrix consisting of two parts,
which are relative position bias for = and relative depth bias
for z. The query has only n tokens, so the output 3 is of
sizen x d.
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Figure 2. The detailed structure of the token merge and enhance-
ment (TME) module.

TME. The intermediate tokens y' are then passed to the
added token merge and enhancement (TME) part, which
computes the cross tokens Z! and locally enhanced tokens
2! using two separate depthwise convolutions. As shown
in Fig 2, our TME has two branches. In the token merge
branch, we use a large kernel (7 x 7) large stride (s = 4)
depthwise convolution to generate Z', resulting in a small
number of cross tokens to be used by subsequent blocks. In
token enhancement branch, a standard depth wise convolu-
tion (3 x 3, s = 1) is used to locally mix the tokens so as to
enhance the 2d spatial relations in the token sequence.

FFN. The locally enhanced tokens z' are then used in the
standard FFN part of ViT to compute the output token !,
which together with Z! are the entire output of a FcaFormer
block at depth [.

In summary, our FcaFormer are different from vanilla
ViT in following ways:

e Asymmetric input and output. In our FcaFormer,
CMHA part takes both regular tokens and cross tokens
as input but keep the output sequence length fixed to
n as in regular transformers. This is the key point that
why our proposed FcaFormer only introduce limited
extra computational cost. More details are explained
in section 3.3.

* Cross token scale. LSFs are used to facilitate the in-
tegration of cross tokens into regular tokens. Without
this calibration process, cross tokens may not function
as expected. As shown in Fig 5.

* Relative depth embedding. In the CMHA part, we
choose to use relative positional encoding instead of
absolute ones. Apart from its generally better perfor-
mance, the choice also gives model the flexibility to
encode relative depth of the cross tokens, which sim-
plifies the model design.

3.2. FcaFormer Models

The FcaFormer block is a generic block that can be
grouped as FcaFormer stages to construct models. To
demonstrate the universal effectiveness of our new attention
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Figure 3. The overall structure of FcaFormer Mobels for im-
age classification tasks. (a) Plain FcaFormer model. This
model is directly modified from the DeiT structure. (b) Hybrid
FcaFormer model. The ConvNet stages are composed of Con-
vNext blocks. The detailed model scaling hyperparameters are
specified in Sec.3.2

pattern, we build two types of FcaFormer based models,
each falls into one of the major categories of transformer
related computer vision models as described in Sec. 2. The
overall structure of these models for classification task are
illustrated in Fig.3.

Plain FcaFormer. As shown in Fig 3 (a), following
the style of vanilla ViT, we construct our plain FcaFormer
model (denoted as FcaFormer-L0). The model essentially
uses one block of FcaFormer after the patch embedding
layer that crops 16 x 16 patches and converts them into a to-
ken sequence. The corresponding task related head is kept
unchanged compared with the original ViT model.

Hybrid FcaFormer. As illustrated in Fig 3 (b). Follow-
ing the trend of combining ConvNet structures and trans-
former structures to build hybrid models, we also propose
to build hybrid FcaFormer. Following LeViT [9] and ViT-
C[37], we adopt the most straightforward way to build our
Hybrid FcaFormers, where there are two conventional Con-
vNet stages followed by two FcaFormer stages. The Con-
vNet stage is composed of ConvNext blocks [20] plus a
downsampling layer that uses pointwise and depthwise con-
volutions to reduce the feature map resolution by 4x and
increases the feature map channels.

Based on the above overall structure, we build models of
different sizes to compare with other works. The key scal-
ing hyper-parameters is summarized below, where D de-
notes the channel size:

¢ FcaFormer-LO: D=192, L=12
¢ FcaFormer-L1: D=(64,128,192,320), L=(2,2,6,2)
¢ FcaFormer-L2: D=(96,192,320,480), L=(2,2,7,2)



H=14, W=14, N=196, D=192

21%

‘ 15%

M Pre_L M MHA M Post_L M FFN

(b)

H=7, W=7, N=49, D=448

M Pre_L @ MHA M Post_L M FFN

(©

Figure 4. Computational cost analysis. (a) Detailed analysis on
the number of parameters and MACs for a transformer block; (b)-
(c) Computation decompositions in blocks of stage 3 of DeiT-Tiny
and stage 4 of EfficientFormer-L1 respectively.

3.3. Computational Complexity of FcaFormer

In terms of computational complexity, transformers are
notorious for its O(n?) scaling property, which is why so
many prior works try to reduce the inputs to the MHA
model. However, the extra computational cost of densify-
ing the attention pattern is rather limited in our FcaFormer
models, because of the following reasons:

1) The added extra computation is restricted to the MHA
part, since we keep the output sequence length of MHA
fixed to n as in regular transformers. This leads to linear
scaling cost in terms of the number of additional input to-
kens, which itself is a small ( (I —1) xn/s? ) compared with
n. The computational cost of FFN part is kept unchanged
compared with original ViT blocks.

2) In vision transformer model families, the FFN part
actually constitutes the majority of computations. This is
paradoxical to the fact that MHA scales at O(n?) while
FFN scales at O(n), largely because that the neglected con-
stant token size d in big O analysis is rather large and scales
poorly. Fig. 4 details the exact adds and multiplications
(MAGC:sS) of a standard ViT block in terms of the number of
tokens n and the dimension of tokens d. Taking the trans-
former block DeiT-Tiny as an example, because n = 196
and d = 192 are at the same scale, the 2n°d MACs in MHA
is much less compared with that (8nd?) of FFN (15% vs
56% respectively). For models in pyramid shapes such as
swin transformers where n < d, the majority skews even
more towards FFN because of the local windowing effect.
Compared with the reference models, our FcaFormer vari-
ants only introduce about 13% extra computational cost.

It looks like that the proposed FcaFormer is heavier than
its reference model as it introduces extra computations.
However, the counter-intuitive fact is that FcaFormer can

Models # params. FLOPs Topl acc
M) (&) (%)
DeiT-T [29] 5.5 72.2
FcaFormer-1L.O 5.9. 74.3
Swin-1G* 6.3 1.5 78.4
FcaFormer-L1 6.2 1.4 80.3
ConvNext-Tiny [20] 29 4.5 82.1
Swin-Tiny [19] 29 4.5 81.3
FcaFormer-1.2 16.3 3.6 83.1

Table 1. Comparison with baselines. The plain version FcaFormer
is based on DeiT-T. The hybrid ViT FcaFormer models are based
on ConvNext and Swin Transformers. findicate our inplementa-
tion

be more light-weight than its reference model. As is men-
tioned in introduction, FcaFormer reuses tokens from pre-
vious blocks, enhances interaction of tokens across blocks
and improve information flow. Compared with the vanilla
ViT, FcaFormer has better parameter efficiency. Therefore,
FcaFormer can get comparable or even better performance
with fewer layers and channels. Our experiments further
verifies this advantage.

In addition to the detailed analysis above, we want to
point out that the prior efforts to sparsify the attention pat-
terns spatially in Sec.2.1 and our proposal to densify the at-
tention patterns across semantic levels are complementary
to each other. While not the key emphasis of this paper, it
is definitely worth exploring if the two types of designs can
be combined to yield even more efficient and performant
models.

4. Experiments

In this section, we conduct image classification experi-
ments on Imagenet-1K [3], semantic segmentation experi-
ments on ADE20K [42], and object detection experiments
on MS-COCO [18] to evaluate our proposed models. We
first compare the proposed FcaFormers with our baselines
and the previous SOTA methods. Then, we conduct detailed
study to show the effectiveness of our design choices.

4.1. ImageNet classification

Experiment settings. The FcaFormer-LO is imple-
mented based on code of DeiT !. The hybrid FcaFormer
models are implemented based on code of ConvNext > and
Swin *. We follow the training recipes in DeiT [29] to train
our FcaFormer-LO, except that we did not use the knowl-
edge distillation. To train the hybrid FcaFormers, we use
the same training hyper parameters and augmentations as
used in ConvNext except that the batch size is restricted to

Uhttps://github.com/facebookresearch/deit
Zhttps://github.com/facebookresearch/ConvNeXt
3https://github.com/microsoft/Swin-Transformer



Models KD Type Param. MACs Topl
DeiT-Tiny [29] Y ViT 6 - 745
DeiT-Tiny [29] - ViT 6 - 122
FcaFormer-1.0O - ViT 6 - 743
LeViT-128 [9] Y Hybrid 9 04 78.6
EfficientFormer-LL1 [17] Y Hybrid 12 1.3 792
ParCNet [41] - Conv 5 1.7 78.6
TNT-Ti [12] - ViT 6 1.4 739
Swin-1G' [19] - ViT 7 1.0 773
Swin-2GT [19] - ViT 13 20 792
EfficientFormer-L1* - Hybrid 12 1.3 76.1
MobileViT-V1 [22] - Hybrid 6 20 784
EdgeViT-XS [23] - Hybrid 7 1.1 775
MobileViTV2[27] - Hybrid 5 1.8 78.1
CoaT-Tiny [38] - Hybrid 6 44 783
PVT-V2-B1 [35] - Hybrid 13 2.1 78.7
Mobile-Former [2] - Hybrid 14 0.5 793
Edgenext [21] - Hybrid 6 1.3 794
MobileOne-S4 [31] - Hybrid 15 3.0 794
FcaFormer-L1 - Hybrid 6 14 80.3
DeiT-S [29] Y ViT 22 46 81.2
LeViT-256 [9] Y Hybrid 19 1.1 81.6
EfficientFormer-L3 [29] Y Hybrid 31 39 824
ResNet50 [13] - Conv 25 4.1 78.8
ResNet50* - Conv 25 41 791
PoolFormer-S24 [39] - Conv 21 3.4 80.3
PoolFormer-S36 [39] - Conv 31 50 814
ConvNext-Tiny [20] - Conv 29 45 821
VAN-B2 [11] - Conv 27 50 82.8
DeiT-S [29] - ViT 22 46 799
Swin-T [19] - ViT 29 45 81.3
T2T-ViT-14 [40] - ViT 22 48 81.5
T2T-ViT-19 [40] - ViT 39 85 81.9
MViTv2-T [16] - ViT 24 47 823
CSWin-T [4] - ViT 23 43 827
MobileViTV2 [27] - Hybrid 19 7.5 81.2
LITV2 [24] - Hybrid 28 3.7 82.0
Next-ViT-S [15] - Hybrid 32 5.8 825
FcaFormer-1.2 - Hybrid 16 3.6 83.1

Table 2. Comparison with the state-of-the-art methods on
ImageNet-1K validation set. KD means knowledge distillation is
used during training. { indicates implemented by us, where models
are trained following the training setting used in ConvNext. Accu-
racy and FLOPs are calculated on input image size 224 x 224. T
borrowed from [2]

1024 and the initial learning rate is reduced to 2e-3. This
change is because we don’t have enough GPUs to support
the default batch size of 4096 in ConvNext.

Comparison with baselines. The results are summa-
rized in Table 1, from which we can see that both types
of our proposed FcaFormer models outperform their refer-
ence models by a significant margin. Compared with DeiT-

T, FcaFormer-LO does have 0.4 M more parameters, but
it achieves 2.1% higher accuracy. Our hybrid FcaForm-
ers achieve better performance in all three metrics: accu-
racy, model size and computational cost. FcaFormer-L1
achieves 1.9% higher top-1 accuracy compared with sim-
ilarly sized Swin-1G. FcaFormer-L1 also has good scala-
bility. The scaled up version FcaFormer-L2 outperforms
the ConvNext-Tiny by 1.0% with 20% less computational
cost and 44% fewer parameters. FcaFormer-L2 also sur-
passes Swin-T by 1.8% while using fewer parameters and
less computation.

In summary, our proposed forward cross attention design
universally improves performances of both plain version
and hybrid ViT models without increasing too much extra
computation cost or even saving parameters and FLOPs.

Comparison with other models. In Table 2, we make a
comparison with other models proposed in recent two years.
Compared to the latest state-of-the-arts, including Con-
vNets, ViTs and Hybrid models, our proposed FcaFormer
models achieve the best accuracy under the condition of
having similar model sizes. In addition, the proposed mod-
els beat models strengthened by knowledge distillation in
classification accuracy.

Specifically, FcaFormer-L1 outperforms MobileOne and
EdgeNext by 0.9% in classification accuracy, while keeping
comparable or smaller model size and fewer computational
cost. Among models having about 25 million parameters,
FcaFormer-L2 achieves the highest classification accuracy
with the fewest parameters. Compared with Next-ViT-S
which achieves the second highest accuracy, FcaFormer-
L2 saves about half parameters and 38% computational
cost, while gaining 0.6 percentage points higher accuracy.
Also, note that both EfficientFormer-L3 and LeViT-256
are trained with knowledge distillation, which has been
verified to improve accuracy significantly [29]. Even so,
FcaFormer-L2 still has better accuracy and smaller model
size compared with these two models.

4.2. Semantic segmentation

Training setting. To evaluate the proposed FcaFormers
on downstream tasks. We apply them on the ADE20K se-
mantic segmentation task. Following Swin and ConvNext,
we adopt UperNet [36] as our base framework and imple-
ment segmentation experiments on mmseg . FcaFormer-
L2 is trained for 160K iterations with a batch size of 16.
Model pretrained on ImageNet-1K is used to initialize seg-
mentation model. More details are presented in supplemen-
tary materials.

Comparison with baselines. The results are summa-
rized in Tab.3, compared with Swin-Tiny, FcaFormer-L2
achieves 1.8% higher mloU. Compared with ConvNext-
Tiny, FcaFormer-L2 achieves 0.9% higher mloU. Com-

“https://github.com/open-mmlab/mmsegmentation



Method Backbone mlOU # params. MACs
DANet ResNet-101 45.2 69 1119
DpLab.v3+ ResNet-101 44.1 63 1021
ACNet ResNet-101 45.9 - -
DNL ResNet-101 46.0 69 1249
OCRNet  ResNet-101 45.3 56 923
UperNet  ResNet-101 44.9 86 1029
UperNet  DeiT II (ViT-S) 46.8 42 588
UperNet  Swin-T 45.8 60 945
UperNet  ConvNext-T 46.7 60 939
UperNet  FcaFormer-L2  47.6 46 730

Table 3. Semantic segmentation on the ADE20K dataset. We use
UperNet as our segmentation method and compare our perfor-
mance using the same method with other popular backbones.

pared with Swin-T and ConvNext-T, the last two stages
of FcaFormer-L2 are narrower (384 vs 320, 768 vs 480),
which saves parameters and computational cost. There-
fore, our FcaFormer-L2 achieves higher mIOU, while sav-
ing 23% parameters and 22-23% computation cost.

4.3. Object detection

Training setting. Object detection experiments are con-
ducted on COCO 2017 and implemented on mmdet °. Fol-
lowing [19] and [20], we fintune MASK-RCNN and Cas-
cade Mask R-CNN on the COCO dataset with FcaFormer
pretrained on ImageNet-1k. We use multi-scale training,
AdamW optimizer, and a 3x schedule. More details are
presented in supplementary materials.

Comparison with baselines. The results are summa-
rized in Tab.4. Experimental results on objection detection
show a similar trend with that on semantic segmentation.
Compared with Swin-Tiny and ConvNext-Tiny, FcaFormer-
L2 achieves higher values on all six metrics, while having
fewer parameters and less computational cost.

4.4. Ablation study

In this section, we conduct ablation analysis on compo-
nents proposed in our FcaFormer.

Effects of the learnable scale factors (LSFs). Fig 5
shows the attention score maps of several FcaFormer blocks
trained with and without LSFs. It can be seen that without
LSFs, the attention between cross tokens and regular tokens
are generally weak, and become weaker as the depth goes
deepr ( down on the figure). This verifies our hypothesis
that characteristics of tokens in different levels can be very
different. Comparing the two columns of attention maps, it
clearly shows that the LSFs helps increasing the correlation
between regular tokens and the cross tokens, thus encour-
ages the reuse of previously generated tokens.

Shttps://github.com/open-mmlab/mmdetection

Backbone  #Params.MACs AP® APY AP% AP™ AP APR
Mask-RCNN 3x schedule
SWin-T 48 267 46.0 68.1 50.3 41.6 65.1 44.9

ConvNext-T 48 262 46.2 67.9 50.8 41.7 65.0 449
FcaFormer-L2 37 249 47.0 68.9 51.8 42.1 65.7 454
Cascade Mask-RCNN 3 x schedule

ResNet-50 82 739 46.3 64.3 50.5 40.1 61.7 43.4
DeiT-S 80 889 48.0 67.2 51.7 41.4 64.2 443
X101-32 101 819 48.1 66.5 52.4 41.6 63.9 45.2
X101-64 140 972 483 66.4 52.3 41.7 64.0 45.1
Swin-T 86 745 50.4 69.2 54.7 43.7 66.6 47.3

ConvNext-T 86 741 50.4 69.1 54.8 43.7 66.5 47.3

FcaFormer-L2 74 728 51.0 69.4 55.5 43.9 67.0 47.4
Table 4. Object detection on the COCO dataset.
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Figure 5. Effects of LSFs. Attention scores for cross tokens are

marked with red boxes. From rows 1-4, attention maps are from
blocks 2.4 and 6 of stage3, and block 2 of stage 4 respectively.

From baseline to FcaFormer. The high performance
of FcaFormer models is based on two key factors: com-
bining the strengths of ViTs and ConvNets, and utilizing a
dense but not heavy forward cross attention design. Table 5
shows how we integrate these two key points in designing
our models. To evaluate the performance of the proposed
FcaFormer on real-world applications, we deployed each
model on the edge device Rockchip 3288, which is widely
used in various embedded applications. We collected la-
tency and memory usage information for each model.

The first row in Table 5 provides a baseline micro model
to speed up experiments. The second row uses the simplest
way to build a hybrid model, which inherits some advan-



Rows Models

Model differences

# Param. (M) MACs (B) Latency (ms) Memory (M) Topl acc (%)

1

A L B W

3

Swin-1G

ConvSwin
ConvViT

FcaFormer
FcaFormer
FcaFormer
FcaFormer

baseline

+early convolution

+global attention

+naive forward cross attention.
+learnable scale factors.

+TME.

scale up to L2

6.25
6.11
6.11
6.11
6.11
6.19
16.3

1.49 340 16.64 784
1.26 269 3834 78.8 (+0.4)
1.32 300 4201 79.4 (+1.0)
1.37 311 4207 79.4 (+1.0)
1.37 311 4207 79.9 (+1.5)
1.37 312 4231 803 (+1.9)
3.6 728 95 83.1

Table 5. Ablation study on Imagenet-1K. Steps 1-7 depict the process we followed to develop our FcaFormer models from the Swin-1G.
We evaluated the latency and memory usage of the models on ARM Quad Core Cortex-A17. To conduct our experiments, we utilized the

RK?3288 platform, which is commonly employed in real-world applications such as smart TV and Al entrance guard systems.

Models # params.MACs Latency Memory Acc

™M) (B) ARM(ms) M) (%)
ConvNext-Tiny 29 4.5 875 129 82.1
ConvNext-Small 50 8.7 1618 211 83.1
ConvNext-Base 89 154 2708 364 83.8
ConvNext-Large 198 344 5604 764 84.3
Swin-Tiny 29 4.5 855 139 81.3
Swin-Small 50 8.7 1576 222 83.0
Swin-Base 88 154 2624 378 83.5
FcaFormer-L1(Micro) 6.2 1.4 312 42 80.3
FcaFormer-L2(Tiny) 16 3.6 728 95 83.1
FcaFormer-L3(Small) 28 6.7 1344 148 84.2
FcaFormer-L4(Base) 66 14.5 2624 328 849

Table 6. Batch size=1, image size=224, four threads. ARM:Quad
Core Cortex-Al7.

tages of ConvNets and ViTs. Compared to the baseline, the
early convolution structure achieves higher accuracy while
requiring less computation and memory usage. In the third
row, we replaced window attention with global attention
based on computational complexity analysis in section 3.3.
This improved the accuracy by 0.6% while introducing very
limited extra cost. However, latency increased by 11%, and
memory usage increased by 7.7 M.

Rows 4 and 5 attempt to introduce forward cross atten-
tion. In row 4, cross tokens are not calibrated, which only
introduces extra cost and has no benefit to accuracy. In row
5, we adopted LSFs to adjust cross tokens, which further
improved the accuracy by 0.5%. So far, FcaFormer has out-
performed the baseline by 1.5% while utilizing fewer pa-
rameters and incurring lower computational costs compared
to the baseline.

In row 6, we introduced the TME module to gener-
ate representative cross tokens and enhance regular tokens,
which improved the final accuracy to 80.3%, 1.9% higher
than the baseline. Finally, we scaled up the micro size
model and got FcaFormer-L2. This new model achieved
top-1 accuracy of 83.1%, meeting the requirements for
some practical applications with low latency, taking less
than 1 second and minimal memory usage, below 100M.

Params vs. Accuracy vs. MACs Latency vs. Accuracy vs. MACs
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Figure 6. Comparison experiments. Left: Params vs. acc vs.
MACs. Right: Latency vs. acc vs. MACs. The latency is mea-
sured on a single NVIDIA RTX 3090 GPU with batchsize=64.

4.5. Test on different devices

We deployed our proposed models on two different de-
vices, the widely used edge device RK3288 and GPU de-
vice RTX3090, to test their inference efficiency. We also
built larger models, FcaFormer-L3 (D=(96,192,320,512),
L=(3,6,12,3)), and FcaFormer-LL4 (D=(128,256,512,768),
L=(3,6,12,3)), to validate the scalability of FcaFormer. We
repeated two sets of experiments for 100 and 1000 times, re-
spectively. The average cost is listed in Table 6 and shown
in Fig 6. Our models achieved higher accuracy compared
with ConvNexts while having far fewer parameters, less
memory usage, and lower latency. Furthermore, our net-
work demonstrated good scalability. From tiny model to
base model, FcaFormers consistently maintained a clear ad-
vantage compared to both Swin and ConvNext models.

5. Discussions

In this paper, we introduce a new type of attention pat-
tern for hybrid vision models. This attention pattern lever-
ages previously generated tokens to create forward cross-
attentions that span different semantic levels. Our experi-
ments show that this approach is effective across different
model scales and vision tasks. For future work, we pro-
pose combining this design with prior research on sparsify-
ing spatial attention patterns, which could lead to even more
efficient model backbones for a range of applications
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