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Abstract

The last decade has witnessed the success of deep learn-
ing and the surge of publicly released trained models, which
necessitates the quantification of the model functional dis-
tance for various purposes. However, quantifying the model
functional distance is always challenging due to the opacity
in inner workings and the heterogeneity in architectures or
tasks. Inspired by the concept of “field” in physics, in this
work we introduce Model Gradient Field (abbr. ModelGiF)
to extract homogeneous representations from the heteroge-
neous pre-trained models. Our main assumption underlying
ModelGiF is that each pre-trained deep model uniquely de-
termines a ModelGiF over the input space. The distance
between models can thus be measured by the similarity be-
tween their ModelGiFs. We validate the effectiveness of
the proposed ModelGiF with a suite of testbeds, includ-
ing task relatedness estimation, intellectual property pro-
tection, and model unlearning verification. Experimental
results demonstrate the versatility of the proposed Model-
GiF on these tasks, with significantly superiority perfor-
mance to state-of-the-art competitors. Codes are available
at https://github.com/zju-vipa/modelgif.

1. Introduction

The last decade has witnessed the great progress of deep
learning in various fields, and a plethora of deep neu-
ral networks are developed and released publicly, with ei-
ther their architectures and trained parameters (e.g., Tensor-
flow Hub1, Pytorch Hub2) for research, or the prediction
API (e.g., BigML, Amazon Machine Learning) as ML-as-
a-Service (MLaaS) for commercial purposes. These off-
the-shelf pre-trained models become extremely important
resources for not only practitioners to solve their own prob-
lems, but also researchers to explore and exploit the huge
potential underlying these pre-trained models.

*Corresponding author
1https://www.tensorflow.org/hub
2https://pytorch.org/hub/
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Figure 1. An illustrative diagram of the magnetic field and the pro-
posed model gradient field (ModelGiF) defined on the input space.

With the surge of pre-trained models released, quantify-
ing the model relationship emerges as an important ques-
tion. The large-scale open-sourced deep models, heteroge-
neous in architectures and tasks and trained isolatedly or
dependently, are related to each other in various manners.
For example, a student model trained by knowledge distil-
lation [19] should behave more similarly with the teacher
than an independently trained identical model. Likewise, a
fine-tuned model should be more closely related to its pre-
trained model than the one trained from scratch. More gen-
erally, models trained in isolation on heterogeneous tasks
should inherit the intrinsic task relatedness [53] as task-
specific features are extracted by these models. Broadly
speaking, there exists a model metric space where models
with similar functional behaviors are clustered together and
dissimilar ones are far apart. The model functional distance
between models, if left unresolved, leaves existing model
repositories still simple unstructured collections of many
isolated open-sourced models, hindering the exploitation of
their great value as a whole.

Despite the ever-increasing number of publicly available
pre-trained models, the study on the model functional dis-
tance, i.e., structure of the model metric space, lags far be-
hind. This phenomenon can be largely attributed to the great
challenge of computing the functional distance between any
deep models, where the barriers are three-folds: (1) Hetero-
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geneity: deep models usually differ significantly in architec-
tures. Even with the same architecture, models trained on
different datasets or tasks can also behave quite differently;
(2) Opacity: the opaque inner workings of deep models ren-
der computing the model similarity extremely difficult; (3)
Efficiency: as the cost of computing pairwise distance grows
quadratically with the number of models, the computation
of the functional distance should be efficient.

A few prior works have been devoted to computing
model distance, in either weight space [1, 24] or represen-
tation space [28, 12]. For example, Task2Vec [1] com-
putes task or model representations based on estimates of
the Fisher information matrix associated with the probe net-
work parameters, which provides a fixed-dimensional em-
bedding of the model agnostic to the task variations. How-
ever, Task2Vec assumes all probe models share the same ar-
chitecture, which is highly restrictive in practice. ModelD-
iff [28] and representation similarity analysis (RSA) [12],
on the other hand, adopt the similarity of representations
on a small set of reference inputs as the model represen-
tations, and the model distance is thus calculated resort-
ing to these model representations, which is shown effec-
tive for model reuse detection and transferability estimation.
However, these methods only capture the point-wise behav-
ior of the models at a small number of chosen reference
points, which is limited in representation capacity and fails
at harder tasks such as detecting model extraction [28]. Re-
cently, DEPARA [43, 44] and ZEST [22] are proposed as
pilot studies by applying explanation methods for comput-
ing model distance. However, they are validated on disjoint
downstream tasks, and the performance on comprehensive
tasks remains unclear. Moreover, these methods also use
a small number of chosen reference points to extract the
model representations, which makes them suffer from low
representation capacity.

In this work, inspired by the concept of “field” in
physics, we propose Model Gradient Field (as shown in
Figure 1), abbreviated as ModelGiF, as the proxy to ex-
tract homogeneous representations from pre-trained hetero-
geneous models to derive their functionality distance. Spe-
cially, the proposed ModelGiF is defined on the input space,
i.e., every point in the ModelGiF denotes the gradient vector
of the model output w.r.t. the input on the same point. The
main assumption underlying ModelGiF is that each pre-
trained deep model uniquely determines a ModelGiF over
the input space. The functional distance between any two
models can thus be measured by the similarity between their
ModelGiFs. Unlike prior methods where the point-wise
features are adopted for representing the model, Model-
GiFs represents these models by their gradient on the whole
input space, which makes it more capable of differentiat-
ing highly related models (i.e., model extraction detection).
Moreover, we provide theoretical insights into the proposed

ModelGiFs for model functional distance, and make exten-
sive discussions on different implementation details. We
validate the effectiveness of the proposed ModelGiF with
a suite of testbeds, including transferability estimation, in-
tellectual property protection, and model unlearning verifi-
cation. Experimental results demonstrate the versatility of
the proposed ModelGiF on these tasks, with significantly
superiority to state-of-the-art (SOTA) methods.

To sum up, we make the following contributions: (1)
we propose the concept of “model gradient field”, a novel
method for quantifying the functionality similarity between
pre-trained deep models; (2) we provide theoretical insights
into the proposed ModelGiFs for model functional distance,
and make extensive discussions on different implementa-
tion details; (3) extensive experiments demonstrate the ef-
fectiveness and the superiority of ModelGiF on various
tasks, including transferability estimation, intellectual prop-
erty protection, and model unlearning verification.

2. Related Work
This section briefly reviews some related topics to model

functional distance, including task relatedness estimation,
intellectual property protection, and model unlearning.

Task Relatedness Estimation. Recent studies [53, 43, 44,
5, 51, 3, 6, 26] reveals the existence of task relatedness or
task structure among visual tasks. It is the concept underly-
ing transfer learning and provides a principled way to seam-
lessly reuse supervision among related tasks or solve many
tasks in one system [53]. Existing works to obtain task re-
latedness can be roughly divided into empirical and analyt-
ical approaches. Taskonomy [53] is the most representative
work of empirical methods. It proposes a fully computa-
tional approach to obtain task relatedness by exhaustively
computing the actual transfer learning performance, which
is thus usually taken as the ground truth for evaluating other
estimators. Despite the indisputable results, the computa-
tional cost of empirical methods is extremely high. On the
other hand, analytical methods, e.g.,, DEPARA [44, 43],
Task2Vec [1] and RSA [12], try to estimate the task related-
ness without conducting the actual transfer learning. Ana-
lytical methods generally significantly reduce the computa-
tion overhead, but can be highly restrictive in model archi-
tectures or estimation performance. The proposed Model-
GiF relaxes these restrictions and achieves task relatedness
more consistent to taskonomy than existing approaches.

Intellectual Property Protection. Since training deep
models usually consumes expensive data collection and
large computation resources, the trained models constitute
valuable intellectual property (IP) that should be protected
in cases where reusing is not allowed without authorization.
However, model IP can be infringed in a variety of forms,
such as fine-tuning [2, 48], pruning [29, 33], transfer learn-



ing [39, 49, 50] and model extraction [34, 47, 25, 21], which
poses great challenge to IP protection. Existing IP protec-
tion approaches can be roughly categorized into watermark-
ing [23, 48, 13, 54, 2] and fingerprinting [30, 8, 28, 17].
Watermarking methods usually leverage weight regulariza-
tion [48, 13] to put secret watermark in the model pa-
rameters or train models on a triggered set to leave back-
door [2, 54] in them. While being able to provide exact
ownership verification, these techniques are invasive, i.e.,
they need to tamper with the training process, which may
affect the model utility or introduce new security risks into
the model. Fingerprinting, on the contrary, extracts a unique
identifier, i.e., fingerprint, from the owner model to differ-
entiate it from other models. Latest fingerprinting (e.g.,
ModelDiff [28], IPGuard [8], SAC [17]) on deep learning
models, though being non-invasive, also fall short when fac-
ing the diverse and ever-growing attack scenarios [10]. In
this work, we propose ModelGiF as the homogeneous rep-
resentations for heterogeneous pre-trained models, which
can be naturally adopted as the fingerprint for IP protection
and yields superior IP protection performance to existing
approaches.

Model Unlearning Verification. Model unlearning aims to
remove the effects of data points from the trained model,
which has been attracting increasing attentions in recent
years due to legislation and privacy ethics. Cao et al. [9]
are dedicated to making learning systems forget and present
an unlearning approach capable of forgetting specific data.
Graves et al. [16] propose an effective method to eliminate
the influence of personal data from the model while main-
taining the validity. Bourtoule et al. [7] particularly propose
a model unlearning method to decrease the time it takes to
retrain exactly. However, how to identify whether the im-
pact of data has been eliminated is an essential but rarely
studied problem. Recently ZEST [22] verifies the unlearn-
ing of data by comparing the Local Interpretable Model-
Agnostic Explanations (LIME) [37]. In this work, we adopt
the proposed ModelGiF for unlearning verifacation, which
yields competitive performance in our experiments.

3. Methodology
3.1. Problem Setup

Assume there is a model repository consisting of N
pre-trained models M = {M1,M2, ...,MN}. With mild
assumptions, these models are defined on the same input
space RD (D = WHC, where W , H and C denotes
the width, height and channel of the input space3), yet
trained with data sampled from different data distributions
P = {p1, p2, ..., pN}. Note that here we made no assump-
tions on the model architectures and the tasks, which means

3Without losing generality, we use vector instead of tensor for notation
simplicity.

that these models can be different in architectures (e.g.,
ResNet [18] and VGG [42]), and tasks (e.g., visual clas-
sification [27], detection [36] or segmentation [11]). The
goal in this work is to construct a model metric space where
models with similar functional behaviors are clustered to-
gether and dissimilar ones are far apart, where the vital step
is quantifying the functional distance between these models.

3.2. The Proposed ModelGiF

As aforementioned, quantifying the functional distance
between pre-trained models is challenging due to the het-
erogeneity, opacity and efficiency issues. Our main idea
is extracting homogeneous descriptors from these heteroge-
neous models to make them comparable. To this end, we
proposed the concept ModelGiF, as shown in Figure 1, to
derive the comparable identifier of the pre-trained models
for quantifying model distance.

ModelGiF is inspired by the concept “field” in physics
where a field is a mapping from space to some physical
quantity, represented by a scalar, vector, or tensor, that has
a value for each point in the space [32]. For example, the
magnetic field describes the magnetic influence on mov-
ing electric charges, electric currents, and magnetic materi-
als [14]. Likewise, we define ModelGiF as a mapping from
the input space to the gradient space such that each point in
the input space is assigned to a gradient vector. The formal
definition is provided as follows.

Definition 3.1 (Model Gradient Field) Let M be a deep
model trained on the data which is sampled according to
some distribution p from the data space X , outputting a
scalar4 prediction in the label space Y . A point x can be
described as x = (x1, x2, ..., xD). We define the model
gradient field of M as the gradient of every possible input
point in X w.r.t. the model output:

MODELGIF(M) ≜ ∇xM, (1)

which is a mapping from the input space RD to the gradient
space GD, MODELGIF : RD → GD. Note that the Model-
GiF is defined on the whole input space (which is shared by
all the models) rather than some discretely points sampled
from the data distribution p specific to the model M . As the
architecture of M and the tasks (i.e., the label space Y ) can
be heterogeneous, the ModelGiF of a model can be seen as
a projection of the model to the common input space.

3.3. Field Curves for ModelGiF

With the proposed ModelGiF, the model functional dis-
tance can be quantified by the ModelGiF similarity. How-
ever, as ModelGiF is defined on the whole input space that
is usually extremely huge, how to extract its representation

4For vector or tensor predictions, we simply take their l2 norm as the
scalar output.



…

Model Repository

Model Gradient Fields

…
Models #1 Models #2 Models #N

x0->x4
x0->x3
x0->x2

x0->x1

𝛼𝛼

𝑃𝑃𝑃𝑃𝑃𝑃

𝛼𝛼

𝑃𝑃𝑃𝑃𝑃𝑃

𝛼𝛼

…
ModelGiF Curves

ModelGiF #1 ModelGiF #2 ModelGiF #N

Input space

Sampling  x~𝑝𝑝(𝑥𝑥)

Metric space

x0->x4
x0->x3
x0->x2

x0->x1

x0->x4
x0->x3
x0->x2

x0->x1

Figure 2. An illustrative diagram of the overall pipeline of obtaining ModelGiF curves. The more similar the ModelGiFs, the more similar
the corresponding trained models. Note that ModelGiF Curves are in high-dimensional space in reality.

or signature becomes the vital step for quantifying model
distance. In physics, a field is usually depicted by the field
curves (as shown in Figure 1), i.e., the integral curves for
the field, and can be constructed by starting at a point and
tracing a curve through space that follows the direction of
the vector field, by making the field curve tangent to the
field vector at each point [46]. Inspired by this, we propose
ModelGiF Curves as the descriptors of ModelGiF to mea-
sure the model functional distance.

Definition 3.2 (Field Curves) For a field F: RD → GD,
a curve x(t) =

(
x1(t), x2(t), ..., xD(t)

)
is called a field

curve of the field F if the following condition is satisfied:
For all points P ∈ x(t), the tangent vector of the curve in
the point P has the same direction as the vector F (P ):

dx1(t)

dt
= F

(
x(t)

)
1
,
dx2(t)

dt
= F

(
x(t)

)
2
, ... (2)

The field curve can be described as the solution of the
system of differential equations in Eqn. 2, and it plays an
important role for both analysis and visualization of vector
fields [46]. Unfortunately, as the ModelGiF is usually com-
plicated for a pre-trained deep model, there is no closed so-
lution. The field curves are in general not describable as
parameterized curves, which hinders the comparisons be-
tween different ModelGiFs. To resolve this issue, we intro-
duce the definition of ModelGiF curves as follows.

Definition 3.3 (ModelGiF Curves) For a ModelGiF F:
RD → GD, a curve g(t) =

(
g1 (t) , g2 (t) , ..., gD (t)

)
is

called the ModelGiF curve of F if the following condition is
satisfied:

dg1(t)

dt
= F (x(t))1,

dg2(t)

dt
= F (x(t))2, ... (3)

Note that different from the definition of field curves, the
ModelGiF curves are defined on the gradient space GD in-
stead of the input space RD.

Proposition 1 For a ModelGiF F: RD → GD, and two
points x0, x1 in RD, the gradient integral along the straight
line from x0 to x1 is a ModelGiF curve of F:

g(t) =

∫ t

α=0

F
(
x0 + α(x1 − x0)

)
dα, t ∈ [0, 1] (4)

With the proposition, we can make comparisons between
ModelGiFs by simply comparing their ModelGiF curves
between some predefined pairs of points. Now we provide
the detailed pipeline of quantifying the Model functional
distance with the proposed ModelGiF.

3.4. ModelGiF for Model Distance

Provided with the trained deep models as described in
Section 3.1, we compute the model distance with the pro-
posed ModelGiF in two steps (in Figure 2): 1) Sampling
reference points, and 2) Computing the model distance.

Sampling Reference Points. As described in Proposi-
tion 1, the first step before obtaining ModelGiF curves is



determining the reference points (i.e., x1
5 in Eqn. 4.), which

determines the domain of these curves. Let K be the num-
ber of reference points to be sampled. Intuitively, these ref-
erence points should representative. However, as the mod-
els in M can be heterogeneous in architectures and tasks
and trained on data sampled from different distributions, it
is hard to determine a common set of reference points which
are representative for all these models. In this work, we in-
vestigate three types of reference points as follows.

1) Random samples drawn from P . Each data point is
sampled in two stages: first randomly sampling the distri-
bution p from P and then randomly sampling the reference
point from p.

2) Augmented samples using CutMix [52]. Let x and x∗

be two randomly sampled points in P . CutMix generates
a new sample x̃ using the two samples by cutting off and
pasting patches among them: x̃ = m ⊙ x + (1 − m) ⊙
x∗, where m represents the binary mask to combine images
with different parts, and ⊙ the element-wise multiplication.

3) Adversarial samples generated with PGD [31].
PGD attack is a multi-step variant of Fast Gradient Sign
Method (FGSM) [15]: xt+1 =

∏(
xt + αSGN(∇J (xt))

)
,

where
∏

denotes the projection to the allowed space.
The performance of these types of reference points are

discussed in Section 4.1. We also provide the sensitiv-
ity analysis of the number of reference points K, which
demonstrates that the performance of ModelGiF quickly be-
comes superior to existing methods as K increases.

Computing the model distance. Let S = {x1,x2, ,xK}
be the reference points obtained from the last step. For the
i-th model Mi, we can get K ModelGiF curves by substi-
tuting each point in S for the x1 in Eqn. 4. These curves
are used as the identifier of the ModelGiF, and thus serve
as the representations of the trained deep model. There are
several distance metrics to measure the similarity between
curves, e.g., Hausdorff distance and Fréchet distance. As
the method for curve distance is not our contribution in this
work, we simply adopt the integrated point-wise cosine dis-
tance to validate the performance of the proposed method:

d(Mi,Mj) =

K∑
k=1

∫ 1

t=0

(
1−COS(gi,k(t),gj,k(t))

)
dt, (5)

where gi,k denotes the k-th curve of the i-th model in M,
and · denotes the inner product between gi,k(t) and gi,k(t).
In practice, we approximate the integral with summation by
sampling with some fixed intervals.

5Here we simply set x0 to the zero vector. Other settings do not yield
significantly superior performance in our experiments.

3.5. Theoretical Analysis of ModelGiF

From the definition of model distance in Eqn. 5, we can
see that the defined distance can be seen as the summation
of point-wise similarities over all the curves. Here we pro-
vide some theoretical insights into ModelGiF by dissecting
the model-level distance into point-level distance.

Proposition 2 For the point g(t1) along the ModelGiF
curves g(t) defined from x∗ to x, then∑

i
t1(xi − x∗

i )gi(t1) = M(x)−M(x∗), (6)

where the left side is actually the summation over Integrated
Gradients [45]. Eqn. 6 tells us that the every point in pro-
posed ModelGiF curve is strongly related to the model pre-
diction differences from this point and the baseline point,
thus the proposed model distance is a powerful distance
metric to quantifying the model function distance.

4. Experiments
In this section, we verify the effectiveness of ModelGiF

with a suite of testbeds, including task relatedness estima-
tion, intellectual property protection and model unlearning
verification. Details are provided as follows.

4.1. Application: Task Relatedness Estimation

Experimental Setup. We adopt 17 pre-trained hetero-
geneous models from Taskonomy [53] to compare their
functionality similarity. These models are trained on var-
ious tasks (including Autoencoder, Curvature, Denoise,
Edge 2D, Edge 3D, Keypoint 2D, Keypoint 3D, Reshade,
Rgb2depth, Rgb2mist, Rgb2sfnorm, Room Layout, Seg-
ment25D, Segment2D, Vanishing Point, Segmentation, and
Classification) and are different in architectures. Gener-
ally speaking, the architectures of these models follows an
encoder-decoder scheme, in which the encoder is imple-
mented by fully convolutional layers and the decoder varies
according to the tasks. Please refer to [53] for more detailed
information. In our experiments, only the encoders of these
models are adopted for generating their ModelGiFs.

Competitors and Evaluation Metric. The proposed Mod-
elGiF is compared with several prior approaches to task
relatedness estimation, including RSA [12], Attribution-
Maps [43], and ZEST [22]. Note that AttributionMaps
adopts saliency [41], DeepLIFT [40] and ϵ-LRP [4] to gen-
erate attributions for task relatedness estimation. We com-
pare ModelGiF with all these variants to demonstrate its su-
periority in task relatedness prediction. As the affinity ma-
trix from Taskonomy is obtained based on the actual trans-
fer learning performance, it is used as the ground truth of
the affinity among these tasks. In this experiment, we will
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Figure 3. Results of task related estimation: (a) affinity matrix from Taskonomy; (b) affinity matrix from RSA; (c) affinity matrix from
ModelGiF; (d) the similarity tree derived from ModelGiF; (e) performance with varying K of different reference points; (e) performance
with varying K of different implementations.

Method Spearman’s Correlation

Zest [22] 0.359
AttributionMapsSALIENCY [43] 0.619
AttributionMapsDEEPLIFT [43] 0.685
AttributionMapsϵ-LRP [43] 0.682
RSA [12] 0.777
ModelGiFRANDOM 0.834
ModelGiFAUGMENT 0.835
ModelGiFADVERSARIAL 0.830

Table 1. Comparison between the proposed ModelGiF and existing
methods. Here 1, 000 reference points are sampled in ModelGiF.

verify that the functionality similarity obtained by Model-
GiF positively correlates with that from taskonomy. In order
to quantify the similarity between the affinity matrix repre-
senting functionality similarity obtained by ModelGiF and
the affinity matrix obtained by Taskonomy, we use Spear-
man’s correlation as the metric for evaluation.

Results. We first test the proposed ModelGiF with by ran-
domly sampling 1, 000 reference points. The visualization
of the affinity matrix (as well as that from Taskonomy [53]
and RSA [12]) and the similarity tree are provided in Fig-
ure 3. This similarity tree is constructed by agglomerative
hierarchical clustering based on the affinity matrix. It can
be seen that the affinity matrix from the proposed Model-
GiF is visually highly similar to that from Taskonomy in
most regions. The similarity tree derived from ModelGiF

perfectly matches the results from taskonomy where 3D (in
green font) tasks, 2D (in blue font), geometric (in red font)
tasks, and semantic (in purple font) tasks cluster into corre-
sponding groups as expected.

Table 1 provide a quantitative comparison between the
proposed ModelGiF with existing works in Spearman’s cor-
relation. It can be easily seen that the proposed Model-
GiF yields significantly superior performance to existing
methods, improving the SOTA Spearman’s correlation from
0.777 to 0.835. Furthermore, all the three types of refer-
ence points produce Spearman’s correlation more than 0.83,
which implies that the proposed method is quite robust to
the choice of the reference points. To make a more com-
prehensive study, we test ModelGiF with varying number
of reference points. The correlation curves are depicted
in Figure 3e, where different types of reference points are
compared. It can be seen that as the number of refer-
ence points increases, the correlation steadily grows. Sur-
prisingly, with only 16 points, ModelGiF alreadly achieves
comparable performance to RSA [12] in Spearman’s corre-
lation. It is attractive as the computation overhead of the
proposed method grows linearly with the the number of ref-
erence points. The results indicate that we can safely reduce
the computation cost by decreasing the number of reference
points, and we can also strive for higher performance by
adding more reference points, which makes ModelGiF flex-
ible and applicable in a variety of scenarios. Another con-
clusion we can draw from Figure 3e is that the adversarial
samples generally yields superior performance to other ref-



CIFAR tiny-ImageNet

Attack IPGuard CAE EWE SAC ModelGiF IPGuard CAE EWE SAC ModelGiF
[8] [30] [23] [17] (Ours) [8] [30] [23] [17] (Ours)

Finetune-A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.48 1.00 1.00
Finetune-L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pruning 1.00 0.95 0.87 1.00 1.00 1.00 1.00 0.58 1.00 1.00
Extract-L 0.81 0.83 0.97 1.00 1.00 0.97 1.00 1.00 1.00 1.00
Extract-P 0.81 0.90 0.97 1.00 1.00 0.97 1.00 1.00 1.00 1.00
Extract-Adv 0.54 0.52 0.91 0.92 1.00 0.65 0.78 1.00 0.91 1.00
Transfer-10C 1.00 1.00 1.00 1.00 1.00 N/A N/A N/A N/A N/A
Transfer-A – – – 1.00 1.00 – – – 1.00 1.00
Transfer-L – – – 1.00 1.00 – – – 1.00 1.00

Table 2. Comparison between the proposed ModelGiF and existing methods for IP proctection. The performance is measured in AUC
value under the AUC-ROC curve. “–” represent the IP protection method can not detect this kind of attack. “N/A” denotes not applicable.

erence points, which gives implications of future work to
strive for higher performance of task relatedness estimation.

In Figure 3f, we make comparisons between some dif-
ferent implementations of ModelGiF. “ModelGiF with ran-
dom baselines” denotes x0 in Eqn. 4 is fixed to be zero,
and “ModelGiF with random baselines” denotes x0 is ran-
domly sampled. We also include Integrated Gradient (IG,
with zero as the baseline) and IG with random baselines for
comparisons. Albeit bearing some similarity with IG, it can
be seen that ModelGiF with zero baselines significantly out-
performs these baselines in most cases. ModelGiF with ran-
dom baselines, however, is more promising when the num-
ber of reference points becomes sufficiently larger.

4.2. Application: Intellectual Property Protection

We evaluate the performance of ModelGiF for IP pro-
tection against different model stealing attacks. To make
fair comparisons with SOTA methods, we follow the exper-
imental settings of [17] to conduct our experiments.

Experimental Setup. Five categories of stealing attacks are
considered here to test the protection performance. includ-
ing finetuning, pruning, transfer learning, model extraction
and adversarial model extraction. For finetuning, Finetune-
L denotes fine-tuning only the last layer and leaves the other
layers unchanged. Finetune-A fine-tunes all the layers in the
model. For transfer learning, the CIFAR10 model is trans-
ferred to CIFAR10-C and CIFAR100. The tiny-ImageNet
model (trained with the front 100 labels in Tiny-ImageNet)
is transferred to the 100 labels left behind in tiny-ImageNet
dataset. In model extraction, the victim model can be ex-
tracted in two manners: probability-based model extrac-
tion (Extract-P), and label-based model extraction (Extract-
L). However, the attacker can evade the detection by ap-
plying adversarial training after the label-based model ex-
traction [30]. In our experiment, adversarial model extrac-
tion (Extract-adv) adopts the predicted label to evade the

detection by adversarial training.

Models and Competitors. Different IP protection methods
are evaluated on most of the common model architectures,
including VGG [42], ResNet [18], DenseNet [20] and Mo-
bielNet [38]. To demonstrate the superiority of the proposed
ModelGiF, we make comparisons with SOTA IP protection
methods, including IPGuard [8], CAE [30], EWE [23] and
SAC [17]. IPGuard and CAE utilizes the transferability of
adversarial examples and test the attack success rate of these
adversarial examples on the suspect models. A model will
be recognized as a stolen model if its attack success rate is
larger than a threshold. SAC propose to leverage the pair-
wise relationship between samples as the model fingerprint.
EWE, on the contrary, trains the source model on backdoor
data and leaves the watermark in the model. Please refer
to [17] for more detailed experimental settings.

Results. To validate the effectiveness and the superiority
of the proposed ModelGiF, we conduct experiments on dif-
ferent datasets for the defender and the attacker. We we
leverage AUC-ROC curve and use AUC value between the
fingerprinting scores of the irrelevant models and the stolen
models to measure the fingerprinting effectiveness. Re-
sults are listed in Table 2. It can be seen that the pro-
posed ModelGiF, although not tailored for IP protection,
achieve superior performance in all the attack scenarios.
The AUC value is 1.0 across all attacks (including the chal-
lenging “Extract-adv” attack), which means it perfectly rec-
ognize all the attacks to protect the IP, outperforming ex-
isting SOTA approaches like SAC [17]. We acknowledge
the existing benchmark for IP protection methods is not
sufficient large and challenging to provide thorough com-
parisons between IP methods. However, the superiority of
ModelGiF to SOTA methods on this benchmark still pro-
vides us a strong confidence of the proposed method for
quantifying model functional distance.
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Figure 4. Cosine distances between the reference classifier Cref and unrelated classifier Cunrelated, the directly unlearned classifier Cdirect

and the approximately unlearned classifier Capprox.

4.3. Application: Model Unlearning Verification

Machine unlearning studies how we can efficiently
delete data points used to train models without retraining
from scratch [7]. In this section, we demonstrate the ef-
fectiveness of the proposed ModelGiF for model unlearn-
ing verification, i.e., ModelGiF can distinguish the models
trained with and without the data points that is requested to
be unlearned.

Experimental Setup. Following the experimental settings
of [22], we training four classifiers to evaluate ModelGiF
for model unlearning verification. The first classifier is
called the reference classifier C(t)

ref , where t denotes that the
classifier is obtained after t epochs training. The reference
classifier serves as the original classifier trained on all the
training data, including the data points which are requested
to be deleted later. The second classifier is called the un-
related classifier, which is another classifier trained on all
the training data, but from different initialization. The third
classifier is called the exactly unlearned classifier, which
is trained on the remaining data after removing the data
points requested to be deleted. Note that the exactly un-
learned classifier is trained from scratch and has never seen
those data points which are requested to be removed, and
it thus can be seen as the exactly unlearned classifier [7].
The last classifier is called approximately unlearned clas-
sifier, which is obtained by directly optimizing the original
reference classifier to remove the knowledge learned from
those data points requested to be unlearned [16]. We com-
pare the ModelGiFs of the unrelated classifier, the exactly
unlearned classifier and the approximately unlearned clas-
sifier to that of the reference classifier. The goal is to test
whether the proposed ModelGiF can recognize the exactly
unlearned classifier from the unrelated classifier.

Experimental Details and Results. Experiments are con-
ducted on CIFAR10 and CIFAR100. On CIFAR10, all clas-
sifiers are implemented by ResNet20. On CIFAR100, all
classifiers are implemented by ResNet50. We randomly
sample 128 data points from the training data to be un-

learned, and use these data as the reference points to com-
pute the distance between ModelGIFs of these classifiers.
Experimental results are provided in Figure 4. It can be
seen that with the proposed ModelGiF, exactly unlearned
classifier gets significantly higher distance with the refer-
ence classifier than the unrelated classifier. It implies that
ModelGiF can also be used as a tool to verify the unlearning
performance of existing unlearning methods. Another ob-
servation from Figure 4 is that the distance between the ap-
proximately unlearned classifier and the reference classifier
is much lower than unrelated classifier, which implies that
existing approximately unlearning methods can not delete
the data from the model thoroughly. However, as the train-
ing for unlearning continues, the information can be gradu-
ally forgotten, as implied by the increasing distance shown
in Figure 4. These results also accord with prior finding
that continual learning easily lead to catastrophic forgetting
problem [35], which validate the rationality of the results
from the proposed ModelGiF.

5. Conclusion and Future Work

In this work, we propose ModelGiF to quantify model
functional distance. The main assumption underlying Mod-
elGiF is that each pre-trained deep model uniquely deter-
mines a ModelGiF over the input space. The distance be-
tween models can thus be measured by the similarity be-
tween their ModelGiFs. We apply the proposed ModelGiF
to task relatedness estimation, intellectual property protec-
tion, and model unlearning verification. Experimental re-
sults demonstrate the versatility of the proposed ModelGiF
on these tasks, with significantly superiority performance
to state-of-the-art competitors. There are several directions
for future work with the proposed ModelGiF. For exam-
ple, exploring more scenarios where ModelGiF can be ap-
plied. Another interesting research direction is proposing
more informative reference points to extract stronger rep-
resentations of ModelGiF. Finally, how to further speed up
the computation of the proposed method is also important
to make it easier to use.
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