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Abstract

Anchor-based detectors have been continuously devel-
oped for object detection. However, the individual an-
chor box makes it difficult to predict the boundary’s off-
set accurately. Instead of taking each bounding box as
a closed individual, we consider using multiple boxes to-
gether to get prediction boxes. To this end, this paper pro-
poses the Box Decouple-Couple(BDC) strategy in the in-
ference, which no longer discards the overlapping boxes,
but decouples the corner points of these boxes. Then, ac-
cording to each corner’s score, we couple the corner points
to select the most accurate corner pairs. To meet the BDC
strategy, a simple but novel model is designed named the
Anchor-Intermediate Detector(AID), which contains two
head networks, i.e., an anchor-based head and an anchor-
free Corner-aware head. The corner-aware head is able to
score the corners of each bounding box to facilitate the cou-
pling between corner points. Extensive experiments on MS
COCO show that the proposed anchor-intermediate detec-
tor respectively outperforms their baseline RetinaNet and
GFL method by ∼2.4 and ∼1.2 AP on the MS COCO test-
dev dataset without any bells and whistles. Code is avail-
able at: https://github.com/YilongLv/AID.

1. Introduction

Object detection is a fundamental and challenging task
in computer vision to classify and localize objects in im-
ages. Recently, as transformer has achieved good results in
machine translation, it has begun to extend into the field of
computer vision with success in tasks such as image classi-
fication [25, 23, 13, 31] and object detection [2, 6, 37, 8].
However, most current mainstream detectors are still based
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Figure 1: The mechanism of the current mainstream de-
tectors. Anchor-based detectors rely on predefined anchor
boxes for localization. Anchor-free detectors recombine
key points to achieve localization. Our AID takes advantage
of both anchor-based and anchor-free methods. It decouples
the corner points of the bounding boxes and then, according
to the corner’s score, the corner points are coupled to select
the most accurate corner pair.

on convolutional neural networks.
Common anchor-based detectors, such as Faster RCNN

[28], Cascade RCNN [1], YOLO [27], and RetinaNet [20],
require pre-defined dense anchor boxes to cover the whole
image. Although the anchor box are widely used, it is still
a lack of accuracy in locating the object’s boundary, be-
cause the anchor box is weakly perceptive to the boundary
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Figure 2: An illustration of the difference between the proposed BDC strategy and existing NMS. For NMS, it retains only
the first-ranked predicted box. In contrast, our BDC strategy retains the top-ranked multiple predicted boxes and re-pairs the
coordinates according to their corner scores. tl denotes the coordinates of the top-left corner point. br denotes the coordinates
of the bottom-right corner point. Sn denotes the score of n corner point. Score denotes the classification score.

as shown in figure 1b.
In contrast, some anchor-free method avoid the diffi-

culties of the weak boundary perception. In particular,
the keypoint-based anchor-free detectors such as Corner-
Net [17], CenterNet [9], and CenterNet++ [10]. Instead of
predicting the object’s center and boundary’ offsets, Cor-
nerNet pioneered the corner point prediction mechanism.
Concretely, the model decouples each ground truth into left-
top and right-down corner points. In this paper, we name
this step with a new term, Box decouple. Then, in the in-
ference, CornerNet pairs all the top-left and bottom-right
corner points, and this pipeline is shown in figure 1c, thus
forming some bounding boxes. Similarly, we name this step
Box couple. Thus the CornerNet don’t consider the center-
to-boundary perception performance, while improving the
localization accuracy. Meanwhile, the net introduces an-
other problem. i.e., the Box couple is very challenging.
Suppose the size of the feature map is Rw×h. Then, the
number of random corner pairs is (w × h)2. Too many
possible pairs tend to lead to many false positive results,
so the average precise drops. CenterNet and CenterNet++
have similar shortcomings. Therefore, how to significantly
reduce the number of paired corner points is another chal-
lenge we need to address.

Based on the above analysis, it is found that the keypoint-
based anchor-free detectors can circumvent the drawback
of anchor-based detectors but also have their attendant diffi-
culties. Therefore, we pondered whether a trade-off can be
reached between anchor-based and anchor-free algorithms.
Concretely, we can take advantage of the anchor-free detec-
tor to improve the shortcomings of the anchor-based detec-
tor as shown in figure 1d. Also, the Box couple dilemma in
anchor-free detectors is alleviated by anchor-based detec-
tors.

To this end, this paper proposes a novel architecture
named the Anchor-Intermediate Detector(AID), which is
based on the mainstream detection method, including the
anchor-based and anchor-free head. First, the anchor-based
detection head maintains the conventional training pipeline.
Then, we introduce an anchor-free corner-aware head for
scoring the corner points of the bounding boxes, making it
possible to enhance the boundary perception of the bound-
ing boxes. In detail, during training, the corner-aware head
generates two corner-aware heat maps for predicting the
distribution of the object’s top-left and bottom-right corner
points. Similar to CornerNet, but we don’t have to predict
offsets and classification scores. The AID innovatively inte-
grates two representative detection head frameworks, while
the two heads are trained in parallel with each other.

In the inference, we propose a novel post-processing
strategy, named Box Decouple-Couple (BDC) strategy.
We use the proposed strategy to re-pair the corner points of
each prediction box and its overlapping boxes to get more
accurate localization results, as shown in figure 2 . In addi-
tion, we take into account that the classification score may
not be consistent with the localization accuracy, resulting in
the prediction results being not most accurately localized.
Coincidentally, the corner score can be used as the localiza-
tion score based on the corner-aware heat map. So, Corner-
Classification(CoCl) score are presented, consisting of the
classification score and corner confidence for ranking in
BDC strategy.

The main contributions of our work can be summarized
as follows

• By analyzing the disadvantages of the current anchor-
based and anchor-free models, we propose the novel



AID, which can achieve a trade-off between the two
detection frameworks to improve the detection accu-
racy of the model.

• We have redesigned the training and inference
pipelines separately. In training, the anchor-based
detection head and the corner-aware head share the
backbone network and the feature pyramid network.
Both are trained synchronously. During inference, we
first propose a new corner-classification score for post-
processing. Then, our proposed BDC strategy rethinks
the value of each prediction box and its overlapping
boxes, from which we refine predictions with better
localization quality.

• The AID uses the corner-aware head as the anchor-
free head, and the anchor-based head uses some main
methods, including RetinaNet, GFL, etc., while based
on some backbone networks, including ResNet-50,
ResNet-101, ResNeXt-101, etc. Also, our method
achieved state-of-the-art results on the MS COCO
dataset.

2. Related Work
2.1. Anchor-based detector

Two-stage object detection. It first started with Faster
RCNN, introducing anchor boxes into Fast RCNN [12]
using sliding windows and candidate regions. The first
stage generates a set of region proposals, and the second
stage performs classification and localization fine-tuning on
these region proposals. Based on this, many algorithms
[14, 5, 4, 29, 15] are proposed to improve its performance,
feature fusion, attention mechanism, multi-scale training,
and training strategy. The two-stage algorithms generally
have better detection accuracy but are relatively slow.

Single-stage object detection. For faster detection,
single-stage methods have emerged. Instead of relying on
RPNs, single-stage detectors directly localized and classi-
fied regions of interest in images. SSD [22] was the first ap-
proach to propose a single-stage detection strategy, which
has attracted much attention due to its efficient training and
inference. Since then, many redesigned architectures of
single-stage object detectors [27, 20, 19, 35, 36] have been
proposed. Based on them, many methods have been pro-
posed to improve the performance of single-stage detectors,
feature fusion, label assignment strategies, detection head
network structures, loss functions, and localization refine-
ment. Currently, there are more research results on single-
stage than two-stage.

2.2. Anchor-free detector

Keypoint-based detectors. The keypoint-based ap-
proach focuses on extreme locations of instances, such as

corner points and extreme points. CornerNet is one of the
representative methods. The improved CornerNet-lite [18]
introduces CornerNet-sweep and CornerNet-squeeze to im-
prove its speed. CenterNet adds center points to the top-left
and bottom-right corners to provide the ability to perceive
internal information, thus improving precision and recall.
ExtremeNet [38] even increases the number of key points
to the topmost, bottommost, leftmost, rightmost, and center
points. The training pipeline of the anchor-free approach
[24, 32] is similar to CornerNet.

Center-based detector. These anchor-free methods
have similarities with anchor-based methods in that both
predict from the center to the boundary. The FCOS [30]
method designs a new centrality branching detector head.
The centerness scores of every location within the ground
truth are also defined. And the label assignment strategy
is set accordingly. Different from FCOS, FoveaBox [16]
does not add any new branching network. It regards every
position within the subregions of the ground truth as pos-
itive and performs label assignment. FSAF [39] connects
an anchor-free branch with online feature selection to the
RetinaNet. The newly added branch defines the central re-
gion of the object as positive and locates it by predicting the
four distances to its boundaries. There are also center-based
anchor-free detectors [33, 11, 34] that play an important role
in object detection.

3. Proposed method

In this section, we describe the the AID in detail, includ-
ing the anchor-based and corner-aware head, as shown in
Figure 3. The anchor-based detection head we use is Reti-
naNet, but it is not limited to this one. We first introduce the
model structure and the training pipeline. Then, in infer-
ence, the rules of BDC strategy will be presented in detail.

3.1. Anchor-Intermediate Detector

Figure 3 shows our proposed AID, including the corner-
aware head and standard anchor-based head. Following the
style of multi-task learning, the corner-aware head fcor ac-
cepts the features Fn from the FPN and then learns the
corner-aware heat map M. Fn is the the n (1 <= n <=
N) -th level feature at the FPN. The lower the layer, the
smaller the n.

Note that we first resize feature so that the multi-scale
feature becomes a single scale, as the higher-resolution fea-
ture facilitates the differentiation of corner points. Then
they were concatenated by channel, which is shown in
Eq. 1. Thus, we could obtain single-scale fused fea-
tures with the architecture shown in Figure 3 of the anchor-
intermediate model.

F = Cat(Resize(Fn|n = 1, . . . , N) (1)
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Figure 3: Pipeline of the AID. The left part shows the overall detection model which consists of backbone, FPN and detection
head. The upper part is the conventional anchor-based head, which outputs classification scores (H ×W ×C) and boundary
prediction (H ×W × 4), respectively. The lower part is the corner-aware head, which outputs the top-left and bottom-right
corner heat maps (H ×W ×C), respectively. In the box decouple, the top-ranked boxes are processed uniformly to separate
their corner points. These corner points are scored according to the corner point heat map. Finally, the top-left and bottom-
right corner points with good scores are coupled.
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Figure 4: Network structure of the corner-aware head.

For better recognition of corner points, we separately
predict the two extreme corners where corner pooling is
used. The detection head finally predicts the corner fea-
ture heat map M = (Mtl,Mbr), including the top-left
and bottom-right corner heat maps as Mtl and Mbr ∈
Rw×h×c. Each set of heatmaps has C channels, which rep-
resent the object’s categories.

The structure of the corner-aware head follow the Cor-
nerNet, as shown in Figure 4. The 1 × 1 convolution
and activation δ are performed on the fused features F ac-
cording to each direction. Then direction pooling P =
{Pt, Pb, Pr, Pl} is performed separately to obtain the
direction-aware feature maps {Ft, Fb, Fr, Fl}, and the

process is shown in Eq. 2.

{Ft,Fl,Fb,Fr} = P(δ(Conv(F))), (2)

The top-left and bottom-right features are element-wise
summed. Then, we use the convolution operation on the
features. The feature F are added to the corner features
to prevent a vanishing gradient. Before outputting the heat
map, we will perform sigmoid σ activation on each element
of the feature map so that all positions of the feature map
will be between 0 and 1, which represent the confidence.
The above is as follows:

Mtl = σ(Conv(Ft ⊕Fl) + ConvF)

Mbr = σ(Conv(Fb ⊕Fr) + ConvF)
(3)

As for the training loss, suppose Mcor = {Mtl,Mbr}
is the corner score in the top-left and bottom-right corner-
aware heat map. And let Ycor be the labeled corner heat
map expanded with an unnormalized Gaussian function.
The loss function of corner-aware heat map is as follows:

Lcorner=

{
(1−Mcor)

αlog(Mcor) if Ycor = 1

(1− Ycor)
β(Mcor)

αlog(1−Mcor) otherwise
(4)

Next, the total loss is optimized as shown in Eq. 5.

Ltotal = Lreg + Lcls + λLcorner (5)



3.2. CoCl score for post-processing

In the inference, the overlapping boxes are suppressed
based on the classification score Scls only. However, the
classification may not coincide with the localization, which
leads to the suppression of the bounding boxes with high
localization accuracy when the classification score is low.

We consider corner score as another important basis for
post-processing, which is able to integrate the localization
information. The corner’s score comes from the top-left and
bottom-right corner-aware heat map. Therefore, The new
evaluation score is named CoCl score, as follows:

CoCl = Scls ×F(Mtl,Mbr) (6)

Where F denotes the integration between Mtl and Mbr,
see section 4.3.3 for details. The results has the same size
as Scls ∈ Rijwh×C .

3.3. Box Decouple-Couple strategy

Box Decouple. In NMS, the overlapping boxes are sup-
pressed and then discarded. If a predicted box with high-
est classification scores fail to locate most accurately, then
its overlapping boxes are likely located accurately because
they have a large Intersection-over-Union (IoU) with this
predicted box.

The conventional NMS treats each bounding box as an
independent individual, but it does not predict the object’s
location well, especially in those with blurred boundaries.
Therefore, we decouple all bounding boxes B as {Stl,Sbr}.
The details are shown in Eq. 7, where n denotes all pre-
dicted bounding boxes, Stl denotes the top-left point set and
Sbr denotes the bottom-right point set.

B = (

Stl︷ ︸︸ ︷
x1, y1,

Sbr︷ ︸︸ ︷
x2, y2),

Stl = {stli }i=1,...,n, Sbr = {sbri }i=1,...,n.

(7)

For the predicted bounding box, suppose the box P cor-
responds to the overlapping box O = {b | IoU(b,P) >
τ, b ∈ B}. We decouple the predicted box P and
its overlapping boxes O into the top-left corner set
{stlp , stlo1, . . . , stloi} ⊆ Stl and bottom-right corner sets
{sbrp , sbro1, . . . , s

br
oi} ⊆ Sbr. Then, we map these corner

points onto the corner-aware heat map M and the process
is as follows:

(f br
p , f br

o1 , . . . , f
br
oi ) = fP,O7→Mbr

(sbrp , sbro1, . . . , s
br
oi )

(f tl
p , f tl

o1, . . . , f
tl
oi) = fP,O7→Mtl

(stlp , s
tl
o1, . . . , s

tl
oi)

(8)

Therefore, we use box decoupling to transition the
anchor-based inference to anchor-free inference, as shown
in Figure 3 of box decouple. Here, these decoupled corner
points are very similar to those in CornerNet. Next, we use

the idea of anchor-free to process these corner points. It
is worth emphasizing that our method dramatically reduces
the number of corner point pair in our method, thus improv-
ing the average precise.

Box Couple. Since the heat maps M are downsampled,
each element in the corner-aware heat map does not corre-
spond to the original image one by one, but is mapped to
a region of image. In addition, the corner-aware heat map
is fitted with a Gaussian model in the training, so the con-
fidence for pixels at the same distance from the center is
the same. Therefore, there are some locations in the heat
map with the same confidence. To this end, we chose mul-
tiple decoupled corner points and use them to obtain a new
prediction box. This process is specified in Eq. 9.

T br = argmax
sbrp ,sbro1,...,s

br
oi

n

topk(f br
p , f br

o1 , . . . , f
br
oi )

T tl = argmax
stlp ,stlo1,...,s

tl
oi

n

topk(f tl
p , f tl

o1, . . . , f
tl
oi)

(9)

Finally, the new corner points obtained are combined to
form an updated bounding box Bupdate. The details are
shown in Eq. 10.

Bupdate = (Mean({stli }i=T br ), Mean({stli }i=T tl))
(10)

Following this method, the output boxes not only con-
tain classification and localization’s information but also
improve the accuracy of localization. The detailed proce-
dure of the BDC strategy is shown in Algorithm 1.

Algorithm 1 Box Decouple-Couple strategy.

TRAIN: Corner heat map (Mtl,Mbr)
select Sijc for i, j, c,M in W,H,C, [Mtl,Mbr]
if Yijc == 1:

(1− Sijc)
αlog(Sijc) 7→ 0

else:
(Sijc)

αlog(1− Sijc) 7→ 0

PREDICT:
CoCl = Scls ×F(Mtl,Mbr)
Bp,Bo = NMS(CoCl)
# Bp ∈ R1×4 ⇒Prediction Box
# Bo ∈ RN×4 ⇒ Overlapping Box
{Stl,Sbr} = Decouple(Bp

n,Bo
n)

(f br, f tl) = fP,O7→M(Stl,Sbr)
select the top-n [f br, f tl] 7→ [f br

top−n, f
tl
top−n]

(Stl
top−n,Sbr

top−n) = fM7→P,O(f
br
top−n, f

tl
top−n)

Bupdate = Couple(Stl
top−n,Sbr

top−n)
return Bupdate



4. Experiment
4.1. Dataset

We evaluate our method on the MS-COCO dataset [21]
according to the commonly used settings. MS-COCO con-
tains about 160K images of 80 classes. The dataset was par-
titioned into training 2017, val2017, and test 2017 subsets
with 118K, 5K, and 41K images, respectively. The standard
average precision (AP) metric reports the results at differ-
ent IoU thresholds and target scales. We trained only on
the 2017 train images in all our experiments without us-
ing any additional data. For the experiments of the ablation
study, we evaluated the performance on a subset of val2017.
Compared to state-of-the-art methods, we report the official
results returned from the test server on the test-dev subset.

4.2. Implementation details

We use the generic ”Backbone - FPN - Head” as our
pipeline and the MMdetection toolbox [3] to implement our
method. All models are trained on 4 TESLA A100 GPUs
with four small batches per GPU. Unless otherwise speci-
fied, we used a stochastic gradient descent (SGD) optimizer
with a weight decay of 0.0001 and momentum of 0.9. The
initial learning rate was set to 0.01, and training was started
using a linear warm-up strategy. We initialize our backbone
network with the weights pre-trained on ImageNet [7].

4.3. Ablation study

This section will perform detailed ablation experiments
on the proposed method. Besides exploring the effects of
different baselines and backbone networks on the experi-
mental results, the rest of the experiments are performed on
the RetinaNet method based on ResNet-101 and trained for
12 epochs. The final validation is performed on the COCO-
val2017 dataset.

4.3.1 Corner-aware head

In this section, we discuss the results after adding corner-
aware head at different positions of the model, and the ex-
perimental results are shown in Table 1. From the table,
the performance of our method improves by 0.9% AP on
the classification branch and by 0.6% AP on the regression
branch.

Method AP AP50 AP75 APS APM APL
Baseline 38.5 57.6 41 21.7 42.8 50.4
+ Cor head - FPN 39.8(+1.3) 58.7 42.4 21.8 43.5 52.8
+ Cor head - cls 39.4(+0.9) 58.4 42.4 21.4 43.5 53.2
+ Cor head - reg 39.1(+0.6) 58.6 42.1 21.4 42.9 52.6

Table 1: Comparison of performances when applying the
our method to each position of the baseline model.

We perform the analysis. Corner-aware head belongs to
the anchor-free head. In contrast, the classification and re-
gression branches belong to the anchor-based head, and it
seems more common sense for them to be trained indepen-
dently. Therefore, we also separate the Corner-aware head
network from the two branches and connect it to the back
of the FPN. This way, the Corner-aware head and Cls-Reg
branches will present a parallel structure. The performance
of this structure is improved by 1.3% AP. The experimental
results illustrate that separating the Corner-aware head from
the classification and regression branches can improve the
model’s performance by making them independent.

4.3.2 Hyperparameters λ

Further, we discuss the effect of λ in Eq. 5 on the experi-
mental results, shown in Table 2. When the hyperparame-
ters λ is equal to 0, it indicates a baseline method without
the corner-aware head, which has a detection performance
of 38.5 AP. The detection performance of the AID reaches
the highest 40.1 AP when the hyperparameters λ is equal to
0.3. Meanwhile. The AP decreases as the λ keeps increas-
ing, which indicates that if the corner-aware head is trained
with large weights, it will adversely affect the training of the
traditional detection training loss, thus leading to a decrease
in detection performance.

Weight factor AP AP50 AP75 APS APM APL
0(baseline) 38.5 57.6 41 21.7 42.8 50.4
0.1 39.8(+1.3) 58.7 42.4 21.8 43.5 52.8
0.3 40.1(+1.6) 58.8 42.8 21.8 43.6 53.2
0.5 39.4(+0.9) 58.1 42.2 22.2 42.5 52.2
0.8 39.0(+0.5) 56.8 40.7 20.5 41.4 50.7
1 38.2(-0.3) 56.8 40.7 20.5 41.4 50.7

Table 2: Peformance of the AID when changing the hyper-
parameters λ of the total loss. λ weighting means weighting
the loss of the corner-aware head.

4.3.3 CoCl score

During the inference, the detection confidence is calculated
according to the classification score. We next discuss the
contribution of several classical forms of F(Mtl,Mbr)
to the detection accuracy, and the experimental results are
shown in Table 4. First, the detection result obtained by
multiplying the classification score and the corner score is
39.6, when the corner score take the maximum output of the
top-left and bottom-right corner-aware heat map. Also, cal-
culating the minimum output of the two corner-aware heat
map as the corner score is a scheme with a detection ac-
curacy of 39.6 AP. Finally, the detection performance AP is
39.8 when the average output of both heat map is calculated.



Method Backbone
AID

PAFPN ATSSAssigner AP AP50 AP75 APS APM APL
CoCl score BDC

Retinanet

ResNet-101

38.5 57.6 41 21.7 42.8 50.4

AID

✔ 39.8(+1.3) 58.7 41.1 20.6 42 51.2
✔ 39.1(+0.6) 58.3 41.5 21.6 43.1 51.8

✔ ✔ 40.0(+1.5) 58.7 42.1 31.6 43.3 52.8
✔ ✔ ✔ 40.1(+1.6) 58.8 43 22.1 43.9 53.1
✔ ✔ ✔ 40.6(+2.1) 57.3 43.9 22.9 44.4 52.3
✔ ✔ ✔ ✔ 40.8(+2.3) 57.4 44.3 23.5 44.4 52.4

Table 3: Individual contribution of the components in our method. The first row represents the results of the baseline trained
with the focal loss. PAFPN is used as a more powerful feature pyramid network. ATSSAssigner is used to replace the
conventional MaxIoUAssigner.

id F AP AP50 AP75

1 S × eavg(Mtl,Mbr) 39.8 58.7 42.4
3 S × emax(Mtl,Mbr) 39.6 58.6 42.2
3 S × emin(Mtl,Mbr) 39.6 58.5 42.2
4 S0 × avg(Mtl,Mbr)

1 39.0 58.3 41.5
5 S0.3 × avg(Mtl,Mbr)

0.7 39.9 58.5 42.7
6 S0.5 × avg(Mtl,Mbr)

0.5 39.1 57.1 41.8
7 S0.8 × avg(Mtl,Mbr)

0.2 35.7 52.0 38.2
8 S1 × avg(Mtl,Mbr)

0 28.5 44.3 29.2

Table 4: Comparison of performances of different CoCl
score functions.

In addition, We also perform a weighted average of the
classification score and the corner score, using a balance pa-
rameter α to adjust the ratio between them, as shown in Eq.
11. When α equals to 1, the detection confidence degener-
ates to the classification score. Similarly, the detection con-
fidence degenerates to the corner score when we α equals
to 0. In the inference, we studied the different parameters.
The experimental results are shown in Table 4. From the
experimental results, the method in this paper can achieve
0.3 when α is equal to 39.9.

CoCl = Sα
cls × avg(Mtl,Mbr)

α (11)

4.3.4 Box Decouple-Couple strategy

In the inference, for the prediction boxes and the over-
lapping boxes, we next investigate the contribution of the
strategies of different box coupling to the experimental re-
sults, which are shown in Table 5. The simple strategy is to
select the highest detection score, which has a detection ac-
curacy of 39.7 AP, 1.2 AP higher than the baseline method.
We continued our study by averaging all the top-left and
bottom-right corner points. Its detection result is 36.0 AP,
which is lower than the performance of the baseline method.
We analyze that because some corner points with small de-
tection scores are not suitable for predicting object. There-

fore, we consider the sum of the mean and deviation of the
detection scores as the threshold value τscore. The posi-
tions of the corner points with detection scores larger than
τscore are averaged, and the detection performance under
this strategy is 40.0 AP, which is 1.5 AP higher than the
baseline method. Also, we average the corner points with
the top n(=10) scores, resulting in 39.8 AP, which is 1.3 AP
higher than the baseline method.

id F AP AP50 AP75 APS APM APL
1 Top-n(=10) 39.8(+1.3) 58.6 41.1 20.6 42 51.2
2 Max 39.7(+1.2) 58.7 42.1 21.6 43.3 52.8
3 All 36.0(-2.5) 58.6 39 20.6 40.6 46.2
4 τscore(= 0.5) 40.0(+1.5) 58.7 42.7 21.7 43.7 53.4

Table 5: Comparison of performances of different box cou-
ple method. Max means to select the corner point with
the maximum score. Top-n means select the first n max-
imum corner point. All means select all corner points.
τscore(= 0.5) means to select the corner point coordinates
greater than the threshold (=0.5).

4.3.5 Stronger components

We conducted experiments using the components of the
BDC strategy, different feature pyramid networks and label
assignment strategies to improve the detection performance
of the AID further, which are shown in Table 3. When
PAFPN is used as the feature pyramid network, our method
achieves 40.1 AP, which improves 1.6 AP compared to the
baseline method. In addition, we use ATSSAssigner alone
instead of the conventional maximum IoU strategy. Our
method improves 40.6 AP compared to the baseline method.
When the PAFPN and ATSSAssigner are used together, the
proposed method achieves 40.8 AP.

4.4. Comparison with State-of-the-Arts

For experiments comparing with the state-of-the-art
dense detector on COCO test-dev2017, we train 1x and 2x



(i.e., 12 and 24 epochs) models.
To demonstrate the effectiveness of the proposed

method, we have conducted a series of experiments based
on two baselines and various advanced backbone networks.
The results are presented in Table 6, from which it can be
seen that our model achieves excellent performance. As
shown in Table 6, using ResNet-101 and ResNeXt-101-
64×4d, our method based on the RetinaNet model achieves
40.1∼41.7 AP, consistently outperforming current baseline.
Meanwhile, using ResNet-101 and ResNeXt-101-64×4d,
our method based on the GFL model achieves 45.7∼49.4
AP, which outperforms the baseline GFL methods by ap-
proximately 0.3∼1.2 AP.

5. Conclusion
We focus on improving the performance of the anchor-

based detector. The novel AID is proposed and contains
three innovations: Firstly, The corner-aware head is pro-
posed to quantify the localization of each corner point.
Then, The BDC strategy is proposed. The overlapping
boxes are fully utilized to decouple the corner points, and
then the corner points are re-paired. In addition, the CoCl
score is proposed, which contains both classification and
corner scores and can comprehensively evaluate the quality
of prediction boxes. Experimental results demonstrate the
effectiveness of these improvements. The performance of
our method exceeds that of many state-of-the-art models.
However, there are improvements in our work: The corner-
aware head increases the training burden of the model, and
we will consider using knowledge distillation to achieve a
lighter model. And, the BDC strategy has many manually
predefined hyperparameters, and adaptive hyperparameters
will be designed in the future.
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