
Deep Equilibrium Object Detection

Shuai Wang1 Yao Teng1 Limin Wang1,2,�

1State Key Laboratory for Novel Software Technology, Nanjing University 2Shanghai AI Lab

https://github.com/MCG-NJU/DEQDet

Abstract

Query-based object detectors directly decode image fea-
tures into object instances with a set of learnable queries.
These query vectors are progressively refined to stable mean-
ingful representations through a sequence of decoder layers,
and then used to directly predict object locations and cat-
egories with simple FFN heads. In this paper, we present
a new query-based object detector (DEQDet) by designing
a deep equilibrium decoder. Our DEQ decoder models the
query vector refinement as the fixed point solving of an im-
plicit layer and is equivalent to applying infinite steps of
refinement. To be more specific to object decoding, we use a
two-step unrolled equilibrium equation to explicitly capture
the query vector refinement. Accordingly, we are able to in-
corporate refinement awareness into the DEQ training with
the inexact gradient back-propagation (RAG). In addition,
to stabilize the training of our DEQDet and improve its gen-
eralization ability, we devise the deep supervision scheme
on the optimization path of DEQ with refinement-aware
perturbation (RAP). Our experiments demonstrate DEQDet
converges faster, consumes less memory, and achieves bet-
ter results than the baseline counterpart (AdaMixer). In
particular, our DEQDet with ResNet50 backbone and 300
queries achieves the 49.5 mAP and 33.0 APs on the MS
COCO benchmark under 2× training scheme (24 epochs).

1. Introduction
Object detection [33, 24, 6, 36, 14] is a fundamental task

in computer vision research. Its purpose is to identify the
locations and categories of all object instances in an image.
This task is challenging because object detector is usually
required to deal with large variations in object instances.
Traditional object detectors often make dense predictions
based on a large quantity of candidates such as anchor
boxes [27, 33, 5] or reference points [11, 45, 20]. Among
these models, one-stage object detectors [27, 39, 24, 46] di-

�: Corresponding author (lmwang@nju.edu.cn).

1st-

Decoder Layer

𝑁 ⨯ Stages

Multi-scale features

𝑵th-

Decoder Layer

2rd-

Decoder Layer

...

𝐱

𝐲0𝐲0−Content Vectors

Positional Vectors

𝐲𝑁−1 Content Vectors

Positional Vectors

(a) FFN view on query-based object detector.

Initialization

Layer

(𝑁 − 1) ⨯ Stages

Multi-scale features

Decoder Layer

𝑓(𝐱, 𝐲𝑡−1|𝜃)

𝐱

𝐲0− 𝐲𝑡𝐲0 𝐲𝑡−1
Content Vectors

Positional Vectors

Content Vectors

Positional Vectors

Content Vectors

Positional Vectors

(b) RNN view on query-based object detector.

Initialization

Layer

Multi-scale features

𝐱

𝐲0−

𝐲𝑡−1

Content Vectors

Positional Vectors

𝐲0 Content Vectors

Positional Vectors

∞⨯ Stages
𝐲∗

Implicit Layer

𝐲∗ = 𝑓 𝐱, 𝐲∗ 𝜃
Solving: 𝐲∗

Content Vectors

Positional Vectors

Decoder Layer

𝐲𝑡 = 𝑓(𝐱, 𝐲𝑡−1|𝜃)

(c) Our DEQDet view on query-based object detector.

Figure 1: Different views on query-based object detec-
tor. (a) In FFN view, the decoder consists of stacked non-
shared decoder layers e.g. AdaMixer [14] (b) In RNN view,
the decoder consists of weight-tied decoder layers. (c) In our
DEQDet, decoder performs refinement in a RNN manner,
but model it as the fixed point solving of an implicit layer
with infinite steps. The red arrow means equivalence.

rectly classify the candidates and regress the bounding boxes
based on them. In addition, two-stage detectors [33, 16]
adopt an additional initialization step to select a set of coarse
object proposals from dense anchors, and then refine their
locations and predict their categories. These two types of de-
tectors often require hand-crafted post-processing techniques
such as NMS to yield the final detection results.

Recently, query-based object detectors [6, 36, 14] present
a new paradigm for object detection. As shown in Fig. 1a,
the detectors are composed of a set of learnable object
queries and several stacked non-shared decoder layers (e.g.
cross-attention [6], dynamic convolution [36], dynamic
MLPMixer [14]). In such a detector, these query vectors

ar
X

iv
:2

30
8.

09
56

4v
1

 [
cs

.C
V

]
 1

8
A

ug
 2

02
3

https://github.com/MCG-NJU/DEQDet

are progressively refined by each decoder layer, where im-
age features are sampled or attended and transformed based
on each query. After several steps of refinements, these query
vectors could be directly transformed into object predictions
with a simple FFN head. The success of query-based object
detectors yields a flexible and simple paradigm of directly
decoding object instances from images without any dense
assumption (e.g. dense anchors) or post processing.

Despite the great success achieved by query-based object
detectors, some important issues on their design still remain.
First, parameter efficiency is an important issue for these de-
tectors [36, 14]. Each decoder layer performs the same task
of query refinement but has its own parameters, which leads
to the large numbers of parameters and makes them prone to
overfitting. Second, depth of refinement (decoder layers) is
another critical factor in detector design. Intuitively, increas-
ing refinement depth would scale up the detector capacity
and hopefully contribute to a better detection performance
with a proper optimization method. To address these crit-
ical issues, we first come up with a new RNN perspective
on the query vector update as shown in Fig. 1b, partially
inspired by RNN-based optical flow estimation [37]. In this
sense, we employ the same transformation in each decoder
layer (known as weight tying), which provides a parameter-
efficient way to scale up these query-based object detectors
and could be viewed as a kind of regularization technique.
Yet, this recurrent query refinement would yield significant
computational and memory overhead due to the tracking
of long hidden-state history in the BPTT algorithm [42].
In addition, it still needs to determine the number of de-
coder layers. Therefore, as shown in Fig. 1c, we further
improve this weight-tying refinement to an extreme version,
and model it as the fixed point solving process of an implicit
layer with an efficient deep equilibrium model (DEQ) [3].
This DEQ view on query-based object detection is able to
simultaneously reduce its model parameters and increase its
refinement depth to an infinite level.

Specifically, in this paper, we present a new query-based
object detector, termed as DEQDet, by designing a deep
equilibrium decoder. To be more specific, it is based on
the recent research of implicit models like DEQ [3] and
the recent query-based detector of AdaMixer [14]. Differ-
ent from the previous query-based detectors [6, 36, 14], the
decoder of DEQDet only has two different decoder layers:
an initialization layer and an implicit refinement layer. As
shown in Fig. 1c, after the coarse object predictions are gen-
erated by the initialization layer, they are passed through
this implicit refinement layer with infinite steps of iterations.
The object query refinement is represented as infinite-level
fix-point solving process of an implicit layer, which could
be solved by any black-box solver and enjoy the analyti-
cal backward pass independent of forward pass trajectories.
This fixed-point modeling perspective would share several

advantages: (i) it would greatly scale up the modeling capac-
ity of query-based detectors and is more flexible to deal with
the large-variations of object instances. (ii) it would not rely
on the traditional BPTT algorithms of RNN without storing
the hidden states, which can save the memory overhead and
make the training more efficient. (iii) it is a general modeling
framework that could be applied to different query-based
object detectors for detection performance improvement.

When training DEQDet, we find it is important to in-
ject the refinement awareness (i.e., the ability to perceive
the operation that is performed iteratively) into its model
parameter update. However, the commonly used meth-
ods for computing the gradients of implicit layers, such
as Jacobian-free backpropagation (JFB) [12], lack the re-
finement awareness. To tackle this problem, we propose
to solve the two-step unrolled equilibrium equation with
two new designs: i) Refinement-Aware Gradient (RAG).
Through analysis, we find the refinement awareness corre-
sponds to the high-order terms of Neumann-series expansion
of inverse Jacobian term [15], as they simulate the gradients
propagated along the reverse of the solving path. There-
fore, we impose the refinement gradient term, i.e., second-
order terms of Neumann-series expansion, into the gradients.
ii) Refinement-Aware Perturbation (RAP). To further en-
hance the refinement awareness, we perturb the fixed-point
solving path by injecting noise. Compared with merely
adding Gaussian noise to each decoder layer, our pertur-
bation can be transmitted continuously with the iterations.
Thus, the deep supervision of query-based detectors on the
perturbed solving path can encourage the refinement layer
to be aware of its refinement nature.

We verify the effectiveness of our DEQDet framework
on MS-COCO validation dataset by following the common
practice. Our experiments demonstrate that DEQDet con-
verges faster, consumes less memory, and achieves better
results than the baseline counterpart (AdaMixer). In particu-
lar, our DEQDet with ResNet50 backbone and 300 queries
achieves the 49.5 mAP and 33.0 APs on the MS COCO
benchmark under 2× training scheme (24 epochs). We also
perform in-depth ablation study on the design of DEQDet
and verify its scaling performance with stronger backbones
such as Swin-S. Our contributions are as follows:

• We introduce RNN view over the query-based object
detector and propose to model it as a fixed-point of an
implicit layer with infinite depth.

• We propose Refinement Aware Gradient for DEQ
model applied in high level semantic understanding
task with sparsity nature like object detection.

• We propose Refinement Aware Perturbation to simulate
the real noise of fixed-point iterations in order to further
improve refinement awareness of DEQ model.

• Our experiments demonstrate the DEQDet achieves the
state-of-the-art performance under a fair setting on the
MS-COCO dataset.

2. Related Work

Refinement in object detection. The framework of two-
stage object detectors [33, 16] can be deemed as a refinement-
based detection paradigm. In these detectors, an initializa-
tion layer, e.g., RPN [33], is first adopted to generate some
proposals which provide rough locations of objects. Then,
a refinement layer (i.e. the detection head formed by the
region-wise feature extractor and the convolutional network)
is employed to achieve precise localization and categoriza-
tion for the object proposals. Multi-stage object detectors
like Cascade R-CNN [5] introduce the multi-step refinement
into object detection. Cascade R-CNN adopts a series of
detection heads to gradually refine the bounding boxes of
objects to enable the high quality detection. Query-based
detectors [6, 47, 36, 14, 26, 13, 38] are proposed to perform
object detection through a set of learnable object queries.
These detectors are also formed by cascade decoder layers.
In each layer, the image features are extracted by feature
samplers and integrated into the input queries to generate the
intermediate representations. These representations can not
only serve as the input of the next layer for further refine-
ment, but can also be decoded into the class labels and the
bounding box coordinates [6] (or coordinate offsets) [36, 14]
in current layer. Despite the great success of the query-based
object detectors, these detectors are unable to guarantee the
input and output intermediate representations of each layer
to lay in the same latent space, because the decoder layers are
not weight-tied [3]. This design is less parameter-efficient.
In addition, it is hard to determine whether they has achieved
the convergence of refinement. DiffusionDet [8] borrows the
denoising training technique from diffusion models [19] into
the refinement process of object detection, However, their re-
finement process is naively on the superficial space (formed
by bounding boxes) instead of the latent representations.

Deep implicit neural network. Implict modeling has been
explored by deep learning community by decades. Different
from conventional neural networks that stack neural oper-
ators explicitly, implicit network defines its output by the
solution of dynamic system. RBP [23, 31] trains the recur-
rent system implicitly by differentiation techniques. Neural
ODE [7] employs black-box ODE solvers to model recursive
residual block implicitly. Deep Equilibrium Model (DEQ)
[3, 4, 12, 2, 40] defines an implicit layer of solving fixed
point equation to corresponding to infinite depth. Our DE-
QDet aims to leverage this modeling power of implicit DEQ
to the specific challenging object detection task and propose
customized optimization techniques to improve its training
effectiveness and efficiency for object detection.

3. Methodology
In general, our DEQDet can be applied to any query-

based object detector. In current version, our DEQDet is
mainly based on AdaMixer [14], a state-of-the-art query-
based object detector which employs dynamic mixing in
decoder design. We first present a brief introduction of
AdaMixer. Then, in order to introduce our DEQDet, we
present a RNN perspective to reveal the refinement nature of
decoder layer. After that we formulate the detection decoder
as a fix-point iteration process and propose our DEQDet.
Finally we propose the training strategy of DEQDet.

3.1. AdaMixer Revisited

Given an image input I ∈ R3×H×W , object detectors are
required to output object bounding box and its corresponding
class category. The query-based object detector use a back-
bone with or without a neck encoder to extract multi-scale im-
age features x = {x1, x2, ..., xl}, where xi ∈ RD×Hi×W i

is the i-th level feature map and l is the number of feature
levels. Then, the features x with some learnable object
queries are sequentially passed through a decoder containing
T independent decoder layers {f1, f2, ..., fT }. The specific
decoding process can be formulated as follows:

yt = ft(x,yt−1|θt), (1)

where yt denotes the queries (or termed as the latent vari-
ables) at step t outputted by layer ft, and θt is the correspond-
ing parameters of layer ft. The main differences among
current detectors are the definition of their object query y
and the design of decoder layer f . Next, we will give a
brief introduction to the AdaMixer design, and the detailed
structure of AdaMixer decoder layer is illustrated in Fig. 2.

Object query of AdaMixer. In the AdaMixer object detec-
tor, an object query is decomposed into two parts: a content
query vector and a positional query vector:

yt = (pt,qt), (2)

where qt ∈ RD is the content vector of yt, and pt is the
corresponding positional vectors. The content vector is ex-
pected to encode the appearance of object instances. The
positional vectors represent the coordinates of an individual
bounding box. Specifically, the positional vector in [14] is
parameterized as (x, y, z, r) ∈ R4, and its relation with the
bounding box is as follows:

x = xbox , y = ybox ,

z = log2(
√
wh) , r = log2(

h

w
) ,

(3)

where (xbox, ybox) denotes the coordinates of the center
point of the bounding box, and w, h indicate the width and
height of this box.

Decoder LayerM×

Content Vector

Positional Vector

Object Queries

Content Vector

Positional Vector

N×

Bounding Box

Decoding

Multi-scale features

Position-Aware

MHSA

3D Feature

Sampling

Adaptive

Mixing

Sampled
features

FFN

Updating

Positional Vector

FFN

Updating

Content Vector

Positional

Transformation

Classification

FFN

Figure 2: The detailed structure of AdaMixer [14] decoder
layer. The object query is decoupled into a content vector and
a positional vector. The decoder operates on these two types
of vectors and refine them through a dynamic 3D feature
sampling module and an adaptive mixing module.

Decoder layer of AdaMixer. As shown in Fig. 1a, the object
queries are sequentially passed through the decoder layers to
refine features and boxes. Each decoder layer of AdaMixer
is typically composed of a multi-head self-attention module,
a multi-head dynamic interaction module and some feed-
forward networks (FFN), as illustrated in Fig. 2.

The object queries are first fed into the multi-head self-
attention module, where the pairwise interaction is per-
formed among queries. Then, the outputs, i.e., the updated
content vectors, are fed into the dynamic interaction module
(3D feature sampling and adaptive mixing). In this module,
a set of image features are first sampled from the extracted
multi-scale features according to the object queries, and then
the adaptive mixing are performed on these features. The
processed features are then added into the content vectors.

Subsequently, each updated vector is fed into FFNs to
predict the relative scaling and offsets to the positional vec-
tor (for generating a new bounding box) and the classification
scores. Finally, the updated positional vectors (bounding
boxes) and content vectors are sent into the next decoder
layer.

3.2. DEQDet

After introducing the AdaMixer detector from a FNN
view, we are ready to propose our DEQDet to improve it from
both aspects of parameter efficiency and modeling capacity.
We first reformulate AdaMixer from a RNN perspective to
improve its parameter efficiency, and then further extend the
modeling capacity of RNNDet to infinite refinement with
deep equilibrium decoder.

Decoder from FFN to RNN. As depicted in Fig. 1a and
stated in Eq. (1), the original query-based object detector
works in a feed-forward way, where different decoder layers
do not share weights and the resulting query vectors have
different feature spaces. We argue this mechanism leads to
large numbers of parameters and might be prone to overfit-
ting. Instead, we observe that each decoder layer shares the
same architecture and performs the progressive refinement of
query vectors. In this view, RNN might be a more parameter-

efficient solution by incorporating weight-tying mechanism
among different refinement layers, as shown in Fig. 1b. In
practice, this weight-tying strategy turns out not only the
parameter is efficient, but also the detection performance can
be improved.

Specifically, RNN iteratively processes the inputs with
the same transformation and parameters. Formally, given a
data sequence [x0,x1, ...,xT] over time length (refinement
step) T , the RNN decoder layers (except for initialization
layer) share the same basic mathematical representation:

yt = f(xt,yt−1|θ), (4)

where θ is the parameters of the RNN function f , yt is
the latent variable produced by the function f at the time
step t, and yt−1 is the preceding latent variable at the time
step t − 1. Actually, the RNNDet processes a special data
sequence, where every data item xi is set to be the same
multi-scale features x and yt represents the object queries.
RNN is typically optimized through the BPTT [42]. The
gradient flow of BPTT is illustrated in Fig. 3a.

Decoder from RNN to DEQ. Since RNN performs identical
transformation on the inputs, the number of the iterations
in Eq. (4) can be easily extended to the infinity if all the xt

share the same value. Furthermore, according to [3], when
the sufficient stability condition is satisfied, the outputs of
the weight-sharing layers of a general neural network tend
to converge to a stable state as the model depth increases to
infinity. In other words, when t → ∞, the refinement layer
would bring “diminishing return” and the network reaches
an equilibrium:

lim
t→∞

yt = lim
t→∞

f(x,yt|θ) ≜ y∗, (5)

where y∗ indicates the fixed point (or called the equilibrium
representation, the infinite feature representation). We can
directly solve this fixed point as a root-finding problem [3]:

y∗ = f(x,y∗|θ). (6)

With this formulation, we can perform analytical backward
pass in a constant memory consumption without tracing
through the forward root-finding process.

The deep equilibrium decoder. To scale up detector into
infinite-level refinement, we build our DEQDet based on the
fixed point of an implicit layer. The overview of DEQDet
architecture is presented in Fig. 1c. In our framework, there
are only two types of layers in our decoder: an initialization
layer and a refinement layer. The initialization layer first
takes object queries as the input, and generates the image-
related content vectors with image features and the coarse
bounding box predictions:

y0 = g(x,y0− |η), (7)

where x denotes the multi-scale image features extracted
from the backbone (e.g., like a conventional neural net-
work [18, 43] or a vision transformer [28, 17]), the function
g refers to the initialization layer with η as parameters, y0−

denotes the initial object queries, and y0 denotes the object
queries after initialization layer. The refinement layer is an
implicit layer which models the infinite refinement, as define
in Eq. (6), and its output is the fixed-point of this implicit
layer. To solve the value of y∗, we can resort to naive solver
or quasi-Newton methods (e.g., Anderson mixing [1]), and
set y0 as the initial value in these methods.

3.3. Training of DEQDet

We first introduce the gradients of an implicit layer and
present a tractable approximation method which is widely
used in previous works. Then, we propose our refinement
aware gradient (RAG) and refinement aware perturbation
(RAP) for the effective training of our DEQDet.

Gradients of an implicit layer. To differentiate through
the implicit layer defined by Eq. (6), the gradient of θ and
x under y∗ can be derived from Implicit Function Theorem
(IFT) as follows:

∂y∗

∂(·)
=

[
I − ∂f(x,y∗|θ)

∂y∗

]−1
∂f(x,y∗|θ)

∂(·)
, (8)

where the variables in (·) can be x or θ, and the inverse-

jacobian term
[
I − ∂f(x,y∗|θ)

∂y∗

]−1

is the most intriguing part
in gradient solving. The original DEQ model integrates
this term with VJP automation differential mechanism. VJP
transforms the gradient solving to another linear fixed-point
system, and thus it can also be solved via a fixed-point solver
off the shelf [3]. However, the fixed-point iteration for the
gradient solving requires huge computational consumption,
thereby prohibiting the application for real scenarios [15].

Approximation of the inverse-Jacobian term. Following
the recent works on backward gradient solving of implicit
model [12, 2], we turn to estimate the inverse jacobian term
because the resource consumption of the estimation method
is relatively more acceptable. Specifically, Jacobian Free
Backpropagation (JFB) [12, 2] approximates the gradient
formula Eq. (9) by simply replacing the inverse jacobian

term
[
I − ∂f(x,y∗)

∂y∗

]−1

in Eq. (8) with identity matrix I:

∂y∗

∂(·)
= I · ∂f(x,y

∗|θ)
∂(·)

. (9)

Although JFB avoids the overhead of inverse gradient calcu-
lations and achieves good results in some tasks [2], in fact
such a simple estimation ignores the refinement property of
the function. The JFB gradient does not capture the relation-
ship between input query y and updated query f(x,y|θ).

…𝒚𝒊 𝒚𝒊+𝟏 𝒚𝑻𝒚𝒊+𝟐𝒚𝟎 …

𝒙

BPTT gradient

Latent Variable

Condition Variable

Deep supervision Target

(a) RNN Gradient flow

…𝒚𝒊 𝒚𝒊+𝟏 𝒚𝑻𝒚𝒊+𝟐𝒚𝟎 …

𝒙

Latent Variable

Condition Variable

Deep supervision Target

Refine.Aware grad

JFB grad

Inv.Jacobian grad

(b) DEQ Gradient flow

Figure 3: Gradient flow of DEQ model and RNN model.
The blue lines indicate forward flow. The dashed lines in-
dicate the gradient flow. We use sparse deep supervision to
train our DEQDet.

Therefore, in certain tasks that require high-level semantic
understanding or have the sparsity, such as object detection,
adopting JFB is not satisfactory.

Refinement-aware gradient and deep supervision. To
capture the refinement nature of the decoder layer, we extend
the Eq. (6) to a two-step unrolled equilibrium equation:

y∗ = f(x, f(x,y∗|θ)|θ). (10)

Based on Eq. (10), we propose our refinement aware gradient
(detailed derivation in Appendix):

∂y∗

∂(·)
≈

[
I +

∂f(x,y∗|θ)
∂y∗

]
∂f(x,y∗|θ)

∂(·)
. (11)

Note that Eq. (11) is also equivalent to 2-step Neumann-
series-based Phantom Gradient [15]. Exactly, ∂f(x,y∗|θ)

∂y∗ is
the refinement gradient term. Thus, in the Neumann-series
of the inverse Jacobian term, its term

∑k
i=1[

∂f(x,y∗|θ)
∂y∗]i con-

trols the refinement awareness. We illustrate our refinement
aware gradient with others in Fig. 3b.

As DEQ-Flow [2] suggests, employing sparse deep super-
vision on the fixed point solving path can improve the model
performance. From the perspective of optimal transport, the
refinement layer tries its best to transfer the input queries yt

to our desired queries ŷ whose decoding boxes are identical
to the true distribution in the given image. Thus at each
refinement step t, the refinement layer will deliver the most
closet value yt+1 to the desired queries ŷ. This suggests
the smaller t, the greater difficulty, Therefore, we choose to
construct supervision positions set Ω in following way:

Ωmultiple = {1, C, 2C, ...,m ∗ C, T}, (12)

where m,C are constant numbers.

Refinement-aware perturbation. To further enhance
the refinement awareness and improve the robustness of
DEQDet, we introduce refinement-aware perturbation.

A general way of adding Gaussian noise. A simple noise-
based perturbation is achieved by adding random noise to
the latent variable y, allowing the networks to recover from
the corrupt result:

ŷn = yn + ϵ, ϵ ∼ N (0, σ2I) (13)

where N (·, ·) denotes a Gaussian distribution, σ denotes the
noise scale, and ϵ is the random variable sampled from this
distribution. However, directly adding this random noise is
hard to simulate the real noise in fixed point solving process.
To tackle this, we introduce a new refinement-aware pertur-
bation approach. We propose to use the refinement Jacobian
matrix ∂yn

∂yn−1
to project a random noise to the latent space:

ŷn = yn +
∂yn

∂yn−1
· ϵ, ϵ ∼ N (0, σ2I), (14)

This approach can also be extended to a multi-step
refinement-aware perturbation:

ŷn = yn +

n−1∑
m=0

1m∈Ψ · ∂yn

∂ym
· ϵ, ϵ ∼ N (0, σ2I), (15)

where Ψ is the perturbation position set, indicating the in-
dices of the solving path added with noise. This set is gener-
ated by probabilistic sampling, like random masking.

Adding noise to object detector. As for the specific im-
plementation of adding noise to our detector, we treat the
content vector q and positional vector p in different ways,
as their physical meaning is not identical. For the positional
vector, we first decode it to the corner-format bounding
box (top-left point and bottom-right point), and then we add
noise to these two points. Note that this noise-adding op-
eration may cause the flip between these two corner points.
Last, we transform the noise boxes to noise positional vec-
tors. As for the content vector, we construct Gaussian noise
with variance ∥q∥22, linearly mixing the noise and content
vector with the perturbation size σq:

q̂ = (1− σq)q+ σqϵ, ϵ ∼ N (0, ∥q∥22I). (16)

To impose the refinement Jacobian matrix on the noise term,
in practice, we choose to directly feed the noisy latent vari-
ables into the refinement layer. Then, the gradients provided
by the noise term is equivalent to have the refinement Jaco-
bian matrix as the multiplier. The detailed demonstration and
the noise perturbation algorithm can be found in Appendix.

4. Experiments
We conduct experiments on the MS-COCO 2017 dataset

[25]. The training batch size is set to 16. We employ AdamW

Detectors AP AP50 AP75 APs APm APl

FCOS [39] 38.7 57.4 41.8 22.9 42.5 50.1
Cascade R-CNN [5] 40.4 58.9 44.1 22.8 43.7 54.0

GFocalV2 [22] 41.1 58.8 44.9 23.5 44.9 53.3
BorderDet [32] 41.4 59.4 44.5 23.6 45.1 54.6

Dynamic Head [10] 42.6 60.1 46.4 26.1 46.8 56.0
DETR [6] 20.0 36.2 19.3 6.0 20.5 32.2

Deform-DETR [47] 35.1 53.6 37.7 18.2 38.5 48.7
Sparse R-CNN [36] 37.9 56.0 40.5 20.7 40.0 53.5

AdaMixerT=6[14] 42.7 61.5 45.9 24.7 45.4 59.2
AdaMixer†T=6[14] 42.7 61.5 46.1 24.9 45.5 59.3

RNNDetT=6 43.4 62.0 46.5 26.3 46.1 58.8
RNNDetT=12 44.2 63.1 47.7 26.1 47.0 60.0

DEQDet 45.3 64.0 48.9 27.7 47.9 61.5
DEQDet† 46.0 64.8 49.6 27.5 49.0 61.4

Table 1: Comparison with other detectors under classic
1× training scheme with 100 queries. RNNDet and DE-
QDet consist of Initialization layer and Refinement layer and
trained with deep supervision. † means all layers with 64
sampling points instead of 32 sampling points

optimizer [29] to update the parameters with weight decay
0.01 for backbone and weight decay 0.1 for decoder, The
loss consists of focal loss [24] with loss weight λfocal = 5, L1
loss with loss weight λL1 = 5 and GIoU loss [34] with loss
weight λgiou = 2 . The matching cost for label assignment
is aligned with loss. By default, we use the fixed-point
iteration steps Ttrain = 20 for training and Tinfer = 25 for
inference as there is just little performance gain in further
increasing Tinfer . We place the detailed refinement steps
experiment in Appendix. The base learning rate during
training is 2.5× 10−5, and the lr multiplier for decoder is 4,
we report the mAP performance on COCO minival set [25].

4.1. Classic 1× Training Results

We first report the performance of DEQDet by adopting
the classic 1× training scheme. The classic 1× training
scheme contains 12 training epochs with training images of
shorter side resized to 800 and only with random flip data
augmentation. In this study, the object query number is set
to 100. We present the detailed results of 1× training results
of RNNDet and DEQDet in Tab. 2 and compare with other
detectors in Tab. 1. First, we compare the results between
AdaMixer and RNNDet. With the same number of refine-
ment (NF=6), RNNDet obtains the better performance than
AdaMixer (43.4 vs. 42.7) with less than half parameters and
similar inference speed. This superior performance verifies
the effectiveness of weight-tying strategy. Second, we in-
crease the refinement number in RNNDet from 6 to 20, and
obtain the best performance of 44.2 at NF= 8 or 12. However,
we can clearly observe that as the number of refinement lay-
ers in RNNDet further increases, the performance degrades
partially due to RNN optimization difficulty. We visualize
the gradient norm in Fig. 4 and the RNN norm is not stable.

Detectors NF AP AP50 AP75 APs APm APl Params FPS MemTrain MemInfer TrainTime

AdaMixer[14] 6 42.7 61.5 45.9 24.7 45.4 59.2 134M 13.5 5961M 872M ∼ 14.0h
AdaMixer†[14] 6 42.7 61.5 46.1 24.9 45.5 59.3 160M 13.5 6803M 972M ∼ 15.5h

RNNDet

6 43.4 62.0 46.5 26.3 46.1 58.8 61M 13.6 4517M 588M ∼ 12.0h
8 44.2 62.9 47.9 26.5 47.2 60.1 61M 12.0 4784M 588M ∼ 13.5h

12 44.2 63.1 47.7 26.1 47.0 60.0 61M 9.2 5567M 588M ∼ 17.5h
16 43.8 62.7 47.2 26.9 46.7 59.1 61M 7.7 6195M 588M ∼ 22.0h
20 43.7 62.5 47.0 26.5 46.4 59.6 61M 5.9 6818M 588M ∼ 24.0h

DEQDet

6 44.3 63.0 47.6 26.2 47.1 60.5 61M 13.6

4827M 588M ∼ 25.5h
8 44.9 63.6 48.2 27.0 47.5 61.1 61M 12.0

16 45.2 63.9 48.8 27.5 47.9 61.3 61M 7.7
25 45.3 64.0 48.9 27.7 47.9 61.5 61M 5.1

DEQDet† 6 45.7 64.3 49.3 27.5 48.7 61.9 69M 13.0
4997M 622M ∼ 29.0h

25 46.0 64.8 49.6 27.5 49.0 61.4 69M 4.8

Table 2: classic 1× training results with 100 queries. RNNDet and DEQDet consist of Initialization layer and Refinement
layer and trained with deep supervision. † means all layers with 64 sampling points instead of 32 sampling points

0 20000 40000 60000 80000
training steps

200

400

600

800

Gradient Norm (cliped)
AdaMixer(T=6)
RNNDet(T=6)
RNNDet(T=12)
DEQDet
DEQDet

Figure 4: Gradient Norm of Detectors, To obtain the gra-
dient norm , we first flatten all gradients as a single vector,
then calculate the l2-norm of this gradient vector.

Then, we present the result of our DEQDet and see the gradi-
ent norm of DEQDet is very consistent and stable. When NF
in the fixed-point solving process is set to 6, our DEQDet
achieves better performance (44.3) with less parameters and
smaller memory consumption than AdaMixer. When we
further increase the NF in DEQDet to 25, it obtains the best
performance of 45.3 under 32 sampling points and 46.0 un-
der 64 sampling points. Finally, we notice that the inference
time of DEQDet is comparable to the other counterparts,
but its training time is relatively larger due to the forward
fixed-point solving process.

We also compare our DEQDet with other detectors under
this limited training epochs and data augmentations in Tab. 1.
The results demonstrate that our DEQDet achieves signif-
icant improvement over previous detectors under this lim-
ited training budget. This result show that our DEQDet is
training-efficient and provides a highly competitive baseline
for future object detector design.

0 20 40 60 80 100
Epoch

20

25

30

35

40

45

50
CO

CO
 v

al
 A

P
49.5

2x

DEQDet (Ours)
AdaMixer
Sparse R-CNN
Deformable DETR
DETR

Figure 5: Trainng Convergence Curves of DEQDet and
AdaMixer [14], Sparse-RCNN [36], DETR [6], Deformable
DETR [47]. The number of object queries is 300 and back-
bone is ResNet50.

4.2. Comparison with the state of the art

After reporting the results under limited training budget,
we will scale up our DEQDet with more object queries,
longer training epochs, and stronger backbones. First, we
visualize the training convergence curves of R50 backbone
and 300 queries in Fig. 5. DEQDet is designed to explore
the potential power of refinement layer as much as possible.
Compared with our counterpart AdaMixer [14], DEQDet
convergences faster and achieves higher mAP. We conjecture
the gradient norm in DEQDet is consistent and stable as
illustrated in Fig. 4, which leads to faster convergence.

We compare the results of our DEQDet with other detec-
tors in Tab. 3. In Tab. 3, we allocate 300 queries in DEQDet
Our DEQDet shows fast convergence and thus we only scale
the training epochs to 24, which is smaller than previous
methods. We observe that under the backbone of ResNet50,
our DEQDet† achieves 49.5 mAP under 2× training scheme.

Detector Backbone Encoder/FPN Epochs Params AP AP50 AP75 APs APm APl

DETR [6] ResNet-50-DC5 TransformerEnc 500 41M 43.3 63.1 45.9 22.5 47.3 61.1
SMCA [13] ResNet-50 TransformerEnc 50 40M 43.7 63.6 47.2 24.2 47.0 60.4
Deformable DETR [47] ResNet-50 DeformTransEnc 50 40M 43.8 62.6 47.7 26.4 47.1 58.0
Anchor DETR [41] ResNet-50-DC5 DecoupTransEnc 50 35M 44.2 64.7 47.5 24.7 48.2 60.6
Efficient DETR [44] ResNet-50 DeformTransEnc 36 35M 45.1 63.1 49.1 28.3 48.4 59.0
Conditional DETR [30] ResNet-50-DC5 TransformerEnc 108 44M 45.1 65.4 48.5 25.3 49.0 62.2
Sparse R-CNN [36] ResNet-50 FPN 36 110M 45.0 63.4 48.2 26.9 47.2 59.5
REGO [9] ResNet-50 DeformTransEnc 50 54M 47.6 66.8 51.6 29.6 50.6 62.3
DAB-D-DETR [26] ResNet-50 DeformTransEnc 50 48M 46.8 66.0 50.4 29.1 49.8 62.3
DN-DAB-D-DETR [21] ResNet-50 DeformTransEnc 12 48M 43.4 61.9 47.2 24.8 46.8 59.4
DN-DAB-D-DETR [21] ResNet-50 DeformTransEnc 50 48M 48.6 67.4 52.7 31.0 52.0 63.7
AdaMixer [14] ResNet-50 - 12 139M 44.1 63.1 47.8 29.5 47.0 58.8
AdaMixer [14] ResNet-50 - 24 139M 46.7 65.9 50.5 29.7 49.7 61.5
AdaMixer [14] ResNet-50 - 36 139M 47.0 66.0 51.1 30.1 50.2 61.8
RNNDetT=8 ResNet-50 - 36 65M 48.1 66.7 52.3 31.2 51.1 62.5
RNNDet†T=8 ResNet-50 - 36 69M 48.4 67.1 52.7 31.8 51.4 63.4
DEQDet ResNet-50 - 12 65M 46.6 65.3 50.6 30.5 49.4 61.2
DEQDet ResNet-50 - 24 65M 48.6 67.6 53.0 31.6 51.8 62.9
DEQDet† ResNet-50 - 24 69M 49.5 68.1 53.9 33.0 52.0 63.3

DETR [6] ResNet-101-DC5 TransformerEnc 500 60M 44.9 64.7 47.7 23.7 49.5 62.3
SMCA [13] ResNet-101 TransformerEnc 50 58M 44.4 65.2 48.0 24.3 48.5 61.0
Efficient DETR [44] ResNet-101 DeformTransEnc 36 54M 45.7 64.1 49.5 28.2 49.1 60.2
Conditional DETR [30] ResNet-101-DC5 TransformerEnc 108 63M 45.9 66.8 49.5 27.2 50.3 63.3
Sparse R-CNN [36] ResNet-101 FPN 36 125M 46.4 64.6 49.5 28.3 48.3 61.6
REGO [9] ResNet-101 DeformTransEnc 50 73M 48.5 67.0 52.4 29.5 52.0 64.4
AdaMixer [14] ResNet-101 - 36 158M 48.0 67.0 52.4 30.0 51.2 63.7
DEQDet ResNet-101 - 24 84M 49.5 68.2 53.8 33.6 52.8 64.3
DEQDet† ResNet-101 - 24 88M 50.1 68.9 54.5 34.3 53.3 65.1

AdaMixer [14] Swin-S - 36 164M 51.3 71.2 55.7 34.2 54.6 67.3
DEQDet Swin-S - 24 90M 52.7 72.3 57.6 36.6 55.9 68.4

Table 3: Comparison with other detectors on COCO minival set. The number of queries defaults to 300 in our DEQDet. †

means refinement layer with 64 sampling points.

outperforming its baseline Adamixer by 2.5 mAP. Especially
in small object detection metrics, DEQDet† achieves 33.0
APs. We also scale the backbone of our DEQDet to ResNet-
101 and Swin-S. Our DEQDet can outperform the AdaMixer
by 2.1 mAP for ResNet101 and 1.4 mAP for Swin-S. This
shows our DEQDet generalizes well to large backbones.

4.3. Ablation studies

In this ablation study, we use 100 queries and ResNet50
as the backbone for DEQDet. The training epoch is 12.

Initialization layer. As introduced in Sec. 3.2, we employ
an initialization layer to convert the image content agnos-
tic queries to image content-related queries. We investigate
different initialization layer setting in Tab. 4a, including 1).
no initialization layer, 2). an initialization layer with 32

sampling points 3). an initialization layer with 64 sampling
points. As initialization layer with enough sampling points
can obtain relatively rich semantic information from input
features, it will releive the learning difficulty of subsequent
layers. Another question is whether to apply extra supervi-
sion to initialization layer during training. We summarize
h = 0, 1, 2 in Tab. 4b, where h represents the number of ex-
tra layers placed on top of initialization layer for supervision.
When h = 0, there is no connection between initialization
layer and refinement layer, so the training is unstable.

Refinement-aware gradient. As discussed in Sec. 3.3, due
to the high-level semantic understanding property and sparse
nature of object detection, ignoring the refinement aware
gradient will lead to sub-optimal results. We verify our
conjecture through experiments in the Tab. 4c. The refine-

Init layer
sampl.points

AP AP50 AP75

/ 45.2 63.8 48.8
32 45.3 64.0 48.9
64 45.5 64.4 49.1

(a) Init Layer. A large Init layer
benifits performance.

extra super.
layers

AP AP50 AP75

0 44.7 63.4 48.2
1 45.1 63.8 48.8
2 45.5 64.4 49.1

(b) Init Layer supervised with
extra refinement aware gradient.

RAG
step.k

AP AP50 AP75

1 41.9 60.7 45.0
2 45.5 64.4 49.1
3 45.5 64.2 49.4
4 45.7 64.2 49.9

(c) refinement aware gradient
with different k.

m C AP AP50 AP75

4 3 45.5 64.4 49.1
4 4 45.4 63.9 49.2
3 3 45.1 64.0 48.9
5 3 45.2 63.8 48.8

(d) deep supervision position
set Ω.

perturbation
step.

AP AP50 AP75

zero-step 44.9 63.8 48.6
one-step 45.1 63.9 48.6

multi-step 45.5 64.4 49.1

(e) perturbation step multiple
step perturbation works best.

σq σp AP AP50 AP75

/ / 44.3 63.1 47.8
/ 25 45.4 64.2 49.0
/ 50 45.5 64.5 49.1

0.1 / 45.0 63.6 48.5
0.2 / 45.2 64.3 48.6

(f) single perturbation noise.

σq σp AP AP50 AP75

0.1 25 45.5 64.4 49.1
0.1 50 45.5 64.4 49.1
0.2 25 45.2 63.9 49.0
0.2 50 45.2 63.9 49.2

(g) perturbation noise combi-
nations.

iteration
steps

AP AP50 AP75

15 45.1 63.8 48.7
20 45.5 64.4 49.1
25 45.3 64.0 48.9

(h) fixed-point iteration steps
during training.

Table 4: Ablation Studies on our DEQDet design with ResNet-50 as the backbone and 100 object queries under the 12
training epochs on the MS-COCO minival set.

ment aware gradient step k refers to the expansion steps
of neumann-series. When k = 1, RAG degenerates into
JFB [12], which fails to consider the refinement property of
fixed-point iteration. k = 2 is the standard RAG baseline,
which achieves 45.5 mAp. RAG outperforms JFB substan-
tially in object detection task. Although the k = 3 setting
retains the locality property and enjoys more refinement
awareness, it offers little improvement. So, we set k = 2.

Deep supervision position Ω. We experiment with position
set in Eq. (12) under different settings. We use the default
RAG step k = 2. We experimentally find using Ωmultiple with
m = 4, C = 3 achieves the best result.

Refinement-aware perturbation. We compare zero-step
simple noise and perturbation noise in Tab. 4e. As introduced
in Sec. 3.3, one-step perturbation noise naively projects the
simple noise by refinement layer to latent space. One-step
noise improves the simple noise by 0.2 mAP, which means
adding the noise associated with fixed-point solving is better
than simple Gaussian noise. The best results are achieved
with multi-step noise, as it takes full advantage of the fixed-
point solution path.

Perturbation noise. In Tab. 4f, we experiment with differ-
ent noise scales in terms of position noise perturbation and
content perturbation and their combinations. From Tab. 4f,
we find both content perturbation and position perturbation
significantly improve the performance of DEQDet. The im-
provement effect of position perturbation is more obvious
than that of content perturbation. As the noise scale in-
creases, the performance can be further improved. However,
Tab. 4g, when we combine the best content noise σq = 0.2
and the best best position noise σp = 50, DEQDet yields
only 45.2 mAP. The Performance degradation of perturba-

tion combination shows excessive noise perturbation hurts
DEQDet performance. An reasonable noise scale σq = 0.1
and σp = 25 achieves the best mAP (45.5).

Refinement iteration steps. We also experiment with dif-
ferent fixed-point iteration steps Ttrain during training of DE-
QDet. Tab. 4h shows Ttrain = 20 achieves the highest mAP
performance(45.5). Comparing other steps, we can conclude
that more refinement steps during training can enhance the
performance of detectors. But Ttrain = 25 does not exceed
Ttrain = 20, which may be due to limited deep supervision
positions for those redundant refinements.

5. Conclusion

In this paper, we have proposed the deep equilibrium
detector (DEQDet), a query-based object detector with in-
finite refinement steps. We equivalently model the refine-
ment process as a fixed-point solving problem of a implicit
layer. As for the training of DEQDet, we find that its sim-
ple estimation on inverse-jacobian term lacks refinement
awareness, resulting in a negative impact on the high-level
semantic understanding of the object detector. Therefore, to
inject the refinement awareness into the detector during train-
ing, we propose the refinement-aware gradient (RAG) and
the refinement-aware perturbation (RAP). Our experiments
show DEQDet converges faster, consumes less memory, and
achieves better performance than the counterparts on the
MS-COCO dataset. We hope our DEQDet becomes a strong
baseline and could inspire future work to consider deep equi-
librium modeling in other computer vision tasks.

Acknowledgements. This work is supported by National Key
R&D Program of China (No. 2022ZD0160900), National Natural
Science Foundation of China (No. 62076119, No. 61921006).

References
[1] Donald G Anderson. Iterative procedures for nonlinear inte-

gral equations. Journal of the ACM (JACM), 12(4):547–560,
1965. 5

[2] Shaojie Bai, Zhengyang Geng, Yash Savani, and J Zico Kolter.
Deep equilibrium optical flow estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 620–630, 2022. 3, 5

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equi-
librium models. Advances in Neural Information Processing
Systems, 32, 2019. 2, 3, 4, 5

[4] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale
deep equilibrium models. Advances in Neural Information
Processing Systems, 33:5238–5250, 2020. 3

[5] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: high
quality object detection and instance segmentation. IEEE
transactions on pattern analysis and machine intelligence,
43(5):1483–1498, 2019. 1, 3, 6

[6] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Proceedings of
the European conference on computer vision, pages 213–229,
2020. 1, 2, 3, 6, 7, 8

[7] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equations.
Advances in neural information processing systems, 31, 2018.
3

[8] Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffu-
siondet: Diffusion model for object detection. arXiv preprint
arXiv:2211.09788, 2022. 3, 12

[9] Zhe Chen, Jing Zhang, and Dacheng Tao. Recurrent glimpse-
based decoder for detection with transformer. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5260–5269, 2022. 8

[10] Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen,
Mengchen Liu, Lu Yuan, and Lei Zhang. Dynamic head:
Unifying object detection heads with attentions. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7373–7382, 2021. 6

[11] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 6569–6578, 2019.
1

[12] Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKen-
zie, Stanley Osher, and Wotao Yin. Jfb: Jacobian-free back-
propagation for implicit networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2022. 2, 3, 5, 9

[13] Peng Gao, Minghang Zheng, Xiaogang Wang, Jifeng Dai,
and Hongsheng Li. Fast convergence of detr with spatially
modulated co-attention. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3621–
3630, 2021. 3, 8

[14] Ziteng Gao, Limin Wang, Bing Han, and Sheng Guo.
Adamixer: A fast-converging query-based object detector.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 5364–5373, 2022. 1,
2, 3, 4, 6, 7, 8, 13

[15] Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang,
and Zhouchen Lin. On training implicit models. Advances
in Neural Information Processing Systems, 34:24247–24260,
2021. 2, 5

[16] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 1, 3

[17] Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming
Cheng, and Shi-Min Hu. Visual attention network. arXiv
preprint arXiv:2202.09741, 2022. 5

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 3, 12

[20] Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European conference
on computer vision, pages 734–750, 2018. 1

[21] Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni, and
Lei Zhang. Dn-detr: Accelerate detr training by introducing
query denoising. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13619–
13627, 2022. 8

[22] Xiang Li, Wenhai Wang, Xiaolin Hu, Jun Li, Jinhui Tang,
and Jian Yang. Generalized focal loss v2: Learning reli-
able localization quality estimation for dense object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11632–11641, 2021. 6

[23] Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, Ki-
Jung Yoon, Xaq Pitkow, Raquel Urtasun, and Richard Zemel.
Reviving and improving recurrent back-propagation. In Inter-
national Conference on Machine Learning, pages 3082–3091.
PMLR, 2018. 3

[24] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 1, 6

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 6

[26] Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi,
Hang Su, Jun Zhu, and Lei Zhang. Dab-detr: Dynamic
anchor boxes are better queries for detr. arXiv preprint
arXiv:2201.12329, 2022. 3, 8

[27] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.
Ssd: Single shot multibox detector. In European conference
on computer vision, pages 21–37. Springer, 2016. 1

[28] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 5

[29] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[30] Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng,
Houqiang Li, Yuhui Yuan, Lei Sun, and Jingdong Wang. Con-
ditional detr for fast training convergence. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 3651–3660, 2021. 8

[31] Fernando Pineda. Generalization of back propagation to recur-
rent and higher order neural networks. In Neural information
processing systems, 1987. 3

[32] Han Qiu, Yuchen Ma, Zeming Li, Songtao Liu, and Jian
Sun. Borderdet: Border feature for dense object detection. In
European Conference on Computer Vision, pages 549–564.
Springer, 2020. 6

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 1, 3

[34] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 658–666,
2019. 6

[35] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. arXiv preprint arXiv:2010.02502,
2020. 12

[36] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng
Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,
Changhu Wang, et al. Sparse r-cnn: End-to-end object
detection with learnable proposals. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, pages 14454–14463, 2021. 1, 2, 3, 6, 7, 8, 12, 13

[37] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020. 2

[38] Yao Teng, Haisong Liu, Sheng Guo, and Limin Wang.
StageInteractor: Query-based object detector with cross-stage
interaction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023. 3

[39] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully
convolutional one-stage object detection. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 9627–9636, 2019. 1, 6

[40] Tiancai Wang, Xiangyu Zhang, and Jian Sun. Implicit fea-
ture pyramid network for object detection. arXiv preprint
arXiv:2012.13563, 2020. 3

[41] Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun.
Anchor detr: Query design for transformer-based detector. In
Proceedings of the AAAI conference on artificial intelligence,
pages 2567–2575, 2022. 8

[42] Paul J Werbos. Backpropagation through time: what it does
and how to do it. Proceedings of the IEEE, 78(10):1550–1560,
1990. 2, 4

[43] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 5

[44] Zhuyu Yao, Jiangbo Ai, Boxun Li, and Chi Zhang. Efficient
detr: improving end-to-end object detector with dense prior.
arXiv preprint arXiv:2104.01318, 2021. 8

[45] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Proba-
bilistic two-stage detection. arXiv preprint arXiv:2103.07461,
2021. 1

[46] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects
as points. arXiv preprint arXiv:1904.07850, 2019. 1

[47] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 3, 6, 7, 8

A. Notions and hyperparameters in DEQDet
To avoid confusion by the notions in DEQDet, we sum-

marize all symbols in Tab. 5. For the convenience of others
to reproduce the experiment in DEQDet, we also provides
the training hyper-parameters.

B. Noise projection for fixed-point
To impose the refinement jacobian matrix on the noise

term, in practice, we directly feed the noisy latent variables
into the refinement layer. Then, the gradients provided by
the noise term is equivalent to have the refinement jacobian
matrix as the multiplier. We conduct directly feeding noise
to refinement layer instead of computing jacobian, due to

• jacobian based projection is equivalent to the one step
Taylor expansion of refinement layer.

• computing jacobian matrix spends more time

• actually, as detaching position vector in object detectors
is a common practice, employing automatic differentia-
tion library to solve jacobian matrix will delivery wrong
results.

ŷn = f(x,yn−1 + ϵ) (17)

≈ f(x,yn−1) +
∂yn

∂yn−1
· ϵ (18)

= yn +
∂yn

∂yn−1
· ϵ ϵ ∼ N (0, σ2I) (19)

C. Refinement-aware gradient derivation
To handle Refinement awareness, we reformulate fixed-

point formula to a two-step unrolled fix-point to take the
query term into account:

y∗ = f(x, f(x,y∗|θ)|θ) (20)

For simplicity, we define a new function h, which is the
two-step unrolled refinement layer:

h(x,y∗|θ) = f(x, f(x,y∗|θ)|θ) (21)

Then, the IFT gradient of Eq. (20) becomes:

∂y∗

∂(·)
= (I − ∂h(x,y∗|θ)

∂y∗)−1 ∂h(x,y
∗|θ)

∂(·)
(22)

We first replace the inverse jacobian term (I− ∂h(x,y∗|θ)
∂y∗)−1

with identity matrix I as JFB, and then we implicitly differ-
entiate two sides of Eq. (21):

∂y∗

∂(·)
≈ ∂h(x,y∗|θ)

∂(·)
= [I +

∂f(x,y∗|θ)
∂y∗]

∂f(x,y∗|θ)
∂(·)

(23)

then we get our refinement aware gradient:

∂y∗

∂(·)
≈ [I +

∂f(x,y∗|θ)
∂y∗]

∂f(x,y∗|θ)
∂(·)

(24)

D. Connection between DEQ model and diffu-
sion model

There are some differences and connections between dif-
fusion model and fixed-point iterations based DEQ model, a
basic fixed -point form likes :

y = f(x, y), (25)

yn = f(x, yn−1), (26)

while diffusion [19, 35] can be derived from ode form
(ddim [35]) :

dy

dt
= g(x, y, t), (27)

when we make a finite integral for ode, we can get:

yn = yn−1 +

∫ tn

tn−1

g(x, y, t)dt, (28)

yn = yn−1 + g(x, y, t)∆t, (29)

so, it is clear that the function f(x, y) in fixed-point iteration
can be any arbitrary form, instead ode always keeps an
identity branch or residual connection. But actually we
also use identity branch in our DEQDet decoder layer. The
second difference is ode is step aware as g(x, y, t) takes
step t as input, while fixed-point iteration not.

E. Comparison with similar works

Except our method mainly focuses on fixed-point itera-
tion, others devote to migrate diffusion diagram to object
detection [8]. The remaining major difference between our
detector and DiffusionDet [8] is that our decoder consists
of only two layers, the first layers aims to get a good initial
guess while the second layer progressively refines this initial
result. Then the definition of a refinement step is also distinct.
we regard running refinement layer once as a refinement step
while their refinement step runs the entire decoder, which
consists of 6 layers.

F. Extend DEQDet to other detector

We also extend our DEQDet to sparse-RCNN [36]. we
keep the training settings e.g. training epochs, optimizer,
learning rate scheduler consistent with the original sparse-
rcnn, Our DEQDet improves the sparse-rcnn by 2.5 on mAP
and 3.7 on APsmall.

Hyperparameters Notation Value

The content vector q

The positional vector p

The condition variable / multi-scale features x

The latent variable y = (p,q)

The parameters θ, η

The refinement layer f(x,y)

The initialization layer g(x,y)

The deep supervision position set Ω [1,3,6,9,12,20]
The number fixpoint iteration steps for training Ttrain 20
The number fixpoint iteration steps for inference Tinfer 25
The perturbation probability v 0.2
The perturbation size of content vector σq 0.1
The perturbation size of positional vector σp 25
The sampling points of initialization layer 64
The sampling points of refinement layer layer 32
The learning rate 0.000025
The learning rate decay *0.1
The learning rate decay epoch for 1× training 8, 11
The learning rate decay epoch for 2× training 16, 22
weight decay for backbone 0.01
weight decay for decoder 0.1
The loss weight for focal loss λfocal 2
The loss weight for l1 loss λl1 5
The loss weight for giou loss λgiou 2

Table 5: The hyper-parameters of DEQDet.

Detectors Params AP AP50 AP75 APs APm APl

Sparse R-CNN [36] 110M 45.0 63.4 48.2 26.9 47.2 59.5
+DEQDet (2x) 53M 47.0 65.7 51.6 30.3 49.8 61.0
+DEQDet (3x) 53M 47.5 66.5 52.4 30.6 50.1 61.5

Table 6: 3× training scheme with 300 queries. Extend
DEQDet to other detectors e.g. sparse-rcnn [36].

G. Refinement convergence

We evaluate our DEQDet with different refinment steps
in Tab. 7 and Tab. 8. We conduct experiments on DEQDet†

trained under 1× scheme with 100 queries and 2× scheme
with 300 queries. In Tab. 8, when DEQDet† with 300 queries
refines 5 steps, the number of valid decoder layers is as same
as AdaMixer [14], but DEQDet achieves 49.0 mAP, exceeds
AdaMixer by 2.0 mAP. As the refinement step increases, the
performance will be further improved.

We try to employ off-the-shelf fixed-point solver e.g. an-
derson solver to accelerate the fixed-point solving, but the
result is not what we expected. We think this is mainly due to
the highly nonlinear property of the refinement layer and we

GFLOPS steps AP AP50 AP75 APs APm APl

107.50 4 44.9 63.5 48.4 26.1 48.0 60.9
109.73 5 45.4 64.0 49.0 26.6 48.4 61.2
111.97 6 45.7 64.3 49.4 26.8 48.7 61.4
116.43 8 45.8 64.5 49.6 27.0 48.9 61.3
120.90 10 45.9 64.6 49.7 27.2 48.9 61.2
132.07 15 45.9 64.7 49.6 27.4 49.0 61.2
143.24 20 46.0 64.7 49.6 27.4 49.0 61.4
154.41 25 46.0 64.8 49.6 27.5 49.0 61.2
210.25 50 46.0 64.7 49.6 27.5 49.0 61.5

- 200 46.0 64.8 49.7 27.6 49.1 61.5

Table 7: Refinement steps for DEQDet† trained under 1×
scheme with ResNet50 backbone and 100 queries.

should couple the solver with training instead of decoupling.
We left this for our future work.

H. Detection Performance on COCO test set

We also provide the detection performance of DEQDet
models on COCO test-dev set in Tab. 10. Different from the
COCO minival set, there is no publicly avaliable labels of
test-dev.

GFLOPS steps AP AP50 AP75 APs APm APl

129.87 4 48.7 67.3 52.8 32.0 51.7 63.0
136.57 5 49.0 67.7 53.3 32.3 51.9 63.0
143.27 6 49.1 67.8 53.5 32.5 52.0 63.2
156.67 8 49.3 68.0 53.7 32.9 52.0 63.2
170.07 10 49.5 68.2 53.9 33.1 52.1 63.4
203.58 15 49.5 68.3 53.9 33.2 52.1 63.3
237.08 20 49.5 68.3 54.0 33.2 52.1 63.4
270.59 25 49.5 68.3 54.0 33.2 52.1 63.3
438.11 50 49.6 68.3 54.0 33.3 52.2 63.1

- 200 49.5 68.3 54.0 33.2 52.2 63.1

Table 8: Refinement steps for DEQDet† trained under 2×
scheme with ResNet50 backbone and 300 queries.

m steps AP AP50 AP75 APs APm APl

2 5 48.9 67.5 53.1 32.2 51.8 63.1
2 10 49.2 68.0 53.6 32.9 52.0 63.1
2 20 49.4 68.2 53.8 32.9 52.0 63.4
2 50 49.5 68.2 53.9 33.1 52.2 63.3

4 5 48.8 67.5 53.1 32.2 51.8 63.3
4 10 49.2 67.9 53.5 32.7 52.0 63.1
4 20 49.3 68.1 53.7 33.1 52.0 63.4
4 50 49.4 68.1 53.8 33.1 52.1 63.3

Table 9: Refinement steps of Anderson Solver for EQDet†

with ResNet50 backbone and 300 queries. m is a hyperpa-
rameter in Anderson Solver.

Detectors Backbone queries AP AP50 AP75 APs APm APl

DEQDet (1x) R50 100 45.4 64.5 49.0 26.0 47.7 59.3
DEQDet† (1x) R50 100 46.5 65.5 50.4 27.2 48.9 60.2
DEQDet† (2x) R50 300 49.8 68.5 54.4 31.2 52.1 62.5
DEQDet† (2x) R101 300 50.6 69.4 55.1 31.3 53.3 64.2

Table 10: Detection Performance of DEQDet on COCO test-
dev set, 1× means 1× training scheme, including 12 epochs,
while 2× contains 24 epochs.

I. Limitations
Although our DEQDet achieves comparable results with

acceptable resource consumption, the training time consump-
tion is still very large compared to other methods. As for
inference time, it is acceptable to choose refinement steps
adaptively according to resource constraints. There are also
a lot of improvement space for training strategy. Also note
that the refinement layer is not light and each refinement iter-
ation is not really cheap. Future improvements can be made
from light weight refinement layer design and reduction of
refinement steps

J. Training algorithm

Algorithm 1 Noise Perturbation Code

def noise_content(content, noise_size):
""" add noise to content query """
noise = torch.randn_like(content)*

torch.norm(content, dim=-1)
noise_content = (1-noise_size)*content +

noise_size*noise
return noise_content

def noise_pos(pos, noise_size):
""" add noise to position query """
bbox = decode(pos)
noise = torch.randn_like(bbox)
noise_bbox = bbox + noise_size*noise
noise_pos = encode(noise_bbox)
return noise_pos

Algorithm 2 Training code

def train(
T , #iteration forward times
perturb_prob, # perturbation probability
content_ps, #content query perturb size
pos_ps, #position query perturb size
supervision_pos, #deep supervision positions
init_content, #[B, N, C]
init_pos, #[B, N, 4]
feats, #[B, L, C, H, W]
annotations):

"""
B: batch
N: number of proposal boxes
"""
solving_path = []
all_loss = 0
init_content, init_pos = initialization_layer(feats

, init_content, init_pos)
supervision for initialization layer
all_loss += loss(content, pos, annotations)
extra supervision for initialization layer
in order to stablize the gradient connection
between refinement layer and initialization layer
content, pos = init_content,init_pos
for i in range(2):

content, pos = refinement_layer(
feats,content, pos)

all_loss += loss(content, pos, annotations)

naive fix-point solving...
with torch.no_grad():
content, pos = init_content,init_pos
solving_path = []
for i in range(T):

refinement aware perturbation
1. add noise to content query
if torch.rand(1) < perturb_prob :

content = noise_content(
content, content_ps
)

2. add noise to pos query
if torch.rand(1) < perturb_prob :

pos = noise_pos(pos, pos_ps)
3. project noise
content, pos = refinement_layer(

feats, content, pos
)

if i in supervision_pos:
solving_path.append((content, pos))

deep supervision and gradient construction
for content, pos in solving_path:
refinement aware gradient
for i in range(2):

content, pos = \
refinement_layer(feats,content, pos)

all_loss += loss(content, pos, annotations)
return loss

