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Abstract

Federated learning (FL) is a promising approach for
enhancing data privacy preservation, particularly for au-
thentication systems. However, limited round communica-
tions, scarce representation, and scalability pose signifi-
cant challenges to its deployment, hindering its full po-
tential. In this paper, we propose ‘ProtoFL’, Prototypical
Representation Distillation based unsupervised Federated
Learning to enhance the representation power of a global
model and reduce round communication costs. Addition-
ally, we introduce a local one-class classifier based on nor-
malizing flows to improve performance with limited data.
Our study represents the first investigation of using FL
to improve one-class classification performance. We con-
duct extensive experiments on five widely used benchmarks,
namely MNIST, CIFAR-10, CIFAR-100, ImageNet-30, and
Keystroke-Dynamics, to demonstrate the superior perfor-
mance of our proposed framework over previous methods
in the literature.

1. Introduction

In recent years, there has been a growing concern about
privacy, leading people to hesitate when it comes to upload-
ing their biological data to central data servers. Moreover,
companies that possess personal information from users are
strictly bound by the General Data Protection Regulation
(GDPR) [44]. To address these privacy issues, Federated
Learning (FL), an emerging distributed data parallel ma-
chine learning approach, has been proposed. FL lever-
ages the decentralized data available on individual clients
to collaboratively train a shared global model on a mediator
server without the need to share personal data.
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Figure 1: Visualization of extreme non-i.i.d. (α = 0.0
is a concentration parameter of Dirichlet distribution) data
based FL schema shows that each device has only the data
from its target class not shared among all joined devices,
and prototypical representation is distributed separately to
corresponding joined clients in secure from a central server.

In the context of FL, where data is decentralized across
individual clients, one-class classification (OCC) can be
used. This is because that OCC can determine whether a
new example belongs to the target distribution or not. De-
spite not using data from the non-target class, OCC has
shown impressive performance [31, 38, 43, 42, 39, 40, 15,
28]. In computer vision applications, OCC is particularly
useful for detecting fraud, defects, and unauthorized users.

Recent advancements in biometric authentication have
highlighted the importance of FL-based OCC in computer
vision (e.g., user-defined embedding-based methods [17,
22] and data-driven methods [2, 25, 32]). However, FL-
based OCC methods face significant challenges, including
high communication costs, limited representation, and un-
stable learning processes. Additionally, centralized server-
based methods [31, 42, 43] may not be suitable for FL-
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based OCC due to limited computing resources on each de-
vice, which are a major obstacle for centralized methods
that require substantial computing power.

The limitations inherent in FL-based OCC necessitated
the development of a novel approach to address these chal-
lenges. In this paper, we aim to attain a more expres-
sive global model without the need for frequent re-training
processes between the central server and client devices on
a large scale. To achieve this, we propose Prototypical
representation distillation based unsupervised Federated
Learning (ProtoFL) that distills representation from an off-
the-shelf model learned using off-the-shelf datasets, regard-
less of individual client data. In contrast to traditional FL-
based OCC, our proposed ProtoFL approach does not trans-
fer parameters directly to the client, as depicted in Fig. 1.
This resolves the issues of frequent round communication
costs and the need for extra data due to one-time prototype
representation distillation. ProtoFL provides a novel solu-
tion to the existing challenges of FL-based OCC, enabling
efficient and effective global model updates.

Subsequently, we suggest a novel approach for estimat-
ing the density of a target class in a distributed setting
using a flow-based one-class classifier [20]. To achieve
this, we conduct the estimation on individual client de-
vices, using augmented latent variables for training their
distributed models. Our approach leverages two key tech-
niques: maximum likelihood estimation with log-likelihood
and a probabilistic similarity loss function that includes
KL-divergence. By combining the distillation and one-
class classification phases, we can effectively handle com-
plex data distributions that are non-independent and non-
identically distributed across individual clients. Our two-
phase learning framework is inspired by the success of flow-
based models in various applications [20, 11, 40, 1], and we
demonstrate its effectiveness in handling complex data dis-
tributions in the distributed settings.

The experimental findings of our proposed method
demonstrate superior classification performance compared
to both server-based and client-based methods on both im-
age and tabular datasets. Additionally, we have validated
the scalability of the learned representation and have shown
that the global model learned by the ProtoFL is compatible
with existing one-class classifiers as well as our one-class
classifier based on the benchmark datasets. Our results indi-
cate that our method is a promising approach for large-scale
machine learning tasks that require robust and scalable clas-
sification capabilities.

Our contributions are described as follows:

• We propose a novel unsupervised federated learning
framework that effectively addresses the challenge of
insufficient local training data. By leveraging normal-
izing flows for local classifier learning and prototypical
representation distillation, our approach enables effi-

cient and effective global model updates.

• We propose a novel prototype-based representation
learning method for distilling normal data represen-
tation using an off-the-shelf model and dataset. Our
approach demonstrates the scalability of the global
model, which can be verified by adding new clients
in FL-based OCC.

• We propose new federated and centralized learning
methods for one-class classification, which we evalu-
ate on five widely-used benchmarks. Our experiments
show that our methods achieve superior performance
compared to existing approaches.

2. Related Work
One-class classification Various one-class classification
approaches have been proposed and categorized into
description-based and representation-based learning. In
the description-based methods, Deep-SVDD [31] performs
one-class detection by learning a model to map target sam-
ples into a center in the latent space, otherwise non-target
samples are mapped far from the center. And FCDD [27]
proposes an explainable one-class classifier by upsampling
based on gaussian sampling. In contrast, representation-
based learning methods (DROC [42] and CSI [43]) present
a two-step learning framework to learn a representation
model through excessive data-augmentation and contrastive
loss. The framework either employs a classifier or defines
a score function for detecting a target class. Unlike previ-
ous centralized server-based approaches, our proposed ap-
proach for one-class classification on decentralized learning
avoids the risk of personal data leakage by constructing a
model using distributed data. To the best of our knowledge,
our method is the first to directly address this problem in a
decentralized setting.

Federated learning for local one-class classifier Fed-
erated Learning (FL) is a distributed machine learning
paradigm that enables collaborative model training with-
out direct data sharing. FL has been applied to one class
classification (OCC) tasks for user verification and authen-
tication, with several studies demonstrating promising re-
sults. [17, 32, 34]. FedAwS [45] introduces a geometric
regularization to learn a global model by utilizing uploaded
latent variables of joined clients in a central server. Since
the latent variables shared on a server are private data, the
FedAwS violates in the setting of FL. FedUV [17] employs
independent secret error correcting codes (ECCs) to train a
one-class classifier by preventing personal data from shar-
ing among joined clients. The secret codes induce the con-
cise objective of FedUV so that only positive examples are
required. The FedUV approach was further refined to esti-
mate a center of distribution by FedAA [32] and FedMet-



ric [34], instead of defining hand-designed codes. However,
local data on each device is not sufficient to represent a cen-
troid of local data distribution.

Federated learning for central and client classifiers In
authentication systems, client data is often partitioned ac-
cording to a target class. This results in highly or ex-
tremely non-i.i.d. data that poses a significant challenge
for FL. This extreme non-i.i.d. means that a concentra-
tion parameter of Dirichlet distribution approaches to zero
(α = 0.0) while many federated learning methods [6, 9, 13]
assumes non-i.i.d. data with non-zero (α ̸= 0.0) set-
ting [18, 24, 29, 6, 13, 9].

Unsupervised federated learning methods [24, 29] aggre-
gate local representation models and centroids for achiev-
ing a global model and centroid. FedRep [6] shares parti-
tions of a global model to adapt each local heterogeneous
data. FedX [13], which utilizes structure knowledge dis-
tillation between local and global knowledge relationships,
learns meaningful data representation without sharing ex-
ternal data. SphereFed [9] introduced a learned matrix,
which is a fixed-classifier for sharing among all participat-
ing clients, to transform each local data distribution into
the predefined latent space. But, SphereFed requires enor-
mous cost to re-construct and re-distribute a new learned
matrix whenever a new client joins. Therefore, we first
propose a prototypical representation distillation learning
to save communication cost in FL with extreme non-i.i.d.
(α = 0.0) data settings.

Normalizing flows as classifiers Normalizing flows
(NFs) normalize entangled data distributions into disen-
tangled distributions by composing invertible and differ-
entiable transformations. NFs have been applied for AD
in image and video tasks [11, 40, 1] because FOOD [20]
finds that NFs transforming latent to latent space outper-
forms those transforming data to latent space. For instance,
FLOW [40] utilizes a fixed feature extractor to train NFs
by either maximizing the log-likelihood on a target-class
or minimizing the log-likelihood on outlier-exposure (OE)
data. ITAE [1] employs NFs to estimate the density by
learning appearance and motion latent features in videos.
By the effectiveness of AD using NFs, we apply the NFs
minimizing log-likelihood to our global model for one-class
classification.

3. Preliminary

Federated Average Learning FedAVG [30], composed
of participating clients and a central mediator server, trains a
global model by aggregating locally-computed parameters,
and broadcasts the updated global model to the clients. In
each round, FedAVG updates the global model parameters

with local model parameters as follows:

θt+1
g =

K∑
k=1

|Dk|∑K
k=1 |Dk|

θtk, (1)

where k ∈ {1, ...,K} indicates an index of a local client.
θt+1
g is the parameters of a global model, and θtk is the pa-

rameters of the kth local model at a round t. For the bal-
anced updating of the global model θt+1

g , |Dk| is the num-
ber of samples on dataset Dk.

Unsupervised Contrastive Learning FL with extreme
non-i.i.d.(α = 0.0) data setting is unavailable to access
samples of the other clients. Thus, we simplify the con-
trastive loss, Lcntr = y × (1 − d(•, •̂)) + (1 − y) ×
max(0, d(•, •̂)), as follows:

Ld = 1− d(•, •̂), (2)

where d(•, •̂) is the cosine-similarity •·•̂
∥•∥·∥•̂∥ . We utilize Ld

as our positive cosine similarity loss for our unsupervised
leaning, instead of Lcntr.

Normalizing Flows Normalizing flows (NFs) [8] are the
statistical methods using the change-of-variable law of
probabilities to fit an arbitrary target density pR(r) by a
tractable base distribution with density pZ(z) and a bijec-
tive invertible mapping t−1 : RD → ZD ⇔ t : ZD → RD.
According to [33], KL-divergence and log-likelihood esti-
mation are employed to optimize the invertible flow-based
model z = t−1(r;ψ) and r = t(z;ψ) by the target distribu-
tion pR(r). The bijective invertible mapping is drawn as:
DKL[p̂R(r)∥pR(r;ψ)]
≈ −Ep̂R(r)[log pZ(t

−1(r;ψ)) + log |det jt−1 |] + cont,
(3)

where pR(r;ψ) denotes the likelihood of a model. p̂R is
the target distribution to learn the model by KL-divergence.
pR(r;ψ) only remains for learning parameters ψ, and
then is replaced by 1

N

∑N
i=1

[
∥t−1(ri)∥2

2

2 − log |det jt−1 |
]

through the training dataset Dk as explained by [11, 20].
The re-written equation is applied to our objective to esti-
mate the log-likelihood of given local data on each device.

4. Proposed Method
In this section, we propose a two-phase unsupervised

learning framework that combines unsupervised federated
learning via distillation of prototypical representations with
local classifier learning via leveraging normalizing flows.
4.1. Problem Formulation

ParticipatingK clients aim to train a global model by ag-
gregating locally-computed parameters ϕ(•, θ) for an one-
class classification task without sharing private data among



Figure 2: Overview of our proposed two-phase learning architecture. 1 ∼ 4 indicates the workflows of ProtoFL with all
the joined clients to upload parameters of each client and to download the aggregated global model, and 5 represents a local
training for the OC-NF. The details of sequences 1 ∼ 5 are described in Section 4.2. NFs denote normalizing flows.

joined clients. Each client has a training dataset DK,N =
{xk,i, 1 ≤ i ≤ N , 1 ≤ k ≤ K} and N is the cardinality
of the local data Dk,N . Let ϕ(xk,i; θk) denote the trainable
model of the kth client. In particular, we follow the extreme
non-i.i.d. (∀m,n Dm,N ∩Dn,N = ∅) data setting in our FL-
based OCC. Different from prior FL settings utilizing either
hand-designed codes or additional training datasets, we in-
vent generic representation of the local model ϕ by leverag-
ing the off-the-shelf model F and dataset S, and we employ
the flow-based model ψ for the local one-class classifier.

4.2. Sequence of procedures

As shown in Fig. 2, we describe our proposed method
workflow in each phase. 1 Whenever a new client partici-
pates in our unsupervised federated learning, all clients join
a central mediator server. 2 For the kth client, a categori-
cal image sk is chosen from S and transformed into a latent
variable vk by the central mediator server. Both 1 and 2
occur only once at the first time, and V = {vk, 1 ≤ k ≤ K}
is secretly distributed to the corresponding client. 3 We
train the kth local model θk via the local dataDk,N , the dis-
tributed prototype representation vk, cosine similarly loss,
and KL-divergence loss. 4 A global model θg is aggre-
gated with all the uploaded local models by FedAVG, and
the global model is distributed to all participating clients.
5 Once federated representation learning has finished, we
train a local one-class classifier based on normalizing flows
(OC-NF) by using maximum likelihood and cosine similar-
ity losses. We describe the details of our procedures( 1 ∼
5 ) in the following subsections.

4.3. Prototypical representation distillation based
unsupervised federated learning (ProtoFL)

We assume F : RW×H×C → RD and ϕ : RW×H×C →
RD indicate the off-the-shelf model and the local model,

respectively as illustrated in Fig. 2. For training the local
model of the kth client, we augment two views xk,i, x̂k,i
from the ith example of the local training data Dk,N , and
subsequently transform the two samples as follows:

rk,i = ϕ(xk,i; θk); r̂k,i = ϕ(x̂k,i; θk), (4)

where rk,i and r̂k,i represent latent variables of the ith ex-
ample. ϕ is the client model with kth learnable parameters
θk. Inspired by SimCLR [5], the two latent variables rk and
r̂k must be very close to each other. Given the only positive
local data and the constraint, we employ the positive cosine
similarity loss(Eq. 2) to learn the local model as follows:

Lθp(θk) =
1

N

N∑
i=1

[1− d(rk,i, r̂k,i)] , (5)

where θk is optimized by the local data Dk,N . To overcome
the small cardinality of local data for training the local rep-
resentative model, we propose the off-the-shelf model with
pre-trained parameters F(•;ω) and the off-the-shelf dataset
sk ∈ Ss. The off-the-shelf model and dataset are utilized
on a central mediator server as depicted:

vk = F(sk;ω), (6)

where sk and vk represent a prototype example and repre-
sentation for the kth client. After V = {vk, 1 ≤ k ≤ K}
is distributed to the corresponding client in secret, we train
the local model of the kth client to estimate the prototypi-
cal target representation vk. We employ the KL-divergence
to minimize the discrepancy between two distributions vk
and either rk or r̂k. Therefore, we invent the prototypical
distillation loss as follows:

Lθpd(θk) =
1

N

N∑
i=1

[KL(vk∥rk,i) +KL(vk∥r̂k,i)] , (7)
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Figure 3: Illustration of learning a global model with pro-
totypical representation distillation on distributed devices
without sharing private data among participating clients.

where KL(vk∥rk,i) and KL(vk∥r̂k,i) are equally con-
tributed to our distillation loss. Figure 3 describes the de-
tails of Eq. 5 and Eq. 7, and the overall objective of the first
phase (phase 1) is defined as follows:

Lϕ(θk) = (1− α)× Lθpd(θk) + α× Lθp(θk), (8)

where α is a balancing weight. In our experiment, α is em-
pirically set to 0.1.

4.4. Local one-class classifier via Normalizing Flows
(OC-NF)

After unsupervised federated representation learning for
the global model, we leverage a general flow-based model
for training the local one-class classifier in each client as
shown in Fig. 2. To estimate log-likelihood of transformed
latent variables rk and r̂k, we exploit Eq. 3 to learn the prob-
abilistic normalizing flows t through the local dataset Dk,N

and the local model ϕ(·; θk) on the kth client as follows:

Lψmle(ψk)

=
1

N

N∑
i=1

[
∥t−1(rk,i;ψk)∥22

2
− log |det jk,i|

]
+ cont

≈ 1

N

N∑
i=1

[
∥zk,i∥22

2
− log |det jk,i|

]
+ cont, (9)

where zk,i is the estimated distribution as it passes through
t−1(rk,i;ψk). rk,i is a latent variable from ϕ(xk,i; θ). When
optimizing the flow-based model, we ignore constants, det
and cont. Since rk,i and r̂k,i are close each other in a latent
space, zk,i and ẑk,i also predict the same distribution so that
we introduce the following objective as a regularizer:

Lψreg(ψk) =
1

N

N∑
i=1

[1− d(zk,i, ẑk,i)] , (10)

where zk,i and ẑk,i are the normal distribution estimated by
t−1((ϕ(xk,i; θk);ψk)) and t−1((ϕ(x̂k,i; θk);ψk)) respec-
tively. The overall objective of the second phase (phase 2)
is composed of Eq. 9 and Eq. 10 as follows:

Lt(ψk) = Lψmle(ψk) + λ× Lψreg(ψk), (11)

where λ is a hyper-parameter for effectiveness of regular-
ization. For our experiment, we empirically set λ to 0.01.

5. Experiments
In this section, we demonstrate the proposed approach

on image and tabular benchmarks. We evaluate the per-
formance of our proposed ProtoFL and compare our model
with the other FL methods and one-class detectors. And we
analyze the impact of new client participation in the context
of OCC on FL, as well as ablation studies on each proposed
component.

5.1. Datasets

We thoroughly evaluate our proposed method on
several benchmark datasets, including the widely used
MNIST [23], CIFAR-10 [21], CIFAR-100 [21], ImageNet-
30 [16], and Keystroke-Dynamics [19], to tackle the de-
manding task of one-class classification. Our evaluation
scrutinizes the efficacy, robustness, and scalability of our
method, highlighting its strengths in handling real-world
scenarios. In case of CIFAR-100, we adopt 20 super-class
labels, denoted by CIFAR-100‡, as suggested in [10] to
our experiments. The numbers of categories in the bench-
marks are 10, 10, 20, 30, and 51, which are the numbers of
participating clients on our federated learning. The vision
and tabular based benchmarks for OCC follow a one-vs-rest
protocol [10, 42, 43]. In the protocol, a set of samples from
one class indicates a target class for one client, whereas a
set of samples from the remaining classes represents a non-
target class for the remaining clients.

5.2. Experiment Setting

Off-the-shelf model and dataset In the central media-
tor server, the off-the-shelf dataset and model generate pro-
totypical representation when a new client participates in
our unsupervised federated learning. For the off-the-shelf
model and dataset, we exploit ArcFace [7] based ResNet-
50 backbone [14] and MS-Celeb-1M [12], respectively.

Architectures In this experiment, we employ ResNet-
18/32 backbones [14] to learn the local and global mod-
els on our proposed approach. Since batch normaliza-
tion is detrimental to the performance in federated learn-
ing [17] both ResNet-18/32 backbones replace batch- with
group-normalization. In the Keystroke Dynamics dataset,
we employ multi-layer perceptions as the local and global



Algorithm 1 Procedure of our two-phase learning

Phase 1 (ProtoFL) : Start phase 1 for T rounds.
Initialize and broadcast a global model θ0g to all joined K
clients. Send an acknowledgement (ACK) with prototypical
representation vk to the kth client.
for t← 0 to T − 1 do

θt+1
g ← GLOBAL TRAINING(t, θtg)

end for
Update the global model θg with θTg .
function GLOBAL TRAINING(t, θtg)

Randomly select k number of clients from {Ck}Kk=1.
for k ← 1 to K do

Broadcast the global model θtg to Ck.
θtk, |Dk,N | ← CLIENT TRAINING(t, k, θtg)

end for
θt+1
g ←

∑K
k=1

|Dk,N |∑K
k=1

|Dk,N |θ
t
k

return θt+1
g

end function
function CLIENT TRAINING(t, k, θtg)

Download the global model θtg , and assign it to θtk.
for xk,i ∈ DK,N do
Lϕ(θtk) = (1− α)× Lθpd(θtk) + α× Lθp(θtk)
θtk ← θtk − η∇Lϕ(θtk)

end for
Calculate the number of the kth client data Dk,N .
return θtk and |Dk,N |

end function
Phase 2 (OC-NF) : All joined clients start Algorithm 2 for
OCC.

Algorithm 2 Procedure of our OC-NF for OCC

Download the global model θg , and assign it to the kth client
model θk. Freeze the global representation model ϕ(•; θk). Ini-
tialize the flow-based model of the kth client tψk .
for xk,i ∈ Dk,N do
Lt(ψk) = Lψmle(ψk) + λ× Lψreg(ψk)
ψk ← ψk − η∇Lt(ψk)

end for

model, consisting of three linear layers, ReLU, and group-
normalization. And we utilize NFs as a local classifier
model composed of 8 coupling layers [8].

Implementation details In the first phase as described in
Algorithm 1, we train our expressive global model based on
the FedAvg [30] method with 1 local epoch and 900 com-
munication rounds, using randomly chosen clients from all
participating clients. We utilize the RAdam optimizer [26]
with betas 0.94 and 0.98, a weight decay 1e-3 and a learning
rate 1e-6 to learn local models. In the second phase as de-
scribed in Algorithm 2, we use the SGD optimizer [35] with
a learning rate 5e-3 and 5 epochs to learn our one-class clas-
sifier. Data augmentations include the set of random pro-
cesses (crop, horizontal-flip, and gaussian-blur) and color

jitter. To evaluate the performance of various methods, we
use the area under curve of ROC curve (AUROC) and equal
error rate (EER).

Method Network MNIST CIFAR-10
AUROC Round AUROC Round

FedAwS [45] ResNet-32 99.6 10K 94.1 100K
FedUV [17] ResNet-32 99.7 20K 87.2 20K
FedMetric [34] ResNet-32 99.6 10K 94.2 100K
Ours ResNet-32 99.9 0.9K 95.2 0.9K

Table 1: Performance comparison FL-based methods with
our proposed approach on MNIST and CIFAR-10 bench-
marks. Our approach outperforms both benchmarks while
reducing the communication round cost.

Type Method Network CIFAR-10 CIFAR-100‡ ImageNet-30
AUROC AUROC AUROC

Centralized
Learning

AE [27] - - - 56.0
OC-SVM [41] - 58.8 63.1 -
Geom [10] WRN-16-8 86.0 78.7 -
Rot [16] ResNet-18 89.8 77.7 77.9
GOAD [3] ResNet-18 85.1 74.5 -
DROC [42] ResNet-18 92.5 86.5 -
CSI [43] ResNet-18 94.3 86.6 91.6
FLOW† [40] ResNet-50 95.2 93.0 -

Federated
Learning

FedUV [17] ResNet-18 79.8* 55.9* 62.8*

FedRep [6] ResNet-18 58.2* 56.9* 56.3*

Ours ResNet-18 95.3 89.9 95.4

Table 2: AUROC of various centralized and decentral-
ized detection methods on CIFAR-10/100‡, and ImageNet-
30 for OCC. † and * denote the usage of a pre-trained
model learned on ImageNet-1M and the values from our re-
implementation respectively, whereas bold and underline
indicate the best results and the second results, respectively.

5.3. Experimental Results

Image and tabular benchmarks For the image bench-
marks, we present the results on MNIST and CIFAR-10
datasets for OCC in extreme non-i.i.d.(α = 0.0) data set-
ting of FL. Table 1 shows the outstanding result of not
only the significantly improved performance but also the
effective communication cost on FL methods. We found
that our proposed method exploits the off-the-shelf model
and dataset to compensate the shortage of the local data.
For updating a global model every rounds, naive FL meth-
ods [45, 17, 34] minimize the distance among the latent
variables of the local data and map the distribution of the
local data into one secure code designated. Those meth-
ods demand the inordinate communication cost and show
the limited performance due to the deficiency of the local
data on each device and the entangled secure code on latent
space. Furthermore, we compare our approach with various
centralized methods as depicted in Table 2. Our method
outperforms ResNet-18 based methods on CIFAR-10 and
ImageNet-30. In case of CIFAR-100‡, our approach places
the second-rank performance comparing with FLOW [40]
leveraging the feature extraction of a pre-trained model
learned on ImageNet-1M. Note that our proposed method
is the first rank among ResNet-18 based methods having



Type Method Network Plane Car Bird Cat Deer Dog Forg Horse Ship Truck Mean (std)

Centralized
Learning

OC-SVM [41] - 65.6 40.9 65.3 50.1 75.2 51.2 71.8 51.2 67.9 48.5 58.8 (±11.6)
DeepSVDD [37] LeNet 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1 64.8 (±7.17)
Geom [10] WRN-16-8 74.7 95.7 78.1 72.4 87.8 87.8 83.4 95.5 93.3 91.3 86.0 (±8.52)
Rot [16] WRN-16-4 77.5 96.9 87.3 80.9 92.7 90.2 90.9 96.5 95.2 93.3 90.1 (±6.52)
GOAD [3] WRN-16-4 77.2 96.7 83.3 77.7 87.8 87.8 90.0 96.1 93.8 92.0 88.2 (±6.99)
Rot [16] ResNet-18 80.4 96.4 85.9 81.1 91.3 89.6 89.9 95.9 95.0 92.6 89.8 (±5.75)
GOAD [3] ResNet-18 75.5 94.1 81.8 72.0 83.7 84.4 82.9 93.9 92.9 89.5 85.1 (±7.61)
DROC [42] ResNet-18 90.9 98.9 88.0 83.1 89.9 90.3 93.5 98.2 96.5 95.2 92.5 (±4.95)
CSI [43] ResNet-18 89.9 99.1 93.1 86.4 93.9 93.2 95.1 98.7 97.9 95.5 94.3 (±3.97)
FLOW† [40] ResNet-50 96.1 97.5 92.6 89.8 93.3 95.7 98.0 94.7 97.8 96.6 95.2 (±2.64)

Federated
Learning Ours ResNet-18 96.4 97.9 92.7 90.9 95.8 92.7 96.4 96.4 97.6 96.7 95.3 (±2.38)

Table 3: AUROC of various centralized and decentralized detection methods on CIFAR-10 for one-class classification. We
present the AUROC of each class and the mean and standard deviation (std) of AUROC for all classes. †, bold, and underline
denote the usage of a pre-trained model learned on ImageNet-1M, the best results, and the second results, respectively.
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Figure 4: Comparison to previous methods of one-class
classification on the Keystroke-Dynamics dataset. OC,
Manhattan, AE, and MLP denote Outlier Count, Euclidean
detector with Manhattan distance, Auto-Encoder, and 4-
multi layer perception, respectively, from [19]. ⊥⊤ denotes
a standard deviation.

no additional training datasets and limited computing re-
sources. Among FL methods, our proposed method accom-
plishes the consistently improved performance on the image
benchmarks.

For the tabular benchmark, we make the comparisons to
the centralized methods on the Keystroke-Dynamics dataset
for one-class classification as shown in Fig. 4. As the re-
sults, we found that our proposed method reduces EER
more than two times comparing to prior methods. Training
a foundation model as the global model is essential for the
OCC task instead of the various architectures and distance
metrics to achieve notably improved performance.

Centralized vs Federated learning As shown in Table 3,
we compare our proposed method with the centralized
learning based methods because there is no previous FL
method studying sufficiently analysis results for CIFAR-10.
Our proposed approach outperforms the previous methods
in terms of the overall mean and standard deviation because
we collaboratively train our global model to represent all
classes by the distributively-learned local models, and then

Figure 5: Analysis the scalability of our global model
learned by ProtoFL through new clients on CIFAR-100‡

dataset. Our approach modestly overcomes the other meth-
ods [6, 17, 24] in FL with extreme non-i.i.d.(α = 0.0) data.
γ and ⊥⊤ denote the number of new joined clients and a stan-
dard deviation each.

we apply our non-biased global model to transform raw data
into latent spaces for learning a local one-class classifier
in each client as shown in Fig. 5. In case of each class,
this method shows the first and second-placed performance
in 8 out of 10, whereas FLOW [40] and CSI [43] show
the first and second-placed performance in 4 and 5 out of
10, which indicates that our collaboratively learned global
model avoids over-fitting problem for each client.

Scalability of representation In this setup on CIFAR-
100‡, let γ indicate the number of new joined clients for
one-class classification, and 20− γ represent the number of
clients who participating in FL. To optimize the local clas-
sifier parameters of the new client, the new client down-
loads the global model as described in Algorithm 2. Note
that we are the first to consider the effects of joining new
clients. As presented in Fig. 5, we demonstrate the effec-
tiveness for scalability of the learned representation as our
global model through experiments and comparisons. Al-
though new clients have increased, all federated learning
methods suffer from degraded performances. However, our



Phase 1 Phase 2 CIFAR-10 CIFAR-100‡ ImageNet-30 Mean

Ours
(ProtoFL)

KDE 94.5 88.9 94.0 92.3
GDE 94.3 88.6 92.8 91.9
OC-SVM 97.1 86.9 90.8 91.6
Ours (OC-NF) 95.3 89.9 95.4 93.5

Table 4: Ablation study of various classifiers on CIFAR-
10, CIFAR-100‡, and ImageNet-30 with our representative
global model. The performance is evaluated by AUROC.

Phase 1 Phase 2 CIFAR-100‡ ImageNet-30
Method

Lθpd Lθp Lψmle Lψreg AUROC AUROC
Ours w/o Lθpd, L

ψ
reg ✓ ✓ 48.9 50.2

Ours w/o Lθp, L
ψ
reg ✓ ✓ 87.0 91.1

Ours w/o Lψreg ✓ ✓ ✓ 89.6 94.4
Ours ✓ ✓ ✓ ✓ 89.9 95.4

Table 5: Ablation study on CIFAR-100‡ and ImageNet-30
to evaluate each component in the individual phase.

proposed method shows more scalability with respect to
a new joiner than the others [17, 6, 24]. In addition, Fe-
dRep [6] and LG-FedAvg [24] are meaningless to support
new clients. Thus, our method presents an novel property
validating new joiners performance in FL.

5.4. Ablation Studies

We conducted ablation studies on CIFAR-10/100‡ and
ImageNet-30 (a)to verify the phase 1 and the phase 2, (b)to
explore the contribution of each component in our method,
and (c)to investigate the effectiveness of the off-the-shelf
model in respect of the various off-the-shelf datasets.

Analyses of our global- and classifier- model With fixed
our global model learned by joined clients in advance, we
compared our proposed local one-class classifier via nor-
malizing flows (OC-NF) with the prior one-class classifiers
for the usability of the global model. As shown in Table 4,
we observed the superiority of the global model and the lo-
cal classifier either each or both comparing to the previous
detectors [4, 41] non-parametric kernel density estimation,
parametric gaussian density estimation, and one-class SVM
(KDE, GDE, and OC-SVM).

Analyses of each component To analyze the effect of our
proposed objective for each phase, we separated the repre-
sentation objective of the phase 1 into distilling loss Lθpd
and similarity loss Lθp, and the classification objective of
the phase 2 into maximum likelihood Lψmle and regular-
izer Lψreg to show the importance in Table 5. Thus, we
confirmed that each of them is the essential terms for the
improving performance, and also observed the best results
when all of them were used on CIFAR-100‡ and ImageNet-
30. In case of ImageNet-30, the improved performance
indicates the effectiveness of this regularizer. As shown
in Fig. 6, we found that our representative global model,
trained without this distilling loss Lθpd, leads the drastically
impoverished representation.

Figure 6: Visualization of latent-features using t-sne for our
global model learned (Phase 1) with either each component
or all. Score in each figure denote the silhouette values [36].
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Figure 7: Left : Each score denotes cosine similarity Sc be-
tween the various off-the-shelf datasets and models. Right
: Performance comparison among the various global mod-
els whose off-the-shelf model is different. C and I denote
CIFAR and ImageNet.

Analyses of distilling representation With the FL set-
ting, we employ cosine similarity Sc as a criterion for se-
lecting the off-the-shelf models as shown in left of Fig. 7,
and evaluated the performance based on various Sc on all
the benchmarks as shown in right of Fig. 7. Our proposed
ProtoFL achieves the significantly improved performance
comparing to FedUV since the ProtoFL is robust to the in-
creased clients for one-class classification, and the results
show that lower Sc indicate more discriminative features.
Note, distributing the prototypical representation in secure
is important to overcome the shortage of training data, lim-
ited round communications, and greater number of clients.

6. Conclusion

We proposed ProtoFL, a method for achieving effective
round cost and scalability representation in extreme non-
i.i.d. data based FL. By utilizing an off-the-shelf model
and dataset to distribute prototypical independent represen-
tations, we were able to learn a global model with all joined
clients and optimize the flow-based classifier of each client.
Our proposed method outperforms FL methods with effi-
cient communication cost and presents a novel property of
scalability of representation, validating new joiners’ perfor-
mance in FL. We believe that our method and experimental
details could be adapted to handle further problems in both
federated and centralized learning based one-class classifi-
cation.
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