
StageInteractor: Query-based Object Detector with Cross-stage Interaction

Yao Teng1 Haisong Liu1 Sheng Guo3 Limin Wang1,2,�

1State Key Laboratory for Novel Software Technology, Nanjing University, China
2Shanghai AI Lab, China 3MYbank, Ant Group, China

Abstract

Previous object detectors make predictions based on
dense grid points or numerous preset anchors. Most of
these detectors are trained with one-to-many label assign-
ment strategies. On the contrary, recent query-based ob-
ject detectors are based a sparse set of learnable queries
refined by a series of decoder layers. The one-to-one la-
bel assignment is independently applied on each layer for
deep supervision during training. Despite the great success
of query-based object detection, however, this vanilla one-
to-one label assignment strategy requires the detectors to
have strong fine-grained discrimination and modeling ca-
pacity. In this paper, we propose a new query-based object
detector with cross-stage interaction, coined as StageInter-
actor. During the forward pass, we come up with an effi-
cient way to improve this modeling ability by reusing dy-
namic operators with lightweight adapters. As for the label
assignment, a cross-stage label assigner is designed to im-
prove the one-to-one label assignment. With this assigner,
the training target class labels are gathered across stages
and then reallocated to proper predictions at each decoder
layer. On MS COCO benchmark, our model improves the
baseline counterpart by 2.2 AP, and achieves a 44.8 AP
with ResNet-50 as backbone, 100 queries and 12 training
epochs. With longer training time and 300 queries, StageIn-
teractor achieves 51.3 AP and 52.7 AP with ResNeXt-101-
DCN and Swin-S, respectively. The code and models are
made available at https://github.com/MCG-NJU/
StageInteractor.

1. Introduction

Object detection is a fundamental task in computer
vision and acts as a cornerstone for many downstream
tasks [50, 10]. It aims to localize and categorize all ob-
ject instances in an image. Over the past few decades,
dense spatial prior has been widely applied in various de-
tectors. These detectors make predictions based on either

�: Corresponding author (lmwang@nju.edu.cn).

Figure 1: Convergence curves of our model and other
query-based object detectors [4, 71, 48, 17] with ResNet-
50 [23] on MS COCO [33] minival set.

a large quantity of pre-defined anchors covering the whole
image [20, 43, 3, 35, 32, 42] or dense grid points in the fea-
ture map of this image [28, 15, 68, 51, 41, 60]. To deliver
supervision signals to these detectors, most works employ
the one-to-many label assignment strategy [65, 69, 27, 19,
18, 62] (i.e., the classification label and localization target of
one ground-truth object could be assigned to multiple object
predictions). Although this paradigm is widely used in ob-
ject detection, it suffers from redundant and near-duplicate
predictions due to such label assignment [47], and thus re-
lies heavily on specific post-processing algorithms for du-
plicate removal [2, 25, 24].

Recently, DETR [4] and its variants [71, 48, 17, 8, 34, 16,
39, 9] open a new area of object detection. These query-
based object detectors get rid of the dense prior and view
object detection as a set prediction problem. Specifically,
they use a sparse set of queries (i.e., learnable embeddings)
to progressively capture the characteristics and location of
objects with the help of a series of decoder layers. In each
layer, image features are sampled and fused into the in-
put queries via attention-like operation [54, 71] or dynamic
mixing [48, 17]. Then, the transformed queries are decoded
into object predictions and also serve as the inputs of next
layer. As for the training of this paradigm, a kind of one-to-

ar
X

iv
:2

30
4.

04
97

8v
2

 [
cs

.C
V

]
 1

5
Ja

n
20

24

https://github.com/MCG-NJU/StageInteractor
https://github.com/MCG-NJU/StageInteractor

…

Stage1

Neg.

GT Pos.

Stage6

Neg.
GT

Pos.

Query
1

Query
2

(a) Bipartite matching

Stage1

Pos.

GT Pos.

…

(b) Ours

Cross-stage Label Assigner

Figure 2: The results of label assignment at various stages.
The green box denotes the ground-truth object Person.
The red and white boxes denote object prediction derived
from two different queries. Pos and Neg denote the posi-
tive sample and the negative sample, respectively. (a) The
white box is assigned with the ground-truth object Person
by bipartite matching at the first stage, while the red box is
not. But the opposite is true for the sixth stage. (b) With our
cross-stage label assigner, the red box in the first stage can
be assigned with the ground-truth Person.

one label assignment (i.e., each ground-truth object has to
be assigned with only one prediction), termed as bipartite
matching, is independently adopted on each decoder layer
for deep supervision [64, 1, 29]. For inference, only the
high-confidence outputs from the last layer are taken for
evaluation.

However, this one-to-one label assignment requires the
detectors to have strong fine-grained discrimination and
modeling capacity. On one hand, this strict bipartite match-
ing would ask the detector to capture details to distinguish
the predictions. For example, as shown in Fig. 2a, although
the predicted boxes of a query (colored in red) cover most
of the ground-truth object (Person) at each decoder layer,
this object is assigned to the boxes of different queries at dif-
ferent stages (Stage1, white box; Stage6, red box). In
other words, only one of the predicted boxes (red or white)
can become the positive sample at each stage. To distin-
guish these boxes, the detector needs strong fine-grained
discriminability to extract high-quality features from the
image. Unfortunately, this goal is hard to be fully accom-
plished. As a result, we are motivated to directly modify
the supervision of each decoder layer, i.e., introducing ad-
ditional supervision from other stages to assist the training
of this layer, shown in Fig. 2b. In addition, the large mod-
eling capacity is vital to the fine-grained discrimination. To
efficiently improve this modeling ability, we resort to adding
lightweight modules and reusing heavy dynamic operators
in decoder layers.

Based on the above analysis, in this paper, we present a
new paradigm, i.e., query-based object detector with cross-
stage interaction, coined as StageInteractor. This interac-

tion of our method lies in two aspects: cross-stage label as-
signment and cross-stage dynamic filter reuse. Specifically,
during the label assignment, a cross-stage label assigner is
applied subsequent to the vanilla bipartite matching in each
decoder layer. This assigner collects the results of bipar-
tite matching across stages, and then reallocate proper train-
ing target labels for each object prediction according to the
query index and a score. As for the forward pass, in each
decoder layer, we reuse the heavy dynamic operators in pre-
ceding stages and add lightweight modules to increase the
modeling capacity at a relatively low cost.

Experiments show that our model with ResNet-50 [23]
as backbone can achieve 44.8 AP on MS COCO validation
set under the simple setting of 100 queries, with 27.5 APs,
48.0 APm and 61.3 APl on small, medium and large ob-
ject detection, respectively. Equipped with 3× training
time, 300 queries and more data augmentation in line with
other query-based detectors, our model can achieve 49.9
AP, 51.3 AP, and 52.7 AP with ResNet-101, ResNeXt-101-
DCN [58, 70], and Swin-S [36] as backbones, under the
setting of single scale and single model testing. Our model
significantly outperforms the previous methods, as shown
in Fig. 1, and it has become a new state-of-the-art query-
based object detector.

2. Related Work
DETR [4] is an end-to-end query-based object detector

without hand-crafted designs such as preset anchors and
non-maximum suppression (NMS), but it suffers from many
problems, such as slow training convergence and unstable
label assignment. To handle these challenges, a large quan-
tity of works have been proposed. In this part, we divide
these methods into two categories: modification of archi-
tectures and improvement of training procedures.

Architecture. The vanilla DETR took a transformer
encoder-decoder architecture [54] as the detection head,
and used a set of object queries, content vectors, to en-
code the priors of object detection datasets. In De-
formable DETR [71], the attention operator [54] was re-
placed with multi-scale deformable attention module, and
iterative bounding box refinement and a two-stage design
which enables the detector to adaptively generate queries
with a dense prior were also introduced. In Sparse R-
CNN [48], object query is decoupled into a content vector
and an explicit bounding box, and image features are pro-
gressively aggregated into content vectors by ROIAlign [22]
with these boxes and dynamic convolution. Moreover,
Sparse R-CNN is only a decoder architecture without any
transformer encoder. There were also many works like
Conditional DETR [38], DAB-DETR [34], SMCA [16]
and REGO [9] studying how to introduce spatial priors for
proper features to accelerate convergence. Adamixer [17]
improved Sparse R-CNN via deformable operators and spa-

2. Bipartite Matching

T T +T T…T …

3. Cross-stage
Label Assignment

1. Cross-stage
Dynamic Filter Reuse

PredictionsΦ Φ +Φ Φ…Φ …Queries

Image Features

4. Supervision

Dec. LayerΦ

Target SetT

Cross-stage Dynamic Filter Reuse

Φ

DyMix

Filters

Filters

Features DyMix

Cross-stage Label Assignment

T
Targets Targets Targets

Supervision

Gather and
Select

Adapter AdapterFilters Queries

DyMix

Figure 3: Overview. The cross-stage interaction incorporates two parts: cross-stage label assignment and cross-stage dy-
namic filter reuse. During the forward propagation, dynamic filters in each stage of decode layer are reused in the subsequent
stages, i.e., we stack them with specific lightweight adapters to increase the depth of each decoder layer. As for the label
assignment, our cross-stage label assigner gathers the results of bipartite matching across stages, and then selects proper
target labels as supervision.

tial dynamic convolution to increase the adaptability. There
were also works like DDQ [66] which combines the dense
and sparse queries to guarantee high recall. In this paper,
we improve query-based object detector from a new per-
spective of the scalability [67, 46, 55] of the decoder, i.e.,
we reuse dynamic operators among decoder layers to cap-
ture more diverse and complex representations.

Training Procedure. In vanilla DETR, a set prediction
loss [4] is adopted for training. Recently, many papers have
analyzed how to accelerate the convergence of DETR via
improved training procedures. To verify whether the insta-
bility of Hungarian loss slow down the convergence, Sun et
al. [49] utilized a matching distillation with a pre-trained
DETR providing label assignment to train another model,
and they found this instability only influenced the conver-
gence in the early few epochs. DN-DETR [30] presented a
denoising training strategy where a set of additional noised
ground-truth objects were passed through the decoder to re-
construct the corresponding raw objects. DINO-DETR [63]
improved DN-DETR via contrastive denoising training for
hard negative samples. Group DETR [6] introduced mul-
tiple groups of object queries for the global one-to-many
label assignment during training, but maintained one-to-
one label assignment in each group, and thus Group DETR
could achieve the ability of duplicate removal with one
group of queries. Hybrid Matching [26] was also proposed
to combine one-to-one and one-to-many label assignment
into one query-based object detector with a large number
of queries, and it had three types of implementations: hy-
brid branch scheme (one-to-many matching for one group
of queries, one-to-one matching for another), hybrid epoch
scheme (one-to-many matching in early epochs, one-to-one
matching in late epochs) and hybrid layer scheme (one-to-
many matching in early layers, one-to-one in late layers).
Different from the previous methods, in this paper, we fo-
cus on the calibration of label assignment without adding
additional queries. We collect training target labels across
stages by a cross-stage label assigner, and then select proper
targets to act as the supervision of each object prediction.

3. Proposed Approach

In this paper, we focus on the cross-stage interaction in
query-based object detectors because it can well mitigate
the misalignment between the decoders and supervisions in
an object detector. We first revisit the state-of-the-art query-
based object detectors, especially AdaMixer [17], and then
elaborate on our proposed cross-stage interaction.

3.1. Preliminary on query-based object detectors

Generally, the architecture of query-based object detec-
tors is composed by four parts: object queries, a backbone,
a series of encoders and decoders. Distinctively, Adamixer
removes the encoders and still maintains the desired perfor-
mance. As shown in Fig. 4, it consists of object queries, a
backbone and a series of decoders.

Object Query. The initial object queries is just a set of
learnable embeddings. Recent object detectors [34, 48, 17]
decompose them into content vectors and positional vec-
tors. The content vector is a vector v ∈ RD. The positional
vector is presented in the format of box coordinates. For
example, in AdaMixer, it contains the information about the
center point, scale and aspect ratio of an individual box.

Decoder Layer. In a query-based detector, the de-
coder layers are stacked multiple times to form a cascade
structure. Each decoder layer is generally composed of
three components: a multi-head self-attention (MHSA),
a dynamic interaction module, and feed-forward net-
works (FFNs). DETR-like models use the multi-head cross-
attention for the dynamic interaction, while AdaMixer
adopts a feature sampler and a dynamic mixing module, as
shown in Fig. 4. The object queries are sequentially passed
through these modules. Specifically, the queries are first
processed by the multi-head self-attention module. Then,
its outputs, the updated content vectors, together with the
positional vectors are fed into the feature sampler. In this
sampler, each query is allocated with a unique group of re-
gional multi-scale image features, i.e., sampled features, by
using the queries and bilinear interpolation. Subsequently,

Position
Embedding

Ba
ck

bo
ne

4x
8x

16x
32x

Positional Vector

Content Vector MHSA Adaptive
Mixing

Feature
Sampling

FFN

Class

Object Queries Updated Object Queries

Sampled
featuresN

Multi-scale
features

Box

Content Vector

Positional Vector

FFN

x
y

z

Update

Decoder Layer
Offsets generation

L

Filter
generation

Figure 4: Overview of AdaMixer.

the adaptive mixing is performed on the sampled features
with dynamic filters generated from the content vectors. Its
outputs are aggregated into the vectors. Last, by means of
FFNs, the queries updated by these modules can be decoded
into object predictions, i.e., the relative scaling and offsets
to the positional vectors (bounding boxes), and the classifi-
cation score vectors. These updated queries also serve as in-
puts of the next stage. Note that any query has and only has
one corresponding prediction in every decoder layer. Thus,
we simply represent the predictions derived from the same
initial query with one index, i.e., the query index.

Training and testing. In each decoder layer of a query-
based detector, a bipartite matching is directly adopted on
the ground-truth objects and the predictions. After some
predictions match the ground-truth, these predictions are
deemed as positive samples (assigned with foreground clas-
sification labels and supervision for localization) while oth-
ers are the negative (assigned with the background label).
Focal loss [32] serves as the classification loss and GIoU
loss [44] with ℓ1 loss acts as the localization loss. During
inference, only the outputs with high confidence from the
last layer are used for evaluation.

3.2. Cross-stage Label Assignment

To mitigate the training difficulty caused by bipartite
matching in query-based object detectors, we propose a new
cross-stage label assigner to modify the results of the pre-
ceding bipartite matching. As depicted in Fig. 3, our as-
signer first gathers these assignments across the stages (i.e.,
decoder layers), and then selects appropriate training target
class labels for each prediction.

When gathering training targets, the cross-stage label
assigner forces each prediction to only access the tar-
gets of predictions sharing the same query index (defined
in Sec. 3.1) with it. The motivation behind this con-
straint is that the supervision of a single query may vary
across stages, even though its predicted boxes across stages
continuously cover the same ground-truth object, shown
in Fig. 2a. To alleviate this inconsistency for each query, we
leverage its assigned targets provided by bipartite matching
from multiple stages. When introducing targets, we use a

(a) Given a stage i, we enumerate other decoder layers whose
indexes are denoted as j, and select their assigned targets as the
supervision for the stage i according to Eq. (1).

(b) The elements in each candidate set are formed into the final
supervision.

Figure 5: The process of our cross-stage label assignment.

score to determine whether a match between a target and a
prediction is suitable to be shared across stages.

Algorithm. Thanks to Focal loss [32] with binary
cross entropy loss in prevailing query-based object detec-
tors [17, 48, 30, 63], the multi-class classification task can
be viewed as the binary classification on each category, and
there is no need to consider a separate background category
when training. More importantly, our cross-stage label as-
signment can be conducted on each category independently.
The specific algorithm is as follows:

Our cross-stage label assignment is performed between
two stages with one type of condition. First, as shown
in Fig. 5a, given a stage i and its predictions {pi1, ..., piN},
we traverse other stages with indexes in the range [αi, βi].
Taking the stage j as an example, we obtain its predictions
{pj1, ..., p

j
N}. Second, we also create an empty candidate

bag for each prediction of the stage i. We perform bipar-
tite matching between the predictions of the stage j and the
ground-truth objects. Since this matching is an one-to-one

Method AP AP50 AP75

Baseline 43.0 61.5 46.1
Hybrid Layer† 41.8 (-1.2) 60.5 (-1.0) 44.7 (-1.4)
Ours 44.8 (+1.8) 63.0 (+1.5) 48.4 (+2.3)

Table 1: We reproduce (†) the hybrid matching scheme [26],
and compare it with our cross-stage label assigner with 100
queries.

label assignment, each ground-truth object corresponds to a
prediction with a specific query index at the stage j. Third,
we align the predictions from these two stages according to
the query indexes, and thus each ground-truth object also
corresponds to a candidate bag. We then select the train-
ing targets from the stage j as the candidate supervisions
according to the condition:

ϑi

(
q, t

)
≥ ηi, (1)

where ϑi

(
q, t

)
denotes a score between the query q and the

ground-truth object t at the stage i. Here, the object t needs
to be assigned to query q at stage Φj by the bipartite match-
ing. ηi denotes a threshold. In practice, we follow the clas-
sical setting [43], where the IoU as the score and the thresh-
old is set as 0.5. Thus, if the IoU is satisfied, the ground-
truth objects are added to the corresponding candidate bags.
Finally, after traversing all the stages in the range [αi, βi],
we use the updated candidate bags to provide supervision
for the stage i. As shown in Figure 5b, we convert the la-
bels in each candidate bag into one-hot vectors, and then
merge them into one vector. The resulting vector serves as
classification supervision through the binary cross entropy
loss (Focal loss [32] in practice).

Discussion. Although our label assignment seems to
have something in common with existing works like TSP-
RCNN [49] and Hybrid Layer Matching [26], the discrep-
ancy between their design and ours cannot be ignored:
(1) in TSP-RCNN, first, the idea from Faster-R-CNN [43]
is directly borrowed into the set prediction problem (i.e.,
a ground-truth object is only assigned to the proposal that
shares an IoU score greater than 0.5 with it). TSP-RCNN
adopts such strategy for both the classification and local-
ization. Differently, we can apply it only for the classifi-
cation task, shown as Tab. 12. Second, TSP-RCNN adopts
such strategy with dense proposals for both the classifica-
tion and localization. Differently, we apply it with sparse
queries. (2) for Hybrid Layer Matching, ground-truth ob-
jects are simply replicated in the first four stages, and then
a bipartite matching is conducted. Differently, we do not
modify the set of ground-truth objects. We gather results
of the bipartite matching across stages, and then only select
some targets as supervision. Also, we observe that Hybrid
Layer Matching is incompatible with the models given few

Cascade Mixing

Mixing

Filter Adapter

Li
ne

ar

ReLU

LN

: Original Mixing
: Filter Reusing

Sampled
features

channels

po
in

ts

Storing

Previous Filters

Mixing

Linear
Dynamic
Filter

Filter
Bank

Content
Vector

Mixed
features

LN

ReLU

Figure 6: The dynamic mixing with filter reusing on sam-
pled features. The content vectors dynamically generate
filters through linear layers. These filters are used for mix-
ing on sampled features, and then are stored into a dynamic
filter bank for subsequent stages. Previous filters stored in
the bank are also reused for mixing.

queries. In Tab. 1, we implement it with the basic setting
of our detector with 100 queries. The results show that it is
totally infeasible under such a circumstance. In a nutshell,
our approach is greatly different from these methods.

3.3. Cross-stage Dynamic Filter Reuse

The model capacity is essential for neural networks to
capture complex representations [46, 67]. Since one of the
major characteristics shared by query-based detectors is a
series of decoder layers, we resort to modifying the decoder
to improve this capacity.

A straightforward way of this modification is adding the
attention-like operators. The prevailing DETR-like detec-
tors [34, 30, 63] perform deformable cross-attention [71]
once along the spatial dimension in each stage, so directly
adding this attention is feasible. By contrast, other detec-
tors [48, 17] like AdaMixer perform more than one dynamic
mixing at each stage, and they require a huge number of pa-
rameters [56] to generate the corresponding dynamic filters.
Taking the channel mixing as an example, in each decoder
layer, the specific process of generating a filter is as follows:

Mi = W
(i)
0 +

D∑
d=1

W
(i)
d vi,q,d ∈ RDC×DC , (2)

where vi,q,d denotes the d-th element of the content vec-
tor of query q at the stage i, W(i)

d ∈ RDC×DC denotes a
learnable weight matrix, and the number of such matrices
in a stage is D, DC denotes the channel dimension of the
input features, and Mi serves as the kernel for channel mix-
ing (1 × 1 convolution) [52]. Only the parameters used to
generate a single filter have already been more than D×D2

C .
Thereby, it is impractical to directly stack more decoders
given limited resources. Fortunately, there are a large quan-
tity of disposable dynamic filters in these cascade decoder

layers, so these operators have the potential to be reused
with lightweight modules across stages.

As depicted in Fig. 6, we propose a cascade dynamic
mixing module with a filter bank as an extension of the orig-
inal channel mixing. The filters generated in each stage are
stored in the filter bank for future use. Given a stage, the
filter adapters update these stored filters with the ones from
the current stage. In each adapter, the process of updating
filters is as follows:

w
(1)
j = σ

(
W

(1)
j vi,q

)
∈ RDC ,w

(2)
j = σ

(
W

(2)
j vi,q

)
∈ RDC ,

M′
j,i =

(
w

(1)
j ·w(2)

j

⊤)
⊙Mj +

(
1−w

(1)
j ·w(2)

j

⊤)
⊙Mi,

(3)
where 1 denotes an all-ones matrix, W

(1)
j ,W

(2)
j denote

learnable weights, σ(·) denotes the sigmoid function, ⊙ de-
notes the element-wise product, Mj denotes a previous fil-
ter, j ∈ [γi, i), γi is a lower bound, M′

j,i is used for sub-
sequent modules, and the number of these updated filters is
∆γi = i − γi. We empirically find more filters can lead to
more performance gain, so ∆γi = i − 1 is the best choice.
Note that this adapter only costs 2D2

C parameters, which
is more lightweight than the process of generating a filter
from scratch as Eq. (2). Then, the updated filters are used
in the cascade dynamic mixing. In this structure, since each
dynamic mixing is followed by a layer normalization with
an activation function, we insert a lightweight linear layer
between every two dynamic mixing, consistent with [23].

Moreover, we can modify the original spatial mixing
with the dynamic filter reusing. Unlike the channel mix-
ing, the original dynamic spatial mixing costs a lot of com-
putational resources on its ouput features due to its expan-
sion [45] on spatial dimension. To tackle this problem, we
also adopt the bank to store the filters generated for spatial
mixing. Then, in each decoder layer, we update these filters
with adapters and concatenate them with the current filter
along the output dimension. This new filter is used to per-
form spatial mixing only once, rather than iteratively. This
approach allows us to reduce the parameters of the filter
generator of the spatial mixing, i.e., we employ the filters
from preceding stages to replace a proportion of the filter
from the current layer.

4. Experiments

4.1. Implementation Details

The experiments are performed on the MS COCO [33]
object detection dataset, where the train2017 split and the
val2017 split are for training and testing. All of our ex-
periments on AdaMixer are based on mmdetection code-
base [5]. The experiments on DN-DETR and DINO are
based on DETREX codebase [13]. The convolutional neu-
ral networks [23, 59] or vision trasnformers [21, 36, 14] can
be taken as the backbone network. 8 RTX 2080ti with 11G

detector AP AP50 AP75 APs APm APl

FCOS [51] 38.7 57.4 41.8 22.9 42.5 50.1
Cascade R-CNN [3] 40.4 58.9 44.1 22.8 43.7 54.0
GFocalV2 [31] 41.1 58.8 44.9 23.5 44.9 53.3
BorderDet [40] 41.4 59.4 44.5 23.6 45.1 54.6
Dynamic Head [12] 42.6 60.1 46.4 26.1 46.8 56.0
DETR [4] 20.0 36.2 19.3 6.0 20.5 32.2
Deform-DETR [71] 35.1 53.6 37.7 18.2 38.5 48.7
Sparse R-CNN [48] 37.9 56.0 40.5 20.7 40.0 53.5
AdaMixer [17] 42.7 61.5 45.9 24.7 45.4 59.2
AdaMixer† [17] 45.0 64.2 48.6 27.9 47.8 61.1

StageInteractor 44.8 63.0 48.4 27.5 48.0 61.3
StageInteractor† 46.9 65.2 51.1 30.0 49.7 62.3

Table 2: 1× training scheme (12 epochs) performance of
various detectors on COCO minival set with ResNet-50.
100 object queries is the default setting in our method. †
denotes 500 queries.

Figure 7: The instability of the assigned labels.

GPU memory are enough to train our model with ResNet-
50 and 100 queries. For larger backbones or more queries,
we resort to 8 V100 with 32G. The cross-stage label assign-
ment is applied on each decoder layer. The reuse of spa-
tial dynamic filters do not perform on the first two decoder
layers. The weighted sum of these losses are for training,
and the loss weights are in line with those of AdaMixer in
mmdetection codebase [5] and those of DETRs in DETREX
codebase [13]. AdamW [37] is taken as the optimizer.

4.2. Comparison to State-of-the-Art Detectors

Our model significantly outperforms the previous meth-
ods, shown in Fig. 1, and it has become a new state-of-
the-art query-based object detector. As shown in Tab. 2,
with 1× training scheme and ResNet-50 [23] as back-
bone, our detector outperforms various methods on COCO
minival set [33] with even with 100 queries. Our model
with ResNet-50 as backbone can achieve 44.8 AP on MS
COCO validation set under the basic setting of 100 object
queries, with 27.5 APs, 48.0 APm and 61.3 APl on small,
medium and large object detection, respectively. When

Detector Backbone Encoder/FPN Epochs AP AP50 AP75 APs APm APl

DETR [4] ResNet-50-DC5 TransformerEnc 500 43.3 63.1 45.9 22.5 47.3 61.1
SMCA [16] ResNet-50 TransformerEnc 50 43.7 63.6 47.2 24.2 47.0 60.4
Deformable DETR [71] ResNet-50 DeformTransEnc 50 43.8 62.6 47.7 26.4 47.1 58.0
Anchor DETR [57] ResNet-50-DC5 DecoupTransEnc 50 44.2 64.7 47.5 24.7 48.2 60.6
Efficient DETR [61] ResNet-50 DeformTransEnc 36 45.1 63.1 49.1 28.3 48.4 59.0
Conditional DETR [38] ResNet-50-DC5 TransformerEnc 108 45.1 65.4 48.5 25.3 49.0 62.2
Sparse R-CNN [48] ResNet-50 FPN 36 45.0 63.4 48.2 26.9 47.2 59.5
REGO [9] ResNet-50 DeformTransEnc 50 47.6 66.8 51.6 29.6 50.6 62.3
DAB-D-DETR [34] ResNet-50 DeformTransEnc 50 46.8 66.0 50.4 29.1 49.8 62.3
DN-DAB-D-DETR [30] ResNet-50 DeformTransEnc 12 43.4 61.9 47.2 24.8 46.8 59.4
DN-DAB-D-DETR [30] ResNet-50 DeformTransEnc 50 48.6 67.4 52.7 31.0 52.0 63.7
AdaMixer [17] ResNet-50 - 12 44.1 63.1 47.8 29.5 47.0 58.8
AdaMixer [17] ResNet-50 - 24 46.7 65.9 50.5 29.7 49.7 61.5
AdaMixer [17] ResNet-50 - 36 47.0 66.0 51.1 30.1 50.2 61.8
StageInteractor ResNet-50 - 12 46.3 64.3 50.6 29.8 49.6 60.8
StageInteractor ResNet-50 - 24 48.3 66.6 52.9 31.7 51.4 63.3
StageInteractor ResNet-50 - 36 48.9 67.4 53.4 31.7 51.8 64.3
StageInteractor∗ ResNet-50 - 36 50.8 66.8 55.9 34.0 54.6 66.2

DETR [4] ResNet-101-DC5 TransformerEnc 500 44.9 64.7 47.7 23.7 49.5 62.3
SMCA [16] ResNet-101 TransformerEnc 50 44.4 65.2 48.0 24.3 48.5 61.0
Efficient DETR [61] ResNet-101 DeformTransEnc 36 45.7 64.1 49.5 28.2 49.1 60.2
Conditional DETR [38] ResNet-101-DC5 TransformerEnc 108 45.9 66.8 49.5 27.2 50.3 63.3
Sparse R-CNN [48] ResNet-101 FPN 36 46.4 64.6 49.5 28.3 48.3 61.6
REGO [9] ResNet-101 DeformTransEnc 50 48.5 67.0 52.4 29.5 52.0 64.4
AdaMixer [17] ResNet-101 - 36 48.0 67.0 52.4 30.0 51.2 63.7
StageInteractor ResNet-101 - 36 49.9 68.6 54.6 33.0 53.6 65.4

REGO [9] ResNeXt-101 DeformTransEnc 50 49.1 67.5 53.1 30.0 52.6 65.0
AdaMixer [17] ResNeXt-101-DCN - 36 49.5 68.9 53.9 31.3 52.3 66.3
StageInteractor ResNeXt-101-DCN - 36 51.3 70.2 56.0 33.2 54.6 66.9

AdaMixer [17] Swin-S - 36 51.3 71.2 55.7 34.2 54.6 67.3
StageInteractor Swin-S - 36 52.7 71.7 57.7 36.1 56.2 67.7

Table 3: The performance of various query-based detectors on MS COCO minival set with longer training scheme and
single scale testing. The number of queries defaults to 300 in our method. ∗ denotes 900 queries with more sampling points.

equppied with 500 queries, our detector performs better,
and it can achieve 46.9 AP. As depicted in Tab. 3, equipped
with 3× training time, 300 queries and more data augmen-
tation in line with other query-based object detectors, our
model can achieve 48.9 AP, 49.9 AP, 51.3 AP, and 52.7 AP
with ResNet-50, ResNet-101, ResNeXt-101-DCN [58, 70],
and Swin-S [36] as backbones, under the setting of single
scale and single model testing. Moreover, if we extend
the quantity of queries into 900 and use tricks (i.e., adding
more sampling points at each stage), our model can achieve
50.8 AP with ResNet-50.

More importantly, our designs can be applied on DETR-
like detectors such as DN-DETR [30] and DINO [63]. Un-
like the cross-stage label assignment, our cross-stage filter
reuse is tailored for AdaMixer [17]. To achieve larger model

capacity, we opt to simply double the cross-attention be-
cause this attention-like operation is more lightweight than
the dynamic mixing. In Tab. 4, our designs yield more than
+0.5AP for all detectors. To verify the effectiveness of our
cross-stage label assignment on the larger backbones, we
use DINO with Swin-B [36] for experiments. As shown
in Tab. 5, our cross-stage label assignment can still yield
+0.4AP on DINO with Swin-B as backbone with 12 epochs.

To find the reason for the lower performance gain on DE-
TRs than that on AdaMixer, we present the instability of
assigned labels (i.e., the probability of a ground-truth ob-
ject transferring from one query to another across stages) as
curves in Fig. 7. This figure shows that Deformable-DETR
is more stable, and we attribute this to its powerful trans-
former encoder which provides high-quality features for the

Detector Epoch AP AP50 AP75

DINO [63] 12 49.2 66.9 53.7
DINO + CSLA 12 49.7 67.0 54.1
DINO + CSLA + DCA 12 50.0 67.4 54.9

DINO [63] 24 50.6 68.5 55.5
DINO + CSLA 24 51.0 68.7 55.6
DINO + CSLA + DCA 24 51.3 69.2 56.1

Deform-DETR [71] 50 46.1 64.9 49.9
Deform-DETR + CSLA 50 46.8 65.0 50.9

DN-DETR [30] 50 44.7 65.3 47.6
DN-DETR + CSLA 50 45.5 65.3 49.0

H-DETR [26] 12 48.6 66.3 53.2
H-DETR + CSLA 12 49.2 66.3 53.7

Table 4: The performance of DINO [63] on MS COCO
minival set with ResNet-50. CSLA: cross-stage label as-
signment. DCA: dual cross-attention.

Detector Backbone AP AP50 AP75

DINO [63] Swin-B 55.8 74.4 60.7
DINO [63] + CSLA Swin-B 56.2 74.7 61.3

Table 5: Cross-stage label assignment on DINO [63] with
Swin-B [36] as backbone.

decoder.

4.3. Ablation Studies

Because the computational resource is limited, ResNet-
50 is employed as our backbone network, the number of
queries is set as 100, and 1× training scheme is used for our
ablation studies. Due to the simplicity, we adopt AdaMixer
as the baseline for ablation studies.

The effectiveness of our proposed modules. In Tab. 6,
we conduct experiments to verify the effectiveness of our
proposed modules. The results show that our modules lead
to +2.2 AP gain, and each of them boosts the performance.

The components of our label assigner. We verify how
the components of our cross-stage label assigner influences
the performance in Tab. 7. In the first two lines, the results
show that directly adding more supervisions based on the
query index only brings marginal gains. According to the
last two lines, we find that while using scores like IoU can
boost the performance, using both IoU and the cross-stage
labels leads to better results.

The number of reused spatial filters. We explore the
effectiveness of reusing spatial filters and the results are
in Tab. 8. We find a certain number of reused filters can
bring a slight performance gain. This may result from the
easier optimization brought by the fewer model parameters.

CSLA Reuse AP AP50 AP75 APs APm APl

42.6 61.4 45.7 24.4 45.7 58.2
✓ 43.0 61.5 46.1 25.0 45.7 59.1

✓ 44.1 62.3 47.6 25.5 47.5 60.3
✓ ✓ 44.8 63.0 48.4 27.5 48.0 61.3

Table 6: The effectiveness of our proposed modules. CSLA:
cross-stage label assignment.

Inference speed and training memory use. As de-
picted in Tab. 9, with one TITAN XP and one batch size,
the speed of our model is 11.6 img/s while that of the base-
line is 13.5 img/s, i.e., only 1.16× slower. When we set the
batch size as 2 for training, the additional operation only
costs about 0.3G GPU memory (about 5%).

The number of additional channel mixing. We con-
duct ablation studies on how many previous filters are re-
quired for the channel mixing, and report performance
in Tab. 10. We do experiments on the max{∆γi}. This
means there are at most max{∆γi} filters reused for the i-
th stage. We find more filters can bring more performance
gain. The results also show the scalability of the decoder
layers in this framework.

Selection of filters on mixing. We explore whether the
previous filters with adapters are suitable for our new chan-
nel mixing. As shown in Tab. 11, we find that using the
adapters to fuse previous filters with the current ones is most
suitable, which ensures both the adaptability of each stage
and the diversity [67] of filters. More importantly, the exis-
tence of the additional dynamic mixing is necessary.

Modifying the localization supervision. In our cross-
stage label assigner, only classification labels are used for
gathering, while the supervision for localization is un-
changed. Thus, we explore its influence by consistently up-
dating the supervision of classification and localization, i.e.
selecting the ground-truth boxes that have the greatest IoU
with predicted boxes across stages. The results are shown
in Tab. 12, and we find that the performance under the two
settings is very close, so we do not modify the localization
part for simplicity.

Application scope of the cross-stage label assigner.
For the i-th stage, the application scope of cross-stage label
assigner is [αi, βi]. In this part, we explore the appropriate
values of αi and βi. As shown in Tab. 13, we find that the
best setting is [i − 1, L]. Yet if too many previous ground-
truth labels are included, like αi = 1, this hinders the last
decoder layer to learn how to remove duplicates. Moreover,
we conduct experiments to verify whether the cross-stage
label assigner needs to be applied on all stages, because ex-
isting works [4, 26] demonstrate that only early stages can
be applied with one-to-many label assignment. On the con-
trary, as shown in the last line of Tab. 13, we find that our

Cross Score AP AP50 AP75 APs APm APl

43.0 61.5 46.1 25.0 45.7 59.1
✓ 43.1 61.9 46.5 25.3 45.8 59.7

✓ 44.0 62.1 47.6 26.0 47.6 59.3
✓ ✓ 44.8 63.0 48.4 27.5 48.0 61.3

Table 7: The effectiveness of the components of the cross-
stage label assigner.

NS AP AP50 AP75 APs APm APl

0 44.5 62.5 48.1 27.4 48.0 60.6
1 44.8 63.0 48.4 27.5 48.0 61.3
3 44.4 62.4 48.0 26.2 47.4 60.6

Table 8: The number of reused spatial filters.

Method AP Speed (img/s) Memory (GB)

Baseline 42.6 13.5 6.0
Ours 44.8 11.6 6.3

Table 9: The inference speed and training GPU memory
use.

max{∆γi} AP AP50 AP75 APs APm APl

0 44.1 62.3 47.6 25.5 47.5 60.3
1 44.2 62.3 47.6 25.8 47.5 60.6
2 44.2 62.3 47.9 26.1 48.0 60.4
3 44.6 62.8 48.3 26.7 47.5 60.7
4 44.8 63.0 48.4 27.5 48.0 61.3

Table 10: The number of additional channel mixing.

Filter AP AP50 AP75 APs APm APl

43.5 61.7 46.8 25.3 47.0 59.0
Pre 44.2 61.9 47.6 26.1 47.6 60.0
Cur 44.5 62.7 47.9 26.5 47.7 60.5
Adp 44.8 63.0 48.4 27.5 48.0 61.3

Table 11: Usage of filters. Pre, Cur: directly using previ-
ous and current filters. Adp: using adapters.

cross-stage label assigner can also be applied on the last two
stages and this brings performance gain. We speculate that
this module helps remove some inappropriate supervision
caused by vanilla bipartite matching which has a shortage
of constraining IoU, and this module provides some proper
supervision from the previous stage.

The threshold of IoU. As shown in Tab. 14, we find that
using a threshold of 0.5 is the best choice to select appro-
priate labels.

Loc. AP AP50 AP75 APs APm APl

44.8 62.8 48.4 26.7 48.2 60.7
✓ 44.8 63.0 48.4 27.5 48.0 61.3

Table 12: Adding localization supervision in cross-stage la-
bel assigner.

Range of i αi βi AP AP50 AP75 APs APm APl

[1, L] i i 44.0 62.1 47.6 26.0 47.6 59.3
[1, L] i− 1 i 44.1 62.2 47.7 25.9 47.5 59.8
[1, L] i− 1 i+ 1 44.1 62.4 48.0 26.5 47.3 60.1
[1, L] i− 1 L 44.8 63.0 48.4 27.5 48.0 61.3
[1, L] 1 L 43.3 60.7 46.8 25.7 47.2 58.6

[1, L− 2] i− 1 L 44.3 62.4 47.7 26.1 47.6 60.4

Table 13: The application scope of the cross-stage label as-
signer for each stage.

IoU thres AP AP50 AP75 APs APm APl

0.3 43.8 62.4 47.2 26.3 46.8 60.3
0.7 44.4 61.1 48.4 26.0 47.5 61.5
0.5 44.8 63.0 48.4 27.5 48.0 61.3

Table 14: The threshold of IoU in cross-stage label assign-
ment.

5. Conclusion

In this paper, we have presented a new fast-converging
query-based object detector with cross-stage interaction,
termed as StageInteractor, to alleviate inconsistency be-
tween the one-to-one label assignment and improve the
modeling capacity. Our proposed cross-stage label as-
signer gathers assigned labels across stages, and then re-
assigns proper labels to predictions in each stage. We also
accumulate dynamic filter across stages and reuse them
with lightweight modules to increase the modeling capacity
without introducing too many parameters. With these two
unique designs, StageInteractor significantly outperforms
the previous methods, and our proposed label assignment
can boost the performance of various query-based object
detectors.

Acknowledgements. This work is supported by National
Key R&D Program of China (No. 2022ZD0160900), Na-
tional Natural Science Foundation of China (No. 62076119,
No. 61921006), Fundamental Research Funds for the Cen-
tral Universities (No. 020214380091, No. 020214380099),
and Collaborative Innovation Center of Novel Software
Technology and Industrialization. The authors would like
to thank Ziteng Gao for helpful discussions.

Mixing

Filter Adapter

LN & ReLU

: Original Mixing
: Filter Reusing

Mixed
features

channels

po
in

ts

Storing

Previous Filters

Mixing

Linear
Dynamic
Filter

Filter
Bank

Content
Vector

Mixed
features

Concat

Figure 8: The overview of our spatial dynamic mixing.

A. Spatial Mixing
The process of applying filter reusing onto the spatial

mixing is depicted in Fig. 8. It is very similar to the filter
reusing on channel mixing, but the reused filter is used in
the combination with the generated filter rather than cascade
mixing. This combination is performed along the output
dimension.

In the cascade mixing, the lightweight static linear layers
are placed between the activation function and the dynamic
mixing. Apart from the static channel mixing, the linear lay-
ers can also achieve the efficient spatial mixing, as shown
in Code 1. Specifically, we split the sampling points into
K groups, and perform affine transformation within and
across groups, like [7]. The parameters cost on this oper-

ation is (K2+(
P

(i)
in

K)2) ·D2
C . Since the number of sampling

points is set as the power of 2 and the number of spatial
blocks K is set close to the square root of the number of

sampling points, we use the formula K = 2⌊log2

√
P

(i)
in ⌋ for

calculation. Thus, an upper-bound of the parameter cost is
O(3P

(i)
in D2

C), and thus this module is still more lightweight
than those related to dynamic filter generation.

K: spatial group size, P: the number of sampling points
G: channel group size, Dc: channel dimension per group
N: the number of queries
I: the sampled feaures with shape (N∗G, K, P//K, Dc)

I 1 = I.reshape(N∗G∗K, P//K∗Dc)
I 2 = I.permute(0, 2, 1, 3).reshape(N∗G∗P//K, K∗Dc)
I 1 = Linear(I 1).reshape(N∗G, K, P//K, Dc)
I 2 = Linear(I 2).reshape(N∗G, P//K, K, Dc)
I = I + I 1 + I 2.permute(0, 2, 1, 3)
I = ChannelMixing(I)

Code 1: PyTorch-like Pseudocode for the static mixing.

B. Feature Sampling
For the feature sampling, according to [17, 71, 11], we

first generate a set of sampling points via content vectors,
and then use these points to capture the desired image fea-
tures with bilinear interpolation. Since the sampling points
are organized into K groups, the feature sampler is cor-

Dynamic Static AP AP50 AP75 APs APm APl

44.1 62.3 47.6 25.5 47.5 60.3
✓ 43.5 61.7 46.8 25.3 47.0 59.0

✓ 43.9 62.2 47.6 26.6 46.9 60.8
✓ ✓ 44.8 63.0 48.4 27.5 48.0 61.3

Table 15: The modules in the cascade mixing.

Static Mixing AP AP50 AP75 APs APm APl

43.9 62.2 47.6 26.6 46.9 60.8
Channel 44.0 62.3 47.8 26.2 47.0 61.1
Spatial 43.7 61.8 47.2 25.7 47.0 59.9

Channel-spatial 44.8 63.0 48.4 27.5 48.0 61.3

Table 16: The type of static mixing in our detector.

respondingly designed to generate points in groups. The
PyTorch-like Pseudo-code is illustrated in Code 2. Specif-
ically, we first use the content vectors to generate two sets
of offsets to the positional vectors by linear layers. Then,
the offsets is formed into the sampling points to extract fea-
tures.

K: spatial group size, P: the number of sampling points
G: channel group size, N: the number of queries
v: the content vector, b: the positional vector
F(): the bilinear interpolation on multi−scale image features
Im: the multi−scale image feaures, I: the sampled feaures

xy = b[..., 0:2], z = b[..., 2:3], r = b[..., 3:4]

p 1 = Linear(v).reshape(N∗G, K, 1, 3)
p 2 = Linear(v).reshape(N∗G, 1, P//K, 3)

dxy 1 = p 1[..., 0:2], dz 1 = p 1[..., 2:3]
dxy 2 = p 2[..., 0:2], dz 2 = p 2[..., 2:3]

p xy = xy + 2∗∗(z − 0.5∗r) ∗ (dxy 1 + 2∗∗dz 1 ∗ dxy 2)
p z = z + dz 1 + dz 2
I = F(Im, p xy, p z)

Code 2: PyTorch-like Pseudocode of the sampler.

C. Additional Ablation Studies
The modules in the cascade mixing. Both the reused

heavy dynamic filters and the lightweight static linear lay-
ers are crucial to our method. As shown in Tab. 15, only
when these two mixing approaches are combined can the
large performance gain be achieved. Moreover, as shown
in Tab. 16, we find that inserting static channel-spatial ag-
gregation into the lightweight linear layers is more benefi-
cial than solely performing channel or spatial mixing.

Feature sampling. Different from the feature sampling
in [17], the sampler in our detector is required to generate
points in groups. Therefore, in this part, we explore whether
the original feature sampling method (i.e. directly generat-
ing all sampling points) is feasible. As shown in Tab. 17, we
report the results of our detector with vanilla feature sam-
pling in the first line. Compared to the first line, the results

Sampling AP AP50 AP75 APs APm APl

Vanilla 43.7 62.1 47.2 25.6 47.4 59.7
Group init. 44.1 62.3 47.9 26.2 47.0 60.8

Ours 44.8 63.0 48.4 27.5 48.0 61.3

Table 17: The type of feature sampling. Vanilla denotes
the original feature sampling [17]. Group-init. means
the group-wise initialization on the original sampler.

StageInter P
(1)
in AP AP50 AP75 APs APm APl

32 42.5 61.4 45.7 25.0 45.1 58.2
64 42.6 61.4 45.7 24.4 45.7 58.2

✓ 32 44.6 62.6 48.3 26.2 48.1 61.1
✓ 64 44.8 63.0 48.4 27.5 48.0 61.3

Table 18: The number of sampling points at the first stage.

in the last line show that our sampling is more compatible
with our detector than 3D feature sampling. To find whether
the weight initialization of 3D feature sampler causes this
phenomenon, we modify the initialization of sampler so
that its outputs at the first iteration are identical with the
our sampler, and report the corresponding performance in
the second line. The results are still worse than our sam-
pling. Therefore, we speculate that our two-stage sampler
is consistent with our dynamic mixing, thereby boosting the
performance.

More sampling points in the first stage. As shown
in Tab. 18, we conduct ablation studies on adding more sam-
pling points of the first stage. The motivation is to use more
points to cover the whole image as much as possible, enlarg-
ing the receptive field. Both of our baseline and our method
can get slight benefits from more sampling points.

D. Duplicate Removal

According to [47], the strict one-to-one label assignment
can ensure the object detector to have the ability to remove
duplicate predictions. However, our cross-stage label as-
signer actually does not strictly follow one-to-one matching
even in the last few stages, i.e., it has the potential to assign
one ground-truth object to multiple predicted boxes on the
classification task. Therefore, we explore whether our label
assigner influences the performance of duplicate removal in
query-based object detectors. As shown in Tab. 19, the re-
sults show that the performance our detector is relatively
stable on AP with or without NMS. We consider this is be-
cause the coordinates of the most predicted boxes in the last
few stages change little, and the operation of gathering-and-
selecting labels in our assigner is performed adaptively.

NMS Threshold AP AP75

✓ 0.5 44.1 (-0.7) 47.1
✓ 0.75 44.8 (+0.0) 48.4
✓ 0.9 44.8 (+0.0) 48.5
- - 44.8 48.4

Table 19: The performance of our StageInteractor with or
without NMS.

Backbone AP AP50 AP75 APs APm APl

ResNet-50 49.0 67.4 53.7 30.2 51.7 62.3
ResNet-101 50.4 68.8 55.2 31.0 53.1 64.1

ResNeXt-101-DCN 51.3 70.1 56.0 32.1 53.9 65.2
Swin-S 52.7 71.8 57.7 33.3 55.1 67.1

Table 20: The performance of StageInteractor on COCO
test-dev set with 300 queries, 36 training epochs and
single model single scale testing.

E. MS COCO Test

As shown in Tab. 20, we report the performance of
StageInteractor on COCO test-dev set. Here, the per-
formance is evaluated with the same models that are used
for the comparison with other state-of-the-art query-based
detectors. Because the labels of COCO test-dev set are
not publicly available, so the evaluation is performed on the
online server.

F. Analysis about dynamic channel mixing

In vanilla AdaMixer [17], the FLOPs for the chan-
nel mixing is B × N × G × P

(i)
in × (2DC − 1) × DC ,

whereas the FLOPs for generating a dynamic channel filter
is B×N ×G× (2D−1)×DC ×DC . Therefore, the ratio
between these two FLOPs is:

B ×N ×G× (2D − 1)×DC ×DC

B ×N ×G× P
(i)
in × (2DC − 1)×DC

≈ 8 (4)

Therefore, generating channel filters consumes more com-
putational costs than performing channel mixing.

G. Qualitative Analysis

To verify the discriminability of our detector, we use
t-SNE [53] visualization for the query features in various
models. As depicted in Fig. 9, we select some represen-
tative categories with corresponding features to show the
effectiveness of our structures. Compared with Fig. 9a
and Fig. 9b, the distance between each group of categories
is wider in Fig. 9c, and the points are more separate.

(a) Baseline + CSLA. (b) Baseline + Reusing. (c) StageInteractor.

Figure 9: t-SNE [53] visualization of features of each query on MS COCO dataset [33] learned by various model variants.
Each point denotes a feature vector, and colors denote different categories. CSLA: cross-stage label assignment.

H. Limitation

Although our two cross-stage structures are effective,
their designs are simple. In the future, we hope the fol-
lowing topics could be explored in the future: (1) the op-
timal designs of each decoder layer in a query-based de-
tector; (2) more elaborate and effective cross-stage interac-
tions; (3) the theoretical properties and the essence of the
cascade structures.

I. Societal Impact

Object detection is a classical vision task and we adopt
the open dataset: MS COCO [33], so there is no negative
social impact if the method is used properly.

J. Model Implementation Details

Hyper-parameters. The cross-stage label assignment
is performed on each stage, and its application scope is
[i − 1, L]. The threshold for selecting labels is set to 0.5.
The reuse of dynamic filters do not perform on the first two
decoder layers, and in other stages, all the generated filters
for channel mixing are reused. The number of spatial blocks
K is set close to the square root of the number of sampling

points, i.e., we use the formula K = 2⌊log2

√
P

(i)
in ⌋ for calcu-

lation. Other parameters of our model are in line with [17].
Other parameters of our model are in line with the vanilla
AdaMixer [17] and DETRs [13].

Initialization. Following [17], the initial weights of lin-
ear layers generating dynamic filters are set to zero, and
the biases of these linear layers are initialized as expected.
The initial weights of linear layers in the feature sampler
are also set to zero, and the biases of these linear layers are
initialized as follows: (1) the bias corresponding to dxy 1 in
Code 2 is uniformly initialized within [-0.5, 0.5]. (2) the one
corresponding to dxy 2 is uniformly initialized within [- 0.5√

2

, 0.5√
2

]. (3) The parts corresponding to the dz 1 and dz 2 are
initialized as zeros. The initialization of other modules are

set following [17, 13].

References
[1] Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo,

and Llion Jones. Character-level language modeling with
deeper self-attention. In Proceedings of the AAAI conference
on artificial intelligence, pages 3159–3166, 2019. 2

[2] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and
Larry S Davis. Soft-nms–improving object detection with
one line of code. In Proceedings of the IEEE international
conference on computer vision, pages 5561–5569, 2017. 1

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: high
quality object detection and instance segmentation. IEEE
transactions on pattern analysis and machine intelligence,
43(5):1483–1498, 2019. 1, 6

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In Proceedings
of the European conference on computer vision, pages 213–
229, 2020. 1, 2, 3, 6, 7, 8

[5] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 6

[6] Qiang Chen, Xiaokang Chen, Gang Zeng, and Jingdong
Wang. Group detr: Fast training convergence with de-
coupled one-to-many label assignment. arXiv preprint
arXiv:2207.13085, 2022. 3

[7] Shoufa Chen, Enze Xie, Chongjian Ge, Ding Liang, and Ping
Luo. Cyclemlp: A mlp-like architecture for dense prediction.
arXiv preprint arXiv:2107.10224, 2021. 10

[8] Xiaokang Chen, Fangyun Wei, Gang Zeng, and Jingdong
Wang. Conditional detr v2: Efficient detection transformer
with box queries. arXiv preprint arXiv:2207.08914, 2022. 1

[9] Zhe Chen, Jing Zhang, and Dacheng Tao. Recurrent
glimpse-based decoder for detection with transformer. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5260–5269, 2022. 1, 2,
7

[10] Yuren Cong, Wentong Liao, Hanno Ackermann, Bodo
Rosenhahn, and Michael Ying Yang. Spatial-temporal trans-
former for dynamic scene graph generation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 16372–16382, 2021. 1

[11] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In Proceedings of the IEEE international confer-
ence on computer vision, pages 764–773, 2017. 10

[12] Xiyang Dai, Yinpeng Chen, Bin Xiao, Dongdong Chen,
Mengchen Liu, Lu Yuan, and Lei Zhang. Dynamic head:
Unifying object detection heads with attentions. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7373–7382, 2021. 6

[13] detrex contributors. detrex: An research platform for
transformer-based object detection algorithms, 2022. 6, 12

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 6

[15] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 6569–6578,
2019. 1

[16] Peng Gao, Minghang Zheng, Xiaogang Wang, Jifeng Dai,
and Hongsheng Li. Fast convergence of detr with spatially
modulated co-attention. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3621–
3630, 2021. 1, 2, 7

[17] Ziteng Gao, Limin Wang, Bing Han, and Sheng Guo.
Adamixer: A fast-converging query-based object detector.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5364–5373, 2022. 1,
2, 3, 4, 5, 6, 7, 10, 11, 12

[18] Ziteng Gao, Limin Wang, and Gangshan Wu. Mutual su-
pervision for dense object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3641–3650, 2021. 1

[19] Zheng Ge, Songtao Liu, Zeming Li, Osamu Yoshie, and Jian
Sun. Ota: Optimal transport assignment for object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 303–312, 2021. 1

[20] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 1

[21] Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming
Cheng, and Shi-Min Hu. Visual attention network. arXiv
preprint arXiv:2202.09741, 2022. 6

[22] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 2

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 2, 6

[24] Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides,
and Xiangyu Zhang. Bounding box regression with uncer-
tainty for accurate object detection. In Proceedings of the
ieee/cvf conference on computer vision and pattern recogni-
tion, pages 2888–2897, 2019. 1

[25] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen
Wei. Relation networks for object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3588–3597, 2018. 1

[26] Ding Jia, Yuhui Yuan, Haodi He, Xiaopei Wu, Haojun Yu,
Weihong Lin, Lei Sun, Chao Zhang, and Han Hu. Detrs with
hybrid matching. arXiv preprint arXiv:2207.13080, 2022. 3,
5, 8

[27] Kang Kim and Hee Seok Lee. Probabilistic anchor assign-
ment with iou prediction for object detection. In European
Conference on Computer Vision, pages 355–371. Springer,
2020. 1

[28] Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In Proceedings of the European confer-
ence on computer vision, pages 734–750, 2018. 1

[29] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou
Zhang, and Zhuowen Tu. Deeply-supervised nets. In Artifi-
cial intelligence and statistics, pages 562–570. PMLR, 2015.
2

[30] Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni,
and Lei Zhang. Dn-detr: Accelerate detr training by intro-
ducing query denoising. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13619–13627, 2022. 3, 4, 5, 7, 8

[31] Xiang Li, Wenhai Wang, Xiaolin Hu, Jun Li, Jinhui Tang,
and Jian Yang. Generalized focal loss v2: Learning reliable
localization quality estimation for dense object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11632–11641, 2021. 6

[32] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 1, 4, 5

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1, 6, 12

[34] Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi,
Hang Su, Jun Zhu, and Lei Zhang. Dab-detr: Dynamic
anchor boxes are better queries for detr. arXiv preprint
arXiv:2201.12329, 2022. 1, 2, 3, 5, 7

[35] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016. 1

[36] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 2, 6, 7, 8

[37] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[38] Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng,
Houqiang Li, Yuhui Yuan, Lei Sun, and Jingdong Wang.
Conditional detr for fast training convergence. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 3651–3660, 2021. 2, 7

[39] Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R Oswald,
and Cees GM Snoek. Boxer: Box-attention for 2d and 3d
transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4773–
4782, 2022. 1

[40] Han Qiu, Yuchen Ma, Zeming Li, Songtao Liu, and Jian
Sun. Borderdet: Border feature for dense object detection. In
European Conference on Computer Vision, pages 549–564.
Springer, 2020. 6

[41] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[42] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7263–7271, 2017. 1

[43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 1, 5

[44] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding
box regression. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 658–666,
2019. 4

[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 6

[46] Zhiqiang Shen, Zechun Liu, and Eric Xing. Sliced recursive
transformer. arXiv preprint arXiv:2111.05297, 2021. 3, 5

[47] Peize Sun, Yi Jiang, Enze Xie, Wenqi Shao, Zehuan Yuan,
Changhu Wang, and Ping Luo. What makes for end-to-end
object detection? In International Conference on Machine
Learning, pages 9934–9944. PMLR, 2021. 1, 11

[48] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chen-
feng Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan
Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end ob-
ject detection with learnable proposals. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 14454–14463, 2021. 1, 2, 3, 4, 5, 6, 7

[49] Zhiqing Sun, Shengcao Cao, Yiming Yang, and Kris M Ki-
tani. Rethinking transformer-based set prediction for object
detection. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 3611–3620, 2021. 3,
5

[50] Yao Teng and Limin Wang. Structured sparse r-cnn for direct
scene graph generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 19437–19446, 2022. 1

[51] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 9627–9636, 2019. 1, 6

[52] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al.
Mlp-mixer: An all-mlp architecture for vision. Advances
in Neural Information Processing Systems, 34:24261–24272,
2021. 5

[53] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(11), 2008. 11, 12

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1, 2

[55] Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang,
Dongdong Zhang, and Furu Wei. Deepnet: Scaling trans-
formers to 1,000 layers. arXiv preprint arXiv:2203.00555,
2022. 3

[56] Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and
Dacheng Tao. Towards data-efficient detection transform-
ers. In Computer Vision–ECCV 2022: 17th European Con-
ference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part IX, pages 88–105. Springer, 2022. 5

[57] Yingming Wang, Xiangyu Zhang, Tong Yang, and Jian Sun.
Anchor detr: Query design for transformer-based detector.
In Proceedings of the AAAI conference on artificial intelli-
gence, pages 2567–2575, 2022. 7

[58] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 2, 7

[59] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 6

[60] Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen
Lin. Reppoints: Point set representation for object detection.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 9657–9666, 2019. 1

[61] Zhuyu Yao, Jiangbo Ai, Boxun Li, and Chi Zhang. Efficient
detr: improving end-to-end object detector with dense prior.
arXiv preprint arXiv:2104.01318, 2021. 7

[62] Mohsen Zand, Ali Etemad, and Michael Greenspan. Object-
box: From centers to boxes for anchor-free object detection.
arXiv preprint arXiv:2207.06985, 2022. 1

[63] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino: Detr
with improved denoising anchor boxes for end-to-end object

detection. arXiv preprint arXiv:2203.03605, 2022. 3, 4, 5,
7, 8

[64] Linfeng Zhang, Xin Chen, Junbo Zhang, Runpei Dong, and
Kaisheng Ma. Contrastive deep supervision. In European
Conference on Computer Vision, pages 1–19. Springer, 2022.
2

[65] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and
Stan Z Li. Bridging the gap between anchor-based and
anchor-free detection via adaptive training sample selection.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 9759–9768, 2020. 1

[66] Shilong Zhang, Xinjiang Wang, Jiaqi Wang, Jiangmiao
Pang, Chengqi Lyu, Wenwei Zhang, Ping Luo, and Kai
Chen. Dense distinct query for end-to-end object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7329–7338, 2023. 3

[67] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xi-
aochen Lian, Zihang Jiang, Qibin Hou, and Jiashi Feng.
Deepvit: Towards deeper vision transformer. arXiv preprint
arXiv:2103.11886, 2021. 3, 5, 8

[68] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
jects as points. arXiv preprint arXiv:1904.07850, 2019. 1

[69] Benjin Zhu, Jianfeng Wang, Zhengkai Jiang, Fuhang Zong,
Songtao Liu, Zeming Li, and Jian Sun. Autoassign: Differ-
entiable label assignment for dense object detection. arXiv
preprint arXiv:2007.03496, 2020. 1

[70] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 9308–9316, 2019. 2, 7

[71] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 1, 2, 5, 6, 7, 8, 10

