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Abstract

Detection transformer (DETR) relies on one-to-one as-
signment, assigning one ground-truth object to one predic-
tion, for end-to-end detection without NMS post-processing.
It is known that one-to-many assignment, assigning one
ground-truth object to multiple predictions, succeeds in de-
tection methods such as Faster R-CNN and FCOS. While
the naive one-to-many assignment does not work for DETR,
and it remains challenging to apply one-to-many assign-
ment for DETR training. In this paper, we introduce
Group DETR, a simple yet efficient DETR training ap-
proach that introduces a group-wise way for one-to-many
assignment. This approach involves using multiple groups
of object queries, conducting one-to-one assignment within
each group, and performing decoder self-attention sepa-
rately. It resembles data augmentation with automatically-
learned object query augmentation. It is also equivalent
to simultaneously training parameter-sharing networks of
the same architecture, introducing more supervision and
thus improving DETR training. The inference process is the
same as DETR trained normally and only needs one group
of queries without any architecture modification. Group
DETR is versatile and is applicable to various DETR vari-
ants. The experiments show that Group DETR signifi-
cantly speeds up the training convergence and improves
the performance of various DETR-based models. Code will
be available at https://github.com/Atten4Vis/
GroupDETR.

1. Introduction
Detection Transformer (DETR) [4] conducts end-to-

end object detection without the need for many hand-
*Equal contribution.
†Corresponding author.
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Figure 1. Group DETR accelerates the training process for
DETR variants. The training convergence curves are obtained
on COCO val2017 [34] with ResNet-50 [22]. Dashed and bold
curves correspond to the baseline models and the Group DETR
counterparts. Best viewed in color.

crafted components, such as non-maximum suppression
(NMS) [23] and anchor generation [44, 33, 43]. The ar-
chitecture consists of a CNN [22] and transformer en-
coder [53], and a transformer decoder that consists of self-
attention, cross-attention and FFNs, followed by class and
box prediction FFNs. During training, one-to-one assign-
ment, where one ground-truth object is assigned to one sin-
gle prediction, is applied for learning to only promote the
predictions assigned to ground-truth objects, and demote
the duplicate predictions.

This work explores the solutions to accelerate the DETR
training process. Previous solutions contain two main lines.
The one line is to modify cross-attention so that informa-
tive image regions are selected for effectively and efficiently
collecting the information from image features. Example
methods include sparse sampling, through deformable at-
tention [70], and spatial modulations with modifying object
queries [16, 41, 8, 57, 61, 36, 17]. The other line is to sta-
bilize one-to-one assignment during training, e.g., feeding
ground-truth bounding boxes with noises into transformer
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decoder [29, 65].
We are interested in the second line. Instead of focus-

ing on stabilizing the assignment like DN-DETR [29], we
study the assignment scheme for efficient DETR training
from a new perspective: introducing more supervision. It
has been proven that assigning one ground-truth object to
multiple predictions, i.e., one-to-many assignment, is suc-
cessful in traditional object detection methods, e.g., Faster
R-CNN [44] and FCOS [52] with more anchors and pixels
assigned to one ground-truth object. Unfortunately, naive
one-to-many assignment does not work for DETR training.
It remains a challenge to apply one-to-many assignment to
DETR training.

We present a simple yet efficient DETR training ap-
proach that uses a group-wise way for one-to-many assign-
ment, called Group DETR. Our approach is based on that
end-to-end detection with successful removal of NMS post-
processing for DETR comes from the joint effect of two
components [4, 41]: decoder self-attention, which collects
the information of other predictions, and one-to-one assign-
ment, which expects to learn to score one prediction higher
and other duplicate predictions lower for one ground-truth
object.

Our approach adopts K groups of object queries, and in-
troduces group-wise one-to-many assignment. This assign-
ment scheme conducts one-to-one assignment within each
group of object queries, resulting in that one ground-truth
object is assigned to multiple predictions. It is encouraged
that the prediction assigned to the ground-truth object gets
a high score, and other duplicate predictions from the same
group of queries get low scores. In other words, the pre-
dictions make competition within each group. Thus, our
approach uses separate self-attention, i.e., self-attention is
done for each group separately, eliminating the influence of
predictions from other groups and easing DETR training.
Regarding inference, it is the same as DETR trained nor-
mally, and only needs a single group of object queries.

The resulting architecture is equivalent to DETR with
a group of parallel decoders, illustrated in Figure 2 (a).
During training, the parallel decoders boost each other
through sharing decoder parameters and using different ob-
ject queries. On the other hand, using more groups of object
queries resembles data augmentation, and behaves as query
augmentation. It introduces more supervision and improve
the decoder training. In addition, it is empirically observed
that the encoder training is also improved, presumably with
the help of the improved decoder.

Group DETR is versatile and is applicable to various
DETR variants. Extensive experiments demonstrate that
our approach is effective in achieving fast training conver-
gence, shown in Figure 1. Group DETR obtains consistent
improvements on various DETR-based methods [41, 36,
29, 65]. For instance, Group DETR significantly improves

Conditional DETR-C5 by 5.0 mAP with 12-epoch training
on COCO [34]. The non-trivial improvements hold when
we adopt longer training schedules (e.g., 36 epochs and 50
epochs). Furthermore, Group DETR outperforms baseline
methods for multi-view 3D object detection [37, 38] and
instance segmentation [9].

2. Background
DETR Architecture. DETR [4] is composed of an encoder,
a transformer decoder, and object class and box position
predictors. The encoder takes an image I as input, and out-
puts the image feature X,

Encoder(I) → X. (1)

The decoder receives the image feature X and the object
queries, denoted by a matrix Q(= [q1 q2 . . .qN ]) as input,
and outputs the embeddings Q̃, followed by the predictors
with the output denoted by Y(= [y1 y2 . . .yN ]),

Decoder(X,Q) → Q̃, Predictor(Q̃) → Y. (2)

The decoder is a sequence of multiple layers. Each layer
includes: (i) self-attention over object queries, which per-
forms interactions among queries for collecting the infor-
mation about duplicate detection; (ii) cross-attention be-
tween queries and image features, which collects the infor-
mation from image features that is useful for object detec-
tion; (iii) feed-forward network that processes the queries
separately to benefit object detection.
DETR Training. The predictions during DETR training are
in the set form, and have no correspondence to the ground-
truth objects. DETR uses one-to-one assignment, i.e., one
ground-truth object is assigned to one predictions and vice
versa, through building a bipartite matching between the
predictions and the ground-truth objects:

(yσ(1), ȳ1), (yσ(2), ȳ2), . . . , (yσ(N), ȳN ). (3)

Here, σ(·) is the optimal permutation of N indices, and
[ȳ1 ȳ2, . . . ȳN ] = Ȳ correponds to ground truth. The loss
is then formulated as below:

L =
∑N

n=1
ℓ(yσ(n), ȳn), (4)

where ℓ(·) is a combination of the classification loss and the
box regression loss between the ground-truth object ȳ and
the prediction y [4, 70, 41].

Optimization with one-to-one assignment aims to score
the predictions for promoting one prediction for one
ground-truth object, and demoting duplicate predictions.
Such scoring needs the comparison of one prediction with
other predictions, and the information of other predictions
is provided from decoder self-attention over queries. The
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Figure 2. Architecture illustration. (a) Our Group DETR: group-wise one-to-many assignment and separate self-attention, architecturally
equivalent to parallel decoder. (b) Group-wise one-to-many assignment only. (c) Naive one-to-many assignment. We use two groups of
4 object queries as an example. X: image features; Y: predictions; Ȳ: ground-truth objects, where two color boxes mean two objects
and two gray boxes mean dummy objects (no objects). The color lines between Y and Ȳ correspond to the assignment for ground-truth
objects, and the gray lines for dummy objects. For clarity, the predictors are not explicitly included.

two designs, one-to-one assignment and self-attention over
object queries, are critical for end-to-end detection without
the need of the post-processing NMS.
One-to-many assignment for non-end-to-end detection.
One-to-many assignment is successfully adopted for in-
troducing more supervision to non-end-to-end detection
training, such as Faster R-CNN [44], FCOS [52], and so
on [21, 33, 43, 67, 18, 6, 19]. One ground-truth object is
assigned to multiple anchors or multiple pixels. During in-
ference, a post-processing NMS is conducted for duplicate
detection removal.

3. Group DETR
3.1. Algorithm

Naive one-to-many assignment. We start from a naive way
for one-to-many assignment depcited in Figure 2 (c). We re-
place one-to-one assignment with one-to-many assignment:
assign one ground-truth object to multiple predictions. It
does not work and the performance is much low. The reason
is that the model is trained to output multiple predictions for
one ground-truth object, and lacks the scoring mechanism
to promote one single prediction and demote duplicate pre-
dictions for one ground-truth object.
Group-wise one-to-many assignment. We adopt the
multi-group object query mechanism: form the initial
N queries as the primary group and introduce more
(K − 1) groups of N queries, totally K groups,
{Q1,Q2, . . . ,QK}. Accordingly, we have K groups of
predictions, {Y1,Y2, . . . ,YK}. We perform one-to-one
assignment for each group, and find a bipartite matching
σk(·), between each group of predictions and the ground-
truth objects (Yk, Ȳ). This results in that only one predic-
tion for one ground-truth object is expected to score higher,
and duplicate predictions is expected to score lower within
one group other than within all the groups.
Separate self-attention. One-to-one assignment in one
group means that the prediction assigned to one ground-

Algorithm 1 Pseudocode of one Group Decoder Layer

# SA: Self-Attention in the decoder layer
# CA: Cross-Attention in the decoder layer
# FFN: FFN in the decoder layer
# X: output image features of the encoder
# Q: object queries, with size (KxN, B, C)
# N, K, B, C: object query number, group number,

batch size, feature dimension

# group decoder
if training:

# split object queries to K groups
Q_list = Q.split(N, dim=0) # a list of K tensors
parallel_Q = cat(Q_list, dim=1) # (N, KxB, C)

# parallel self-attention
out = SA(parallel_Q) # (N, KxB, C)
# concat all groups: (KxN, B, C)
out = cat(out.split(B, dim=1), dim=0)

# cross-attention and ffn
out = FFN(CA(out, X))

else:
# in inference, only one group is kept
Q = Q[:N] # (N, B, C)

# self-attention, cross-attention, and ffn
out = SA(Q)
out = FFN(CA(out, X))

truth object is superior to other predictions within the same
group. This implies that we only need to collect the infor-
mation of the predictions only from the same group, rather
than from all the groups. Thus we perform self-attention
(abbreviated as SA) over queries for each group separately:

SA(Q1),SA(Q2), . . . ,SA(QK) . (5)

Training architecture. The resulting architecture for train-
ing is very simple: the encoder keeps the same, and the
decoder contains K separate parallel decoders as shown in
Figure 2 (a):

Decoder(X,Q1) → Q1, Predictor(Q1) → Y1,

Decoder(X,Q2) → Q2, Predictor(Q2) → Y2,

. . . . . .

Decoder(X,QK) → QK , Predictor(QK) → YK . (6)



Figure 3. Illustrating object queries. The predicted boxes and reference points corresponding to object queries in different groups for
the same ground-truth object are plotted in different colors with one color for one group. It can be seen that these queries are spatially
close and can be viewed as an augmentation of other queries. The results are from Group DETR over Conditional DETR-R50 [41]. The
predicted boxes and reference points may overlap. Best view in color and zoom in.

37.5 ±0.1

Figure 4. The performance across groups of queries are similar.
Only a ±0.1 mAP is observed over the median (37.5 mAP). The
mAP scores over the COCO val2017 are reported by a 12-epoch
trained Conditional DETR-R50 with Group DETR.

Here, the parameters of the decoder and the predictor for the
K groups are shared. Decoder separation and parallelism
are feasible in that there is no interaction among queries for
the other two operations, cross-attention and FFN. Our ap-
proach is called Group Decoder. In model inference, the
process is the same as DETR trained normally and only
needs one group of queries without any architecture mod-
ification. The pseudo-code is shown in Algorithm 1.
Loss function. The loss is an aggregation of K losses, each
for one decoder. It is written as follows,

L =
1

K

K∑
k=1

Lk =
1

K

K∑
k=1

N∑
n=1

ℓ(yσk(n), ȳkn), (7)

where σk(·) is the optimal permutation of N indices for the
kth decoder.

3.2. Analysis

Explanation with parameter-shared models. We dis-
cuss Group DETR from the perspective of training multi-
ple models with parameter sharing. Training with Group
DETR can be regarded as simultaneously training K DETR
models, which share the parameters of the encoder, the de-
coder, and the predictor, and only differ in the initialization
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Figure 5. More stable assignment. The x-axis corresponds to
#epoch, and the y-axis corresponds to instability score (the score
is introduced by DN-DETR [29], the lower the instability score,
the more stable the label assignment) over COCO val2017. One
can see that the assignment in Group DETR is more stable than
DN-DETR and its baseline DAB-DETR.

of object queries. This leads to the shared parameters re-
ceive more back-propagated gradients. Thus, these param-
eters are better trained and accordingly the training process
converges faster.

As a side benefit, we observe that Group DETR makes
the assignment more stable, as shown in Figure 5. We
speculate that the stability is because the improved network
leads to more reliable predictions, and thus the assignment
quality is better.

Explanation with object query augmentation. The multi-
group object query mechanism introduces additional (K −
1) group of queries, which can be regarded as an augmen-
tation of the primary group of queries. This is empirically
illustrated in Figure 3. The reference points predicting the
same objects are spatially close, and thus the corresponding
object queries are similar. This may suggest that the multi-
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Figure 6. The parallel decoders in Group DETR are efficiently im-
plemented as parallel self-attention, cross attention and FFN.

group object query mechanism resembles data augmenta-
tion, and at each iteration, more automatically-learned aug-
mented queries are included, which equivalently introduces
more supervision for decoder training. The results in Fig-
ure 4 empirically suggest that different groups of augmented
queries lead to similar results.

The point about more supervision is also observed from
the comparison between Equation 6 (for training with
Group DETR) and Equation 2 (for normal DETR training).
Group DETR training includes K pairs of image feature
and object query group {(X,Q1), (X,Q2), . . . , (X,QK)},
and thus the loss contains more components as shown in
Equation 7.

Table 1. Illustrating that training with Group DETR improves
both encoder and decoder. The encoder, including CNN and
transformer encoders, is initialized from a trained Conditional
DETR-R50 [41] with 50 epochs and the decoder is random ini-
tialized. (a) (Fixed, Single) = the encoder is not retrained, and
the decoder is trained normally without using Group DETR. (b)
(Fixed, Group) = the encoder is not retrained, and the decoder is
with Group DETR. (c) (Group, Group) = the encoder and the de-
coder are trained with Group DETR. All the results are got through
training with 50 epochs. (c) > (b) implies that Group DETR also
improves the encoder training.

Encoder Decoder mAP APs APm APl

(a) Fixed Single 40.6∗ 20.2 44.0 59.3

(b) Fixed Group 41.5 21.2 45.0 60.2

(c) Group Group 42.9∗ 22.2 46.6 61.6
∗: Training Conditional DETR with a trained encoder gives slightly lower

performances than the one trained regularly, even though we train all
components. New hyper-parameters may need to get better results.

Encoder training improvement. The additional supervi-
sion introduces more box regression and classification su-
pervision from more queries assigned to each ground-truth
object. The gradients with more supervision are also back-
propagated from the decoder to the encoder. It is presum-
able that the encoder also gets benefit, verified by the em-
pirical results in Table 1.
Computation and memory complexity. Group DETR
uses more decoders during training. It is expected that
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Baseline Baseline Group DETR

Figure 7. Baseline models vs their Group DETR counterparts
w.r.t training memory. The gray baseline represents using the
naive implementation of attention modules. With a memory-
efficient implementation [12], Group DETR does not bring much
memory burden during training, only requires 1.2 G and 1.7 G
more GPU memory with Conditional DETR [41] (‘C-DETR’ for
short) and DAB-DETR [36].

Table 2. Group DETR outperforms baseline models with a sim-
ilar training time. Conditional DETR [41] and DAB-DETR [36]
serve as baseline models to compare the performances on COCO
val2017 [34]. ‘C-DETR’ and ‘w/ Group’ are the abbreviations of
‘Conditional DETR’ and ‘with Group DETR’. The entries noted
by grey are the results of baseline models with the same training
epochs (12 or 50 epochs) as Group DETR. To match the train-
ing times of Group DETR, we adopt longer training shedules for
baselines (15 or 60 epochs). The training times are measured on 8
A100 GPUs in hours.

Model w/ Group Hours mAP APs APm APl

C-DETR
4.6 32.6 14.7 35.0 48.3

5.8 34.4 15.1 37.3 51.3

✓ 5.6 37.6 18.2 40.7 55.9

C-DETR
19.2 40.9 20.5 44.2 59.6

23.0 41.6 21.4 45.1 60.0

✓ 23.3 43.4 23.0 47.3 62.3

DAB-DETR
5.6 35.2 16.7 38.6 51.6

7.0 36.3 17.1 39.4 52.5

✓ 6.6 39.1 19.7 42.5 56.8

DAB-DETR
23.3 42.2 21.5 45.7 60.3

28.0 42.9 22.8 46.4 61.9

✓ 27.5 44.5 24.2 48.5 63.2

Group DETR will bring additional training computation
costs (FLOPs) as well as training memory costs. But the
parallel decoders can be implemented as a single decoder by
replacing normal self-attention with parallel self-attention
(depicted in Figure 6) and we can use an efficient atten-
tion implementation, FlashAttention [12, 28]. As a result,
Group DETR only takes a small increase in training GPU
memory and training time. For example, with Conditional
DETR [41] and DAB-DETR [36], the memory increases
are just 1.2 G and 1.7 G (Figure 7). The training time is
increased by 5 minutes per epoch (from 23 minutes to 28
minutes and from 28 minutes to 33 minutes, respectively).

We provide the results by increasing the training time



for normal DETR training to see if Group DETR benefits
simply from more training time. The results given in Table 2
show that normal training with more training time brings a
little benefit and the performance is still much lower than
Group DETR, implying that the performance gain from our
approach is not from training time increase.

Connection to DN-DETR. DN-DETR [29] aims to sta-
bilize one-to-one assignment during DETR training. DN-
DETR forms the additional queries by adding the noises to
ground-truth objects, which can be regarded as a variant of
our multi-group mechanism with clear differences. In DN-
DETR [29], on the one hand, the number of queries within
each additional group is the same as the number of ground-
truth objects. Each one correspond to one ground-truth ob-
ject, and there is no query corresponding to no-object. In
contrast, our approach automatically learns a number of N
(e.g., 300) object queries that correspond to both ground-
truth objects and no-object.

On the other hand, DN-DETR performs self-attention
over noised queries, mainly for collecting the information
from predictions for other objects other than from duplicate
predictions. Self-attention in Group DETR instead collects
both duplicate predictions and predictions for other objects.

The above two comparisons imply that DN-DETR brings
the major help for the box and classification prediction,
through the introduction of more positive queries corre-
sponding to ground-truth objects (like FCOS), and no di-
rect help for duplicate prediction removal. Our approach
introduces both positive queries and negative queries (no-
object), also brings the help for duplicate prediction re-
moval.

Figure 8 shows that the performance of Group DETR
is better than DN-DETR. We further investigate if Group
DETR still benefits from introducing more positive queries
with noised queries. As shown in Figure 8, the performance
gain over Group DETR is non-trivial, a 1.5 mAP. This im-
plies that Group DETR and DN-DETR are complementary
and their major roles are different, though they have some
similarities.

4. Experiments

We demonstrate the effectiveness of Group DETR in var-
ious DETR variants, and its extension to 3D detection and
instance segmentation [41, 36, 29, 70, 65, 37, 38, 9]. The
training setting is almost the same as baseline models, for
illustrating the effectiveness of our Group DETR. We adopt
the same training settings and hyper-parameters as the base-
line models, such as learning rate, optimizer, pre-trained
model, initialization methods, and data augmentations1.

1We may adjust the batch size due to the limitation of the GPU memory
size for both the baseline model and our approach so that the batch size is
the same.
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Figure 8. Comparisons with DN-DETR. Group DETR outper-
forms DN-DETR on DAB-DETR [36] (y-axis). Combining those
two methods give better results, indicating they are complemen-
tary to each other. The x-axis is the mAP scores with a 12-
epoch schedule on COCO val2017. ∗ represents that we report
the best results of DN-DETR among different numbers of denois-
ing queries (detailed results are provided in Appendix).

4.1. Object Detection

Setting. We study various representative DETR-based de-
tectors, such as basic baselines (Conditional DETR [41],
DAB-DETR [36], DN-DETR [29]) with dense attentions,
and strong baselines (DAB-Deformable-DETR [36, 70] and
DINO [65, 70]) with deformable attentions. We report the
results on two training schedules, training for 12 epochs and
training for more epochs (36 or 50). Unless specified, the
models are trained with ResNet-50 [22] as the backbone on
the COCO train2017 and evaluated on the COCO val2017.
More implementation details are provided in Appendix.
Results. We first report the results of training with 12
epochs in Table 3. Group DETR brings consistent im-
provements over the baselines with dense attentions that al-
ready are superior to the original DETR [4]. It boosts Con-
ditional DETR (-DC5) [41] by 5.0 (4.8) mAP, improves
DAB-DETR (-DC5) [36] by 3.9 (4.4) mAP, and brings a
2.0 (2.6) mAP gain to DN-DETR (-DC5) [29].

Group DETR also works well on those strong baselines
with deformable attentions that are equipped with two or
more accelerating techniques. It gives a 1.5 mAP improve-
ments over DAB-Deformable-DETR [36, 70]. When apply-
ing to DINO [65, 29, 70], Group DETR also exceeds it by
0.7 mAP. The gain is non-trivial over such a stronger base-
line, considering that DINO is a well-tuned model2 based on
DAB-Deformable-DETR that combines improved hyper-
parameters, improved two-stage design, improved query de-
noising task, and other tricks.

Furthermore, we report the results with 50 training
epochs that is commonly adopted in many acceleration
methods [70, 41, 8, 36]. Table 4 presents that Group
DETR outperforms baseline models by large margins. For
the stronger backbone, Swin-Large [40], our approach
achieves 58.4 mAP (still a 0.4 mAP higher than its baseline

2In fact, our approach is compatible with query denoising and two-
stage. In Table 3, for example, DN-DETR [29] utilizes query denoising,
and our method improves it by 2.0. Similarly, DAB-D-DETR [36] adopts
a two-stage structure, and our method achieves a 1.5 improvement.



Table 3. Effectiveness of Group DETR with 12 epochs. Group
DETR gives consistent gains over various DETR-based base-
lines on COCO val2017 [34], highlighted with brackets. All
experiments adopt ResNet-50 [22] and do not use multiple pat-
terns [57]. For DN-DETR, an improved version of DN, dynamic
DN groups [65] with 100 DN queries, is used, making the re-
sults slightly different from the ones (with 3 patterns) reported
in the original paper [29] (more results about the number of DN
queries can be found in Appendix. ‘C-DETR’, ‘DAB-D-DETR’,
and ‘w/ Group’ are ‘Conditional DETR’ [41], ‘DAB-Deformable
DETR’ [36, 70], and ‘with Group DETR’, respectively, for neat
representation.

Model w/ Group mAP APs APm APl

C-DETR
32.6 14.7 35.0 48.3

✓ 37.6 (+5.0) 18.2 40.7 55.9

C-DETR-DC5
36.4 18.0 39.6 52.5

✓ 41.2 (+4.8) 21.4 45.0 58.7

DAB-DETR
35.2 16.7 38.6 51.6

✓ 39.1 (+3.9) 19.7 42.5 56.8

DAB-DETR-DC5
37.5 19.4 40.6 53.2

✓ 41.9 (+4.4) 23.3 45.6 58.4

DN-DETR
38.6 17.9 41.6 57.7

✓ 40.6 (+2.0) 19.8 43.9 59.4

DN-DETR-DC5
41.9 22.2 45.1 59.8

✓ 44.5 (+2.6) 25.9 48.2 62.2

DAB-D-DETR
44.2 27.5 47.1 58.6

✓ 45.7 (+1.5) 28.1 49.0 60.6

DINO-4scale
49.4 32.3 52.5 63.2

✓ 50.1 (+0.7) 32.4 53.2 64.7

DINO [65] (58.0 mAP with Swin-Large)). This verifies the
generalization ability of our Group DETR.

Last, we compare the training convergence curves of the
baseline models and their Group DETR counterparts. The
results, as shown in Figure 1, provide more evidence that
Group DETR speeds DETR training convergence on vari-
ous DETR variants.

System-level Results on COCO test-dev with ViT-Huge.
We also have the system-level performance on COCO test-
dev [34] with ViT-Huge [14]. We apply Group DETR to
DINO [65] and follow its training pipeline and settings: pre-
train the encoder with a self-supervised method, then pre-
train the whole model on Object365 [46], and last fine-tune
the whole model on COCO [34]. Our model is the first
to achieve 64.5 mAP on COCO test-dev, which is still su-
perior to other methods with larger encoder and more pre-
training data [39, 55, 58, 60]. The details and comparisons
with other methods are provided in Appendix.

Table 4. Effectiveness of Group DETR with more epochs.
Group DETR still outperforms baselines by non-trivial margins
with more training epochs (36 or 50 epochs). Settings and nota-
tions are consistent with Table 3, except for the training epochs
(36 epochs for DINO-4scale by following the original paper [65]
and 50 epochs for other models). ‘DINO-4scale-Swin-L’ means it
adopts Swin-Large [40] as the backbone.

Model w/ Group mAP APs APm APl

C-DETR
40.9 20.5 44.2 59.6

✓ 43.4 (+2.5) 23.0 47.3 62.3

C-DETR-DC5
43.7 23.9 47.6 60.1

✓ 45.8 (+2.1) 26.8 49.7 63.1

DAB-DETR
42.2 21.5 45.7 60.3

✓ 44.5 (+2.3) 24.2 48.5 63.2

DAB-DETR-DC5
44.5 25.3 48.2 62.3

✓ 46.7 (+2.2) 27.6 50.9 64.0

DN-DETR
44.0 23.9 47.7 62.9

✓ 45.4 (+1.4) 25.1 49.3 63.8

DN-DETR-DC5
47.5 27.9 50.7 65.9

✓ 48.0 (+0.5) 29.3 52.1 65.4

DAB-D-DETR
48.1 31.4 51.4 63.4

✓ 49.7 (+1.6) 31.4 52.5 65.6

DINO-4scale
50.9 34.6 54.1 64.6

✓ 51.3 (+0.4) 34.7 54.5 65.3

DINO-4scale-Swin-L
58.0 41.3 61.9 74.0

✓ 58.4 (+0.4) 41.0 62.5 73.9

4.2. More Applications

Group DETR is applicable to DETR-style techniques to
other vision problems. We report the results for two ad-
ditional problems: multi-view 3D object detection [24, 32,
37, 38] and instance segmentation [9, 30], to further demon-
strate the effectiveness.
Multi-view 3D object detection. We report the results
over PETR [37] and PETR v2 [38] on the nuScenes val
dataset [2]. Table 5 shows that Group DETR brings signif-
icant gains to PETR and PETR v2 with 24 training epochs
in terms of both the nuScenes Detection Score (NDS) and
mAP scores.

Table 5. Results on multi-view 3D object detection. All exper-
iments are evaluated on the nuScenes val set [2]. We train these
experiments for 24 epochs with VoVNetV2 [27] as the backbone
and with the image size of 800 × 320. We follow all the settings
and hyper-parameters of PETR [37] and PETR v2 [38].

Model w/ Group NDS mAP

PETR
42.0 37.4

✓ 45.0 (+3.0) 38.8 (+1.4)

PETR v2
50.3 40.7

✓ 51.3 (+1.0) 41.9 (+1.2)

Instance segmentation. We demonstrate the effectiveness
of the representative method, Mask2Former [9]. The results
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Figure 9. Influence of group number. The x-axis is the number of
groups. It can be seen that the performance becomes stable when
the number of groups reaches 11.

are given in Table 6. Group DETR achieves a 1.2 (0.3)
mAPm gain with 12 (50) epochs.

Table 6. Results on instance segmentation. The mask mAP
(mAPm) is used for instance segmentation on COCO val2017. We
adopt Mask2Former [9] as the baseline. The experiments are con-
ducted with ResNet-50 [22] as the backbone, following all the set-
tings of Mask2Former.

Epochs w/ Group mAPm APm
s APm

m APm
l

12 38.5 17.6 41.4 60.4

12 ✓ 39.7 (+1.2) 18.7 42.8 60.8

50 43.7 23.4 47.2 64.8

50 ✓ 44.0 (+0.3) 23.8 47.1 65.1

4.3. Ablation Study

We conduct the ablation study by using Conditional
DETR [41] as the baseline. The CNN backbone is ResNet-
50 [22], and the training epoch nubmer is 12. The perfor-
mances are evaluated on COCO val2017 [34]. We mainly
study the effects of the key design: group-wise one-to-many
assignment, separate self-attention, and group number.

Group-wise one-to-many assignment and separate self-
attention. Table 7 shows how group-wise one-to-many
(o2m) assignment and separate self-attention make contri-
butions. In comparison to the baseline (a), group-wise o2m
assignment improves the mAP score from 32.6 mAP to 34.8
mAP: with the gain 2.2. The separate self attention (Sep.
SA) further gets a 2.8 mAP gain. In addition, we report
naive one-to-many assignment. The results are very poor,
which is reasonable in that there are duplicate predictions
and there is a lack of scoring mechanisms for demoting
them. The results suggest that both group-wise o2m assign-
ment and separate self-attention are effective.

Group number. Figure 9 shows the influence of the num-
ber of groups K in Group DETR. The detection perfor-
mance improves when increasing the number of groups, and
becomes stable when the group number reaches 11. Thus,
we adopt K = 11 by default in Group DETR in our experi-
ments.

Table 7. Effects of group-wise one-to-many assignment and
separate self-attention. (a) baseline: one-to-one assignment with
300 object queries. (b) naive one-to-many assignment with 3300
object queries for training and inference. (c) group-wise one-to-
many assignment and no separate self-attention with 11 groups of
300 queries, inference with a group of 300 queries. (d) group-
wise one-to-many assignment and separate self-attention with 11
groups of 300 queries, inference with a group of 300 queries. o2m
= one-to-many, Sep. SA = separate self-attention.

o2m Sep. SA mAP APs APm APl

(a) × × 32.6 14.4 34.9 48.6

(b) Naive × 8.4 8.0 13.2 13.3

(c) Group × 34.8 16.4 37.7 51.4

(d) Group ✓ 37.6 18.2 40.7 55.9

5. Related Works

There are two main lines for accelerating DETR training:
modify cross-attention and stabilize one-to-one assignment.
The two are complementary and can be combined to further
boost the performance.

Modifying cross-attention. Cross-attention module aims
to collect the information from the image features useful
to classification and localization. Various methods are pro-
posed to select the informative image regions more effi-
ciently and effectively [16, 8, 57, 61, 36, 17]. For exam-
ple, Deformable attention [70] selects the highly informa-
tive positions dynamically according to the previous de-
coder embedding. Conditional DETR [8] instead continues
to use the normal global attention, and dynamically com-
putes the spatial attention to softly select the informative
regions. SMCA [16] uses the Gaussian-like weight for spa-
tial modulation.

Stabilizing one-to-one assignment. DETR [4] relies on
one-to-one assignment, where each ground-truth object is
assigned to a single prediction through building a bipartite
matching between the predictions and the ground-truth ob-
jects. DN-DETR [29] finds the assignment process is unsta-
ble and attributes the slow convergence issue to the insta-
bilities. Thus, DN-DETR [29] introduces groups of noisy
queries by adding noises to ground-truth objects, to stabilize
the assignment, leading to faster convergence. DINO [65]
makes further improvement through contrastive denoising
training to generate both positive and negative noise queries
with different noise levels. Our approach studies the assign-
ment mechanism instead for introducing more supervision.

One-to-many assignment. One-to-many assignment is
widely adopted in deep detectors [44, 21, 33, 52], and has
attracted a lot of interest [67, 26, 69, 18, 6, 54, 49]. For ex-
ample, Faster R-CNN [44] and FCOS [52] produce multiple
positive anchors and pixels for each ground-truth object. In
this paper, we investigate one-to-many assignment in a fea-



sible manner for the end-to-end detector DETR.
Concurrent with our work, H-DETR [25] also uses one-

to-many assignment to speed up DETR training conver-
gence. Our Group DETR and H-DETR are related, but
different: (1) Group DETR introduces group-wise one-to-
many assignment with separate self-attention with the same
number of object queries in each group. H-DETR adopts
hybrid assignments in two different groups: One group uses
one-to-one assignment and another uses one-to-many as-
signment with more object queries. (2) All the decoders
in Group DETR can be used for inference. But the addi-
tional decoder in H-DETR is not directly used and requires
NMS for inference. (3) During training, our architecture in-
troduces one parameter: the number of groups. In contrast,
H-DETR introduces the number of additional queries and
the number of additional positive queries.

DETA [42] is another concurrent work with our Group
DETR. DETA directly uses one-to-many assignment and
brings NMS back to DETR frameworks. While our method
provides group-wise one-to-many assignment and main-
tains end-to-end detection.

6. Conclusion
The key points in Group DETR include group-wise one-

to-many assignment and parallel self-attention. The success
stems from involving more groups of object queries as an
addition to the primary group of object queries, and thus in-
troducing more supervision. Group-wise assignment mech-
anism makes sure that the competition among predictions
happens within each group separately, and separate self-
attention eases the training, Thus, the NMS pose-processing
is not necessary, and the inference process is kept the same
as normally trained DETR and not dependent on the group
design. Our approach is simple, easily implemented, and
general.
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Appendix

A. More Details and Results
A.1. Datasets and Evaluation Metrics

We perform the object detection and instance segmen-
tation experiments on the COCO 2017 [34] dataset, which
contains about 118K training (train2017) images, 5K val-
idation (val2017) images, and 20K testing (test-dev) im-

ages. Following the common practice, we train our model
on COCO train2017 and report the standard mean aver-
age precision (mAP) result (box mAP for object detection
and mask mAP for instance segmentation) on the COCO
val2017 dataset under different IoU thresholds (from 0.5 to
0.95) and object scales (small, medium, and large). We also
report the result on COCO test-dev with a large foundation
model (ViT-Huge [62, 20, 7]).

We perform multi-view 3D object detection experiments
on the nuScenes [2] dataset, which contains 1000 driving
sequences. There are 700 for train set, 150 for val set and
150 for test set. We report the standard nuScenes Detection
Score (NDS) and mean Average Precision (mAP) result on
the nuScenes val set.

A.2. Implementation Details

Our Group DETR adopts multiple groups of object
queries. Each group shares the same architectures and
numbers of object queries3. It resembles data augmenta-
tion with automatically-learned object query augmentation
and is also equivalent to simultaneously training parameter-
sharing networks of the same architecture.

In one-stage DETR frameworks, including Conditional
DETR [41], DAB-DETR [36], DN-DETR [29], and DAB-
Deformable-DETR [36, 70], we can easily implement
Group DETR by adopting multiple groups of learnable ob-
ject queries. While the situation is different in two-stage
DETR frameworks, such as DINO [65]. The initializa-
tions of object queries are dependent on the top-N predicted
boxes of the first stage. To make the object queries in multi-
ple groups similar to each other, we construct multiple pairs
of classification and regression prediction heads in the first
stage, each pair of which provides initialization for the ob-
ject queries in the corresponding group. As for model infer-
ence, we only need one pair of these prediction heads, the
same as the original model.

A.3. More Results of DN-DETR

Results of DN-DETR with different numbers of denois-
ing queries. We conduct experiments with different num-
bers of denoising queries in DN-DETR [29]. The results in
Figure 10 suggest that increasing the number of denoising
queries can not achieve further improvements and show un-
stable performances. The effects of denoising queries differ
from the ones of Group DETR (Figure 8 in the main paper).
We choose to use 100 denoising queries in our experiments
in Table 3 and Table 4 in the main paper by following the
setting in the original paper [29]. To make direct compar-
isons with DN-DETR [29], we report the best results across

3When applying Group DETR to DN-DETR [29] and DINO [65], we
add the corresponding query denoising task in each group to keep the same
architecture with the original implementation.



Table 8. Our method achieves 64.5 mAP on the COCO test-dev.
Method #Params Encoder Pretraining Data Detector Pretraining Data w/ Mask mAP

Swin-L (HTC++) [40] 284M IN-22K (14M) n/a ✓ 58.7

DyHead (Swin-L) [11] 213M IN-22K (14M) n/a ✓ 60.6

Soft-Teacher (Swin-L) [59] 284M IN-22K (14M) COCO-unlabeled + O365 ✓ 61.3

GLIP (DyHead) [31] ≥284M IN-22K (14M) FourODs + GoldG + Cap24M × 61.5

Florence (CoSwin-H) [66] ≥637M FLD-900M (900M) FLD-9M × 62.4

GLIPv2 (CoSwin-H) [66] ≥637M FLD-900M (900M) merged datab ✓ 62.4

SwinV2-G (HTC++) [39] 3.0B IN-22K + ext-70M (84M) O365 ✓ 63.1

DINO-5scale (Swin-L) [65] 218M IN-22K (14M) O365 × 63.3

BEIT-3 (ViTDet) [55] 1.9B merged dataa O365 ✓ 63.7

FD-SwinV2-G (HTC++) [58] 3.0B IN-22K + IN-1K + ext-70M (85M) O365 ✓ 64.2

FocalNet-H (DINO-5scale) [60] 746M IN-22K (14M) O365 × 64.3

Co-Deformable-DETR (MixMIM-g) [35, 71] 1.0B IN-1K (1M) O365 × 64.5

EVA (CMask R-CNN) [15, 3, 21] ≥1.0B merged-30Mc O365 ✓ 64.7

InternImage-H (DINO-5scale) [56, 48, 65] 2.18B merged datad O365 × 65.4

ViT-Huge + Group DETR (DINO-4scale) 629M IN-1K (1M) O365 × 64.5

All the results are achieved with test time augmentation. In the table, we follow the notations for various datasets used in DINO [65] and FocalNet [60].
‘w/ Mask’ means using mask annotations when finetuning the detectors on COCO [34]. And for the baseline DINO, we adopt the 4scale version [65].

‘merged dataa’: IN-22K + Image-Text (35M) + Text (160GB). ‘merged datab’: FourODs + INBoxes + GoldG + CC15M + SBU.
‘merged-30Mc’: IN-21K + O365 + COCO + ADE20K + CC15M. ‘merged datad’: Laion-400M + YFCC-15M + CC12M.

100 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300
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Figure 10. Results of DN-DETR with different number of de-
noising queries. We show the detection performances (mAP) on
MS COCO [34] of adopting different number of denoising queries
in DN-DETR.

different numbers of denoising queries in Figure 10 (38.8
mAP).

A.4. Applying Group DETR to SAM-DETR series

We also apply Group DETR to another stream of work
to accelerate DETR training, SAM-DETR [63] and SAM-
DETR++ [64]. The results are given in Table 9. Improve-
ments on SAM-DETR [63] (gains: 3.1 mAP with 12e and
1.9 mAP with 50e) and SAM-DETR++ [64] (gains: 2.2
mAP with 12e and 1.3 mAP with 50e) show that Group
DETR is complementary to them as well.

B. More Comparisons on COCO test-dev

Settings. To compare state-of-the-art results on COCO
test-dev, we follow DINO [65] to build our model with a
large foundation model, ViT-Huge. We follow its training
pipeline and settings: (i) pre-train [7] and fine-tune the ViT-
Huge on ImageNet-1K [13], (ii) pre-train the whole detec-
tor on Object365 [46] for 24 epochs with 64 A100 GPUs,

and (iii) finetune the detector on COCO [34] for 20 epochs
with 32 A100 GPUs. When pre-training the detector on Ob-
ject365, we follow DINO [65] to only leave the first 5k out
of 80k validation images as the validation set and add the
other images to the training set. We also use other schemes
when training the detector on Object365 and COCO, such
as enlarging the image size to 1.5× when finetuning and
adopting test time augmentation. In addition, we apply
the exponential moving average (EMA) technique [50], use
CDN queries [65], and adopt 11 groups with Group DETR
during detector pre-training and fine-tuning. When fine-
tuning the detector on COCO, we find that applying learn-
ing rate decay [10, 1, 20, 7] for the components of the de-
tector gives a ∼0.9 mAP gain on COCO. During testing, we
adopt test time augmentation with various scales and their
flipped counterparts and perform fusion4 on the query fea-
tures and the final predictions [65].

Results. Table 8 shows the results. Our model is the first
to achieve 64.5 mAP on COCO test-dev. Only pre-training
the ViT-Huge on ImageNet-1K [13], our model can outper-
form other methods with larger models (e.g., BEIT-3 [55]
and SwinV2-G [39, 58]) and more pre-training data. Mod-
els such as EVA [15] and InterImage-H [56], with larger
foundation models (ViT-giant [62] or InterImage-H [56])
and more data [13, 5, 47, 68, 51, 45], give higher results
(64.7 mAP and 65.4 mAP) than our model. We expect that
our results will be further improved with more pre-training
data and larger models.

4According to our experiments, the fusion on the query features builds a
robust feature across different scales and gives a ∼0.8 mAP improvement.



Table 9. Effectiveness of Group DETR on SAM-DETR and
SAM-DETR++. All experiments adopt ResNet-50 [22] and eval-
uate on COCO val2017 [34].

Model w/ Group Epochs mAP

SAM-DETR
12 33.1

✓ 12 36.2 (+3.1)

SAM-DETR
50 39.8

✓ 50 41.7 (+1.9)

SAM-DETR++
12 41.1

✓ 12 43.3 (+2.2)

SAM-DETR++
50 46.1

✓ 50 47.4 (+1.3)
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