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Abstract

Self-supervised learning (SSL) methods targeting scene
images have seen a rapid growth recently, and they mostly
rely on either a dedicated dense matching mechanism or
a costly unsupervised object discovery module. This pa-
per shows that instead of hinging on these strenuous opera-
tions, quality image representations can be learned by treat-
ing scene/multi-label image SSL simply as a multi-label
classification problem, which greatly simplifies the learn-
ing framework. Specifically, multiple binary pseudo-labels
are assigned for each input image by comparing its em-
beddings with those in two dictionaries, and the network
is optimized using the binary cross entropy loss. The pro-
posed method is named Multi-Label Self-supervised learn-
ing (MLS). Visualizations qualitatively show that clearly the
pseudo-labels by MLS can automatically find semantically
similar pseudo-positive pairs across different images to fa-
cilitate contrastive learning. MLS learns high quality rep-
resentations on MS-COCO and achieves state-of-the-art re-
sults on classification, detection and segmentation bench-
marks. At the same time, MLS is much simpler than existing
methods, making it easier to deploy and for further explo-
ration.

1. Introduction
Self-supervised learning (SSL) methods based on con-

trastive learning [4, 3] have facilitated numerous down-
stream tasks. Those [16, 6, 14, 13] that target object-
centric images (e.g., ImageNet) are already relatively ma-
ture, but inventing SSL methods for scene images (e.g.,
MS-COCO [23]) gains popularity recently. Since unlabeled
scene images (or multi-label images) are more natural [46]
and richer in semantics, various SSL methods [39, 45, 19,
40, 20, 44] have successively emerged.

SSL methods focusing on scene/multi-label images can
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Figure 1. Illustrating our motivation. An image patch cropped
from a multi-label image comprises multiple objects. Each object
can find similar (‘pos’) and dissimilar (‘neg’) images from a large
dictionary. The whole image patch is pulled closer to those posi-
tive ones and pushed away from the negatives using a BCE loss.
See Fig. 4 for positives and negatives chosen by our algorithm.

be summarized into two categories. One is dense matching,
such as DenseCL [39], MaskCo [51] and Self-EMD [24].
They take the features’ locations into account to improve the
performance on dense prediction tasks. They mostly differ
in how the heuristic matching metric is designed. Another
branch of work like SoCo [41] and ORL [46] resort to unsu-
pervised object discovery to find local object contents, and
learn quality representation with both object- and scene-
level semantics. However, they usually involve multi-stage
SSL pretraining on top of expensive box generation [35].

These scene image SSL methods are generally based on
the contrastive loss (e.g., InfoNCE [27]), where two ran-
domly augmented views of the same image are forced to
be close to each other, and optionally push away views
from different images. The loss assumes single-label im-
ages [27], but the input are in fact multi-label: hence there
is a mismatch between the loss and the data. On one hand,
it can be difficult for two views randomly cropped from the
same scene image to be exactly matched [39, 47]. On the
other hand, there is only one matched positive pair in In-
foNCE, while more positive pairs are naturally preferred: a
view cropped from a multi-label image likely contains mul-
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tiple semantic concepts or objects.
Therefore, this paper proposes a simple yet direct ap-

proach towards scene image SSL, named as Multi-Label
Self-supervised learning (MLS). We treat each image (or
randomly cropped patch) as a semantic bag with multiple
objects, then retrieve images sharing similar semantics with
any object in the bag from a large image dictionary. Note
that an object in a bag is not necessarily within the set of
human-annotated categories. As illustrated in Fig. 1, the
cropped patch contains person, horse, road and bus, which
will be pulled closer to similar images containing any of
these objects and be pushed away from those dissimilar
ones. Specifically, the patch’s embedding produced by a
backbone network will select top k similar embeddings as
k (pseudo) positive images from a dictionary, and the rest
will be negatives. In another dictionary containing images
in the same order as the first one, the BCE (binary cross en-
tropy) loss plus these binary pseudo-labels will classify the
patch’s embedding after an MLP projector using all the im-
ages in this second dictionary as classifiers, and generates
gradients that optimize the backbone network. This frame-
work is illustrated in Fig. 2.

Our framework has two benefits. First, the large dictio-
nary has diverse positive samples for any given input, hence
provides many quality positive pairs with deformations or
intra-class variations [11]. Second, unlike InfoNCE, the
BCE loss is not mutually exclusive among classes, hence
allows the co-occurrence of multiple classes in one scene
image. By applying our SSL method to scene images (e.g.,
MS-COCO), we achieve state-of-the-art results on object
detection, instance segmentation and various classification
benchmarks. Our contributions are summarized as follows:

1. For the first time, we formulate scene image SSL as a
multi-label classification, and propose our Multi-Label
Self-supervised (MLS) learning approach.

2. Unlike previous methods that adopt dense matching or
unsupervised object discovery, MLS is simple in con-
cept, and enjoys intuitive visualizations (c.f . Fig. 4)
which clearly verifies our motivation.

3. Extensive experiments of object detection, instance
segmentation and classification on various benchmark
datasets, together with ablation studies, clearly demon-
strate the effectiveness of our method.

2. Related Work

Traditional SSL methods. Self-supervised learning
(SSL) has emerged as a promising direction towards un-
supervised representation learning [6]. Early SSL meth-
ods [27, 33] are mainly derived from noise contrastive es-
timation [15]. Later, SSL methods based on contrastive

learning and clustering paradigms have been proved effec-
tive, too. Representative methods such as SimCLR [4],
MoCo [16], BYOL [14] and SwAV [3] have exhibited both
simplicity and generalization ability [36] to various down-
stream tasks. A set of variants such as Simsiam [7], In-
foMin [34] and NNCLR [11] try to simplify, analyze and
optimize traditional SSL methods from different aspects.
However, all of them mainly focus on pretraining on object-
centric images like the ImageNet dataset [32] for image
classification (e.g., ImageNet linear evaluation), but pay less
attention to dense prediction tasks.

Scene-image SSL methods. The development of scene
(multi-label) image SSL is a diversified process [39, 53],
which mainly contains two branches: dedicated dense
feature matching and multi-stage pretraining with unsu-
pervised object discovery. DenseCL [39], PixPro [47],
ReSim [44], LEWEL [20] and SetSim [40] all apply the
InfoNCE loss in a dense matching manner. They propose
dense loss functions in addition to the traditional InfoNCE
loss, and their pipelines differ in how the matching metrics
are (probably manually) selected. Another branch of meth-
ods such as SoCo [41] and ORL [46] try to learn quality
feature representation with both scene- and object-level in-
formation: they utilize multi-stage pretraining to find corre-
spondence across images with the help of unsupervised ob-
ject generation methods [35, 55], which suffers from huge
computation costs. A recent SSL method [36] that is close
to our work proposed kNN-MoCo as an extra module. But,
this method is still in a single-label InfoNCE manner and
the improvement is small compared to our multi-label MLS
(c.f . Table 6). Compared to existing methods, our MLS is
novel in concept and simple in implementation.

Multi-label classification. Multi-label recognition aims
to predict the presence or absence of each object class in an
input image [48]. Traditional methods are based on three as-
pects: attention modules [54, 52], correlation matrix [8, 5]
and unsupervised box generation [42, 38]. The loss function
adopted in this task is mostly binary cross entropy (BCE),
which is not mutually exclusive among classes [48], such
that the presence of one class does not suppress the exis-
tence of others. In this paper, we inherit this unique prop-
erty of multi-label classification and try to integrate BCE
into self-supervised learning on scene images. We adopt
the joint image embedding to generate k pseudo-labels,
together with the classification logits to calculate the fi-
nal loss term, which effectively guides the multi-label self-
supervised learning.

3. Method
In this section, we start by describing the preliminaries

of self-supervised learning, including the InfoNCE loss and
its variants. We will then describe the proposed Multi-Label
Self-supervised (MLS) learning methods and how the over-



all loss function is formulated and optimized.

3.1. Preliminaries

Self-supervised learning methods, whether contrastive
based [16, 14] or clustering based [3], usually rely on the
InfoNCE loss [27] or its variants [33]:

Lnce = − log
exp (q · k+/τ)

exp (q · k+/τ) +
∑

k−
exp (q · k−/τ)

,

(1)
where q and k+ are positive embeddings (similar to z1 and
z2 in Fig. 2) after the multi-layer perception (MLP) projec-
tor of two encoders. The negative features k− may come
from a memory bank [43], a large dictionary or a queue [6],
or the current mini-batch [4]. Negatives may be removed by
using additional techniques (e.g., the stop gradient adopted
in BYOL [14] and SimSiam [7]).

Similar with the form of a normal softmax function [54]
that is popular in single-label classification, InfoNCE is mu-
tually exclusive among all classes, such that there can only
be one positive out of all pseudo concepts. There are vari-
ants of InfoNCE (such as SupCon [21]) where more positive
pairs are excavated and accumulated, with each item being
a sole InfoNCE form. These variants can be summarized as
follows:

− 1

Npos

Npos∑
i=1

log
exp (q · ki+/τ)

exp (q · ki+/τ) +
∑

k−
exp (q · k−/τ)

,

(2)
in which the total Npos positives are enumerated over ki+.
It can indeed alleviate the dilemma of the traditional form
by involving more positives, but all these methods mainly
focus on supervised learning [21] or lack extensive experi-
ments on large dense prediction tasks [36].

More importantly, the concept of multi-label learning is
not introduced, that is, the classes are still mutually exclu-
sive, which hinders the model from learning quality repre-
sentations from scene image self-supervised learning.

3.2. Multi-label self-supervised learning

Now, we will introduce the proposed MLS method in
detail. As discussed above, previous SSL methods who tar-
geted scene images all adopt loss functions in the single-
label form, while in this paper, we aim to reduce the gap
between the optimization objective and the unique property
of multi-label images.

We adopt MoCo-v2 [6] as our base structure. Specifi-
cally, given an input image I , it is first cropped and aug-
mented into two different views:

v1 = T (I) ,

v2 = T ′(I) ,
(3)

where T and T ′ are two randomly sampled data augmenta-
tions. These two views are then passed through the base

encoder ϕ(·) and a momentum encoder ϕm(·) to get the
backbone features g1 and g2:

g1 = ϕ(v1), g2 = ϕm(v2) , (4)

in which g1, g2 ∈ Rdg (e.g., dg= 2048 in ResNet-50 [18]).
Next, the backbone features are both passed through a
multi-layer perceptron (MLP) projector f(·) or fm(·)

z1 = f(g1), z2 = fm(g2) (5)

to get the final embeddings z1, z2 ∈ Rdz . Similar to MoCo-
v2 that retains a large dictionary Qz (shown in Fig. 2), here
we keep two queues Qg ∈ RD×dg and Qz ∈ RD×dz with
normalized embeddings coming from g2 and z2, respec-
tively.

g2
||g2||

Enqueue
=⇒ Qg ,

z2
||z2||

Enqueue
=⇒ Qz .

(6)

Note that for simplicity the enqueue and dequeue opera-
tions are not shown in Fig. 2, and that features stored in
Qg and Qz are all kept in the same order. embeddings in
both queues are L2 normalized.

Then, the backbone feature g1 of view v1 picks its top
k nearest neighbors from Qg and treats them as containing
similar semantics as that in the input image’s view v1 (e.g.,
containing at least one object that appears in the input view
v1). These nearest neighbors are given pseudo positive la-
bels and all the rest items in Qg are pseudo negatives. This
step forms multiple binary pseudo-labels y ∈ RD:

y = IsTopk(g1 ⊙Qg) , (7)

where ⊙ is the matrix multiplication operation.
In the next step, the normalized embeddings inside Qz

are treated as normalized classifiers. They are multiplied by
the feature z1 to produce the logits p ∈ RD, which classify
z1 into the D pseudo categories:

p = z1 ⊙Qz . (8)

Finally, the pseudo labels y and the classified logits interact
with each other, and are optimized using the binary cross
entropy (BCE) loss,

Lml =
−1

D

D∑
i=1

[
yi log σ(

pi
τ
) + (1− yi) log(1− σ(

pi
τ
)
]
,

(9)
in which τ is a temperature hyperparameter (following
MoCo-v2’s), and σ(·) is the sigmoid function [52] that maps
the scores to the range [0, 1].
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Figure 2. The proposed MLS method. An image I is first augmented to two views and sent to two encoders. The embeddings g1, g2 ∈ Rdg

and z1, z2 ∈ Rdz are features after the backbone and the MLP, respectively. View 2’s features (g2 and z2) are enqueued to form two
dictionaries Qg ∈ RD×dg and Qz ∈ RD×dz in the same order. As shown in the right half, the embedding g1 picks its top k nearest
embeddings from the queue Qg to produce binary pseudo labels y ∈ RD . Then, the embeddings from Qz are treated as classifiers that
calculate the logit p ∈ RD of z1, which is compared against the pseudo-labels y by a BCE loss. Best viewed in color.

3.3. Optimization

When we use the multi-label loss Lml as the only loss
function, we found that empirically the optimization pro-
cess often faces an unstable training issue. We believe this
unstable optimization should be attributed to the adverse in-
teraction between assigning pseudo-labels and learning rep-
resentations from a poor starting point. High quality em-
beddings from the queues Qg and Qz cannot be obtained if
the pseudo-labels are incorrect. At the same time picking
nearest neighbors and classification will surely fail if the
enqueued embeddings are misleading (a point which was
mentioned in DenseCL [39], too).

Two strategies easily stabilize the multi-label SSL learn-
ing. One is to use InfoNCE alone in the first few epochs to
warmup the dictionary Qg and Qz . The other remedy is to
combine InfoNCE with our multi-label BCE loss during the
whole training process, which is widely used in previous
methods [39, 1, 40] and easier in implementation. Hence,
we adopt this strategy and our overall loss function is for-
mulated as:

L = Lnce + λLml , (10)

where Lnce is the InfoNCE loss that is adopted in MoCo-v2
(c.f . Eq. 1) and along with many multi-label SSL methods.
Lml is our multi-label BCE loss (c.f . Eq. 9). The value of
combination weight λ is fixed at λ = 0.5.

The proposed method is abbreviated as MLS (multi-label
self-supervised) learning.

4. Experiments
Now we validate the effectiveness of MLS through ex-

tensive experiments. We first describe the settings of our ex-
periments, including datasets for upstream pretraining and
downstream finetuning, training details, and the architec-
ture for object detection, instance/semantic segmentation
and image classification.

4.1. Experimental settings

Datasets. We adopted the MS-COCO train2017 set [23]
for SSL pretraining, which is widely applied in the study
of scene image SSL [46, 41, 39]. Note that we did not
use ImageNet. For downstream tasks, we conducted exper-
iments on MS-COCO, VOC0712 [12], CityScapes [10] as
well as 7 small classification datasets ( CUB200 [37], Flow-
ers [26], Cars [22], Aircraft [25], Indoor67 [30], Pets [28]
and DTD [9]) following previous SSL methods [2]. Specif-
ically, MS-COCO contains 118,287 and 5000 images for
training and validation, respectively. VOC2007 has 5011
and 4952 images in the trainval and test sets, respectively.
CityScapes is a semantic segmentation dataset containing
2975 and 500 images for training and validation, respec-
tively. For more information about the 7 small classification
datasets, please refer to [2] for a more detailed description.

Pretraining. We adopted ResNet-50 [18] as our base en-
coder (c.f . Fig. 2) and mostly follow the structure of MoCo-
v2. We pretrained our models for 400 or 800 epochs on MS-
COCO, set learning rate as 0.3, weight decay as 0.0001.
For data augmentation, we adopted random resized crop,
color distortion, random gray scale, random flip, etc, fol-
lowing [36, 3]. The queue size D of Qg and Qz was 4096.
The temperature τ was set as 0.2 and was shared between
the InfoNCE loss and our multi-label BCE loss. The di-
mensionalities of the embeddings g1 and z1 were 2048 and
256, respectively. For faster convergence, we adjusted the
momentum update coefficient to 0.995. With regard to our
multi-label BCE loss, the parameter k was set as 20, and the
combination coefficient λ was 0.5.

Downstream. We finetuned the pretrained model on
various benchmarks, including MS-COCO object detection
and instance segmentation, CityScapes semantic segmen-
tation, VOC0712 detection and other classification bench-
marks. Specifically, we finetuned on MS-COCO using the
Mask-RCNN R50-FPN/C4 [17] architecture for 90k itera-



Table 1. Results of COCO detection and segmentation. All SSL models (except those pretrained on ImageNet) were first pretrained on
MS-COCO and then finetuned on COCO with Mask R-CNN R50-FPN [17]. Our MLS was pretrained for 400 or 800 epochs for fair
comparisons. We reproduced SoCo∗ with the settings in [41]. Note that SetSim [40] and ReSim [44] are adaptable to scene image
pretraining, but only reported ImageNet pretraining results. The column ‘Epochs’ means the number of pretraining epochs. ORL+ [46]
needs two pretraining stages (800 epochs each), so the total training time is doubled.

Method Data Epochs Detection Segmentation
APbbox APbbox

50 APbbox
75 APseg APseg

50 APseg
75

Supervised [41] ImageNet 90 38.9 59.6 42.7 35.4 56.5 38.1

ReSim-C4 [44] ImageNet 200 39.3 59.7 43.1 35.7 56.7 38.1
LEWELM [20] ImageNet 200 40.0 59.8 43.7 36.1 57.0 38.7
SetSim [40] ImageNet 200 40.2 60.7 43.9 36.4 57.7 39.0
SoCo∗ [41] COCO 400 39.1 59.1 42.7 35.4 56.0 37.8
Self-EMD [24] COCO 800 39.3 60.1 42.8 - - -
MoCo-v2 [6] COCO 800 38.5 58.1 42.1 34.8 55.3 37.3
BYOL [14] COCO 800 38.8 58.5 42.2 35.0 55.9 38.1
DenseCL [39] COCO 800 39.6 59.3 43.3 35.7 56.5 38.4
ORL+ [46] COCO 1600 40.3 60.2 44.4 36.3 57.3 38.9

MLS COCO 400 40.1 60.2 43.9 36.2 57.3 38.6
MLS COCO 800 40.5 60.7 44.5 36.5 57.7 39.1

tions. For VOC0712, we finetuned for 24k iterations with
Faster-RCNN R50-C4 [31]. For CityScapes semantic seg-
mentation, we adopted PSANet [50] and PSPNet [49] for
40k iterations. For classification, we chose VOC2007 for
multi-label recognition and finetuned 120 epochs on 7 small
classification datasets. We ran 3 times on VOC detection
and 2 runs on CityScapes since these results have relatively
large variations. Following previous studies, the evaluation
metrics for detection, segmentation and classification are
AP, mIoU/mAcc and top-1 accuracy, respectively. All the
experiments were conducted with RTX 3090 GPUs in the
PyTorch [29] framework.

4.2. COCO detection and segmentation results

We first evaluated downstream performance on MS-
COCO object detection and instance segmentation. Fol-
lowing previous work, we used Mask R-CNN R50-FPN for
finetuning. The results is in Table 1. DenseCL [39] and
Self-EMD [24] are those adopting dense matching, while
SoCo [41] and ORL [46] both resort to the unsupervised
object discovery method Selective Search [35]. For a fair
comparison, we reproduced SoCo’s results since it was orig-
inally pretrained on COCO+ [41] (which is based on COCO
but has more unlabeled data). Note that ReSim-C4 [44] and
SetSim [40] are suitable for scene image pretraining, but
only ImageNet results were reported.

As shown in Table 1, with only 400 epochs of pretrain-
ing, our MLS is almost better than all counterparts (e.g.,
DenseCL, SoCo, LEWEL [20]) and surpasses supervised
results by 1.2% APbbox and 0.8% APseg . With the standard
800 epochs of pretraining, MLS is better than all previous

Table 2. Results on COCO with the Mask R-CNN R50-C4 de-
tector. ‘Data’ stands for the pretraining dataset. ‘CC’ and ‘IN’
means COCO and ImageNet, respectively. All SSL models were
pretrained for 400 epochs on MS-COCO.

Method Data
Detection Segmentation

APbbox APbbox
50 APbbox

75 APseg APseg
50 APseg

75

Random - 26.4 44.0 27.8 29.3 46.9 30.8
Supervised IN 38.1 58.1 41.1 33.2 54.8 35.0
BYOL CC 36.9 56.7 39.4 32.4 53.5 34.3
MoCo-v2 CC 37.3 56.7 40.4 32.8 53.5 34.9
SoCo∗ CC 36.9 56.2 39.7 32.4 53.0 34.5
DenseCL CC 38.3 57.9 41.4 33.5 54.4 35.7

MLS CC 38.6 58.3 41.5 33.8 55.1 36.0

scene image SSL methods. This further verifies our motiva-
tion: formulating scene image self-supervised learning as
a multi-label classification is both simpler in concept and
effective in performance.

We also tried the Mask R-CNN R50-C4 structure. Since
there are relatively less SSL results based on this structure,
we reproduced supervised learning, BYOL [14], MoCo-
v2 [6], SoCo [41] and DenseCL [39] methods by pretraining
and finetuning on MS-COCO. To compare fairly, all these
SSL models were pretrained for 400 epochs.

As can be found in Table 2, our MLS surpasses all pre-
vious self-supervised learning methods like SoCo [41] and
DenseCL [39], despite being much simpler than them. Note
that SoCo needs unsupervised box generation and multi-
ple auxiliary loss functions. Our MLS also achieves bet-
ter results than supervised ImageNet pretraining, with an



Table 3. Results of CityScapes semantic segmentation using two
different segmentation pipelines (PSANet [50] and PSPNet [49]).
‘Data’ stands for the pretraining dataset. ‘CC’ and ‘IN’ means
COCO and ImageNet, respectively.

Method Data
PSANet PSPNet

mIoU mAcc aAcc mIoU mAcc aAcc

Supervised IN 77.5 86.6 95.9 77.8 86.7 95.9

BYOL CC 77.6 86.6 95.9 76.9 85.9 95.9
MoCo-v2 CC 76.8 85.8 95.8 76.8 85.4 95.8
DenseCL CC 77.6 86.6 96.0 77.6 86.3 95.9
SoCo CC 76.3 85.3 95.8 76.5 85.3 95.8

MLS CC 79.0 87.3 96.2 78.5 86.6 96.1

Table 4. Results of VOC0712 object detection using the Faster-
RCNN R50-C4 object detector. All SSL models were pretrained
on MS-COCO for 800 epochs. BYOL and MoCo-v2 results were
reproduced by us.

Method Data AP AP50 AP75

Random - 32.8 59.0 31.6
Supervised ImageNet 53.3 81.0 58.8

SwAV [3] ImageNet 45.1 77.4 46.5
SimCLR [4] ImageNet 51.5 79.4 55.6
SoCo∗ [41] COCO 51.7 78.6 57.2
Self-EMD [24] COCO 53.0 80.0 58.6
BYOL COCO 51.7 80.2 56.4
MoCo-v2 COCO 53.7 80.0 59.5

MLS COCO 55.0 81.6 61.2

improvement of 0.5% APbbox and 0.6% APseg for object
detection and instance segmentation, respectively.

4.3. Transfer learning

Next, we test how our MLS method performs on vari-
ous transfer learning tasks, including CityScapes semantic
segmentation, VOC0712 object detection and (multi-label)
classification.

CityScapes semantic segmentation. We first trans-
ferred pretrained models to CityScapes [10] semantic seg-
mentation. Because relatively few SSL methods worked
on this benchmark and the segmentation architecture gen-
erally differed, we first reproduced several SSL methods
(BYOL, MoCo-v2, DenseCL and SoCo), then finetuned
them in the same setting. It is clearly demonstrated in Ta-
ble 3 that our multi-label self-supervised learning method
is superior than all of them, surpassing state-of-the-art
dense matching approach DenseCL [39] and object discov-
ery method SoCo [41], both by significant margins. Our
MLS also improves supervised learning from 77.5% mIoU
to 79.0% mIoU and from 77.8% mIoU to 78.5% mIoU with
PSANet [50] and PSPNet [49], respectively.

VOC0712 object detection. Moving on to other dense

prediction tasks, we evaluated the effectiveness of MLS
on VOC0712 object detection with Faster R-CNN R50-C4.
Since there were missing results for BYOL and MoCo-v2
in this experimental setting, we reproduced both of them
for a fair comparison. As shown in Table 4, our MLS sur-
passes all previous object-centric SSL methods by a large
margin. For example, our method is higher than SimCLR
by 3.5% AP and 5.6% AP75 metrics. MLS is also better
than supervised ImageNet results (an improvement of 1.7%
AP and 2.4% AP75), showing again the great potential of
multi-label self-supervised learning.

Single- and multi-label classification. Then, we ex-
plore how our proposed method behaves on image classi-
fication benchmarks. As pointed out by a previous SSL re-
search work [45], various dense matching or unsupervised
object discovery based SSL methods usually sacrifice the
performance of image classification, in return for high accu-
racy in dense prediction tasks. In other words, classification
is tough for these SSL methods. Therefore, we evaluated
MLS on both multi-label (e.g., VOC2007) and single-label
classification tasks. As discussed above, we also repro-
duced the results of MoCo-v2 and DenseCL because MLS
has the same architecture with them. It can be found in
Table 5 that MLS is consistently better than previous SSL
methods, surpassing our baseline MoCo-v2 by a noticeable
margin—an improvement of 5.3% mAP for VOC07 and
3.0% accuracy for Indoor67. We attribute this gain to the
joint embedding property of MLS: since our method is op-
timized with global features, it can be naturally easier for us
to capture image-level information, thus suitable for image
classification tasks. However, all SSL methods are gener-
ally worse than supervised ImageNet pretraining, showing
that supervised pretraining with more pretraining data (Im-
ageNet vs. COCO) still remains a powerful technique for
general image classification.

4.4. Ablation studies

Compare with other loss functions. We first explore
if there are other alternatives besides multi-label BCE that
can also achieve similar or even better results. An alterna-
tive, however, needs to produce multiple positive paradigms
in the loss term. We consider kNN softmax adopted
in [21, 36], and propose a variant of BCE by disregarding
the negative term in Eq. 9 (calling it ‘BCE-pos’). As can be
seen in Table 6, adding kNN softmax and the BCE-pos loss
function besides the InfoNCE loss used in [36] both lead to
consistent improvements in all metrics, demonstrating the
effectiveness of our hypothesis. Still, they are both inferior
to our proposed MLS, showing that pure BCE works better
than the variant in scene image self-supervised learning.

Why keeping two dictionaries? There are two dictio-
naries Qg and Qz in our pipeline with different functionali-
ties: one for pseudo-labeling and the other for classification.



Table 5. Results on downstream classification, including VOC2007 multi-label and 7 small single-label classification datasets. We repro-
duced the baseline MoCo-v2 and dense matching approach DenseCL for a fair comparison. The evaluation metric for VOC2007 is mAP
while for others is top-1 accuracy. All models were pretrained for 400 epochs on the MS-COCO dataset.

Method Data VOC07 CUB200 Flowers Cars Aircraft Indoor Pets DTD

Supervised ImageNet 89.0 81.3 96.7 90.6 86.7 58.1 64.4 74.7

MoCo-v2 COCO 80.5 68.8 89.6 87.5 80.4 64.1 79.4 60.9
DenseCL COCO 83.7 69.3 88.6 88.3 79.9 65.4 80.0 61.8
MLS COCO 85.8 71.7 91.2 88.5 81.2 67.1 81.9 63.0

Table 6. MS-COCO detection and segmentation results using dif-
ferent pretraining loss functions. The ‘kNN’ loss was adopted
in [36] and the ‘BCE-pos’ loss means only positive terms of bi-
nary cross entropy in Eq. 9 were considered.

Method
Detection Segmentation

APbbox APbbox
50 APbbox

75 APseg APseg
50 APseg

75

Baseline 38.8 58.3 42.5 35.5 55.5 37.5
+kNN 39.1 58.7 42.6 35.3 55.8 37.9
+BCE-pos 39.6 59.4 43.1 35.7 56.5 38.1
+BCE (ours) 40.1 60.2 43.9 36.2 57.3 38.6

Why not keeping only one for simplicity? We explain this
problem through both visualization and quantitative experi-
ments. First, we plot the histogram of scores in Fig. 3, with
g1 ⊙ Qg and z1 ⊙ Qz representing the backbone and MLP
scores, respectively. The backbone scores have witnessed a
dramatic change after training, indicating some information
the network potentially obtained by SSL. On the other hand,
the MLP scores almost always follow a normal distribution,
with only slight changes in the mean and variance statis-
tics. Hence, we choose to use the backbone queue Qg for
pseudo labeling. The MLP dictionary Qz is used for clas-
sification, following the common practice in previous SSL
methods [16, 39]. Our choice is also verified by the ex-
periments in Table 7, where using only Qg or Qz is clearly
sub-optimal, and worse than our MLS where they are jointly
adopted.

Effect of k. Now we examine how different k values (the
number of pseudo positive labels generated) affect the final
results of our MLS method. The downstream results of MS-
COCO detection and segmentation can be found in Table 8,
where a too small and a too large k value both lead to a
performance drop. A small k means semantically related
images may become false negatives in BCE classification,
while a large k will similarly lead to false positives. Our
MLS is relatively more robust when k is small. But when k
is too large, the accuracy drop is significant. Based on this
observation, we choose k = 20 by default.

Effect of queue size and λ. The fourth module we eval-
uated is the dictionary (queue) size and the combination
weight λ in Eq. 10. We pretrained the models on the MS-
COCO dataset using MLS and finetuned them for COCO

Table 7. Effect of using different dictionaries. ‘Qg only’ means
the embeddings in Qg and g1 are used twice to both generate the
pseudo labels y and the logits p (c.f . Fig. 2). ‘Qz only’ means only
using Qz and z1.

Method APbbox APseg

Qg only 39.5 35.7
Qz only 39.8 36.0
Both Qg and Qz (ours) 40.1 36.2
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(a) Backbone- and MLP-scores before MLS training
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(b) Backbone- and MLP-scores after MLS training

Figure 3. Visualization of the score distribution of one sampled
COCO image before and after training. The backbone scores and
MLS scores are g1⊙Qg and z1⊙Qz , respectively. The backbone
scores are more indicative compared with MLP scores, thus suit-
able for pseudo label generation.

object detection with Mask R-CNN R50-FPN. As demon-
strated in Fig. 5 (a), a too small queue size (e.g., 1024) is
detrimental for SSL pretraining, since a small queue means
limited representations stored, which is not enough for an
image to retrieve its positive neighbors. An overly large dic-
tionary also obtains sub-optimal results, because dictionar-
ies that are too large probably contain many out-of-date em-
beddings (due to the dequeue and enqueue mechanism [6])
and might lead to incorrect pseudo labels. And, we also val-
idate the robustness of our MLS by trying multiple λ values.
It can be seen in Figure 5 (b) that all λ leads to consistent



Figure 4. Visualization of positive pseudo-labels picked up by MLS across images in COCO. For each randomly cropped query image
patch, we find the top-4 of its NNs from the dictionary Qg (shown in yellow rectangles). All these rectangles are generated by the random
resized crop data augmentation, a standard component in SSL. We record the cropped boxes’ coordinates of the embeddings (the query g1
and those stored in the dictionary Qg during data augmentation). To be more precise, we first randomly sampled 60 query images. We then
randomly sampled 5 query images out of the set of 60 and found their top-4 NNs. In addition, we manually select the worst query image
(i.e., semantically most different from its top-4 NNs), which is the right half of the last row. This figure is best viewed in color.

Table 8. The effect of different k in pseudo label generation as
illustrated in Fig. 2 and Eq. 7. All models were pretrained on MS-
COCO and finetuned for detection and segmentation.

Top k k = 1 k = 5 k = 20 k = 40

APbbox 39.7 40.0 40.1 39.2
APseg 35.9 36.1 36.2 35.4
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Figure 5. Effect of different queue size and λ values (c.f . Eq. 10)
in terms of downstream tasks’ results. In this paper, we choose
4096 queue size and λ = 0.5 by default.

improvement over the baseline (c.f . Table 6), and there is a
sweet spot in the choice of λ. Thus, in this paper we choose
λ = 0.5 by default in our experiment.

Visualization of positive pseudo-labels. Last but not
least, we validate the effectiveness of our MLS pipeline by
visualization: are the top k nearest neighbors (NN) picked
up from the dictionary Qg indeed semantically similar to
the input? Because random resized crop is applied in the
SSL pipeline (it is the cropped patch that is sent to the net-
work), we record the cropped location of each image during
data augmentation. Then, for each query g1 in Fig. 2, we
find its top-4 NNs stored in the queue Qg . All these queries

and NNs are associated with a certain cropped patch, and
thus we visualize them with red and yellow rectangles, re-
spectively. As shown in Fig. 4, our MLS backbone effec-
tively captures semantically similar correspondences across
the dataset. Specifically, intra-class variance (the first row)
and multiple positive partial concepts (the second and third
rows) are clearly demonstrated, showing that our motivation
in Sec. 1 is valid and that MLS is not only suitable for scene
image SSL, but might also be adaptable to image retrieval,
as well.

5. Conclusions and Limitations
In this paper, we argued that scene image self-supervised

learning does not necessarily rely on dense matching or un-
supervised object discovery methods, and instead proposed
our Multi-Label Self-supervised (MLS) learning approach.
The key idea in MLS is that a multi-label image contains
multiple concepts or objects, hence we need to have multi-
ple positive pairs corresponding to different objects in the
input image. Specifically, we create two dictionaries, one
for creating pseudo-labels (positive or negative pairs) and
the other for distinguishing between them (i.e., a multi-label
classification problem). This is the first time that multi-label
SSL is cast as a multi-label classification problem, and MLS
has been validated by extensive experiments on various
benchmarks (e.g., MS-COCO, CityScapes, VOC0712, etc.)
and tasks (object detection, image segmentation, single- and
multi-label classification).

As for limitations, it still remains unclear why the BCE
loss alone will cause an unstable training issue. This is a
long-lasting and open question as numerous scene image
SSL methods [39, 44, 40, 1] also struggle if the InfoNCE



loss is removed. Hence, these methods (including our MLS)
always use their proposed modules in combination with In-
foNCE. In the future, we will explore how and why the col-
lapsing phenomenon exists without the normal contrastive
loss, and will apply our MLS to single-label image SSL to
further explore the adaptability of our method.
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