
Representation Disparity-aware Distillation for 3D Object Detection

Yanjing Li1†, Sheng Xu1†, Mingbao Lin3, Jihao Yin1, Baochang Zhang1,2,4, Xianbin Cao1∗

1 Beihang University 2 Zhongguancun Laboratory 3 Tencent
4 Nanchang Institute of Technology

Abstract

In this paper, we focus on developing knowledge dis-
tillation (KD) for compact 3D detectors. We observe that
off-the-shelf KD methods manifest their efficacy only when
the teacher model and student counterpart share similar in-
termediate feature representations. This might explain why
they are less effective in building extreme-compact 3D de-
tectors where significant representation disparity arises due
primarily to the intrinsic sparsity and irregularity in 3D
point clouds. This paper presents a novel representation
disparity-aware distillation (RDD) method to address the
representation disparity issue and reduce performance gap
between compact students and over-parameterized teach-
ers. This is accomplished by building our RDD from an in-
novative perspective of information bottleneck (IB), which
can effectively minimize the disparity of proposal region
pairs from student and teacher in features and logits. Ex-
tensive experiments are performed to demonstrate the su-
periority of our RDD over existing KD methods. For ex-
ample, our RDD increases mAP of CP-Voxel-S to 57.1%
on nuScenes dataset, which even surpasses teacher perfor-
mance while taking up only 42% FLOPs.

1. Introduction

3D object detection in point clouds [25, 39, 29] is a fun-
damental perception task with broad applications on au-
tonomous driving, robotics and smart city, etc. Benefi-
cial from the large-scale 3D perception datasets [8, 2, 32]
as well as advanced point [25], pillar [18, 37] and voxel
based [9, 21] representations of sparse and irregular LiDAR
point cloud scenes, 3D detection has achieved remarkable
progress [28, 43]. Unfortunately, stronger performance is
often accompanied with heavier computation burden, there-
fore the adoption in real-world applications still remains a
challenging problem.
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Figure 1. Visualization of intermediate neck features from teacher
CP-Voxel [43] and student CP-Voxel-XXS [40]. Student† denotes
CP-Voxel-XXS distilled by [40]. “F-P” denotes false positive pre-
dictions from the detector. The second and fourth column images
show false positives on the original inputs where the red boxes
denote false positives from the detector. Off-the-shelf implemen-
tation fails to tackle false positives if significant disparity exists
between teacher (c) and student (g) feature maps.

Recent attempts to improve efficiency focus on devel-
oping specified architectures for point-based 3D object de-
tectors [5, 45], not generalizable to a wide spectrum of
pillar/voxel-based methods [46, 18, 28, 43, 7, 39]. Here, we
aim at a model-agnostic framework for obtaining efficient
and accurate 3D object detectors with knowledge distilla-
tion (KD). Due to its effectiveness, generality and simplic-
ity, KD has become a popular strategy to develop efficient
models in a variety of 2D tasks [12, 21, 6, 13], which im-
proves the performance of a lightweight student model by
harvesting knowledge from an accurate yet computationally
heavy teacher model.

The recent art [40] employs pivotal position logit KD to
enhance the performance of compact 3D detectors. How-
ever, as we analyze in this paper, the intrinsic representation
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(a) KITTI (b) nuScenes

(c) Distilled on KITTI (d) Distilled on nuScenes

Figure 2. Histogram of mean square distance between feature
maps of CP-Voxel & CP-Voxel-XXS (orange), and CP-Voxel &
distilled CP-Voxel-XXS-PP (blue) on KITTI [8] and nuScenes [2].

disparity, stemming from region distances between compact
students and pre-trained teachers, is crucial to 3D student
detectors and solely neglected in existing methods [40].

For an in-depth analysis, in Fig. 1, we visualize the
feature maps and predictions of pre-trained heavy CP-
Voxel [43], a state-of-the-art 3D LiDAR-based detector,
and these of compact CP-Voxel-XXS and its distilled ver-
sion by [40]. The visual results indicate that off-the-shelf
KD methods manifest their efficacy only when the teacher
model and student counterpart share similar feature maps as
in Fig. 1 & Fig. 1e. Otherwise, false positives are overmuch
if significant representation disparity arises as like Fig. 1c &
Fig. 1g, which greatly deteriorate the performance of com-
pact 3D detectors. For a comprehensive verification, in
Fig. 2, we calculate the mean square distance between fea-
ture maps of teacher CP-Voxel and student CP-Voxel-XXS
as a metric to reflect if teacher knowledge can be well trans-
ferred to student. It is intuitive that a large distance indicates
a higher representation disparity. We perform upon two
datasets including KITTI [8] and nuScenes [2]. Fig. 2 man-
ifests the statistics where the Fig. 2 & Fig. 2b represents dis-
tance histogram between teacher and vanilla student while
the Fig. 2c & Fig. 2d represents distance histogram between
teacher and distilled student. Each histogram can be sep-
arated into 1) the first one in compliance with small dis-
tance (blue area) and 2) the second one in line with large
distance (orange area). We observe that the small-distance
one is further reduced after distilling, which indicates an
efficient distillation. While the large-distance one almost
remains unchangeable, which indicates an inefficient dis-
tillation. Therefore, it remains an open issue to tackle the
representation disparity in existing methods.

Therefore, in this paper we propose a novel 3D detector
oriented representation disparity-aware distillation (RDD)
method to address the above issue and reduce performance
gap between compact students and over-parameterized
teachers. Framework of our RDD is illustrated in Fig. 3,
where the distillation objective is actually formulated un-
der the principle of information bottleneck (IB) to maxi-
mize the mutual information between intermediate features
of teacher and students. To this end, for each region pro-
posal in teacher (student) model, our RDD first pair it by
cropping a counterpart region in the same location of stu-
dent (teacher) model. We measure representation disparity
in each pair with mutual information under the IB frame-
work and then learn to weight the region pairs to better
bilaterally transfer information between teacher and stu-
dent. In contrast to off-the-shelf pivotal position logit KD
or simply involving ground truths [36, 40], the weighted
information is transferred by a feature-level representation
disparity-aware distillation as well as logit-level representa-
tion disparity-aware distillation loss.

We compare our RDD against state-of-the-art 2D and 3D
KD methods [6, 34, 24, 40, 44] on datasets of KITTI [8] and
large-scale nuScenes [2]. Extensive results reveal that our
method outperforms the others by a considerable margin.
For instance, on nuScenes, the CP-Voxel-S [40] distilled by
our RDD obtains 57.1% mAP with only 42% FLOPs of CP-
Voxel [43], achieving a new state-of-the-art.

2. Related work
3D LiDAR-based Object Detection targets to localize and
classify 3D objects from point clouds. Point-based meth-
ods [29, 5, 42, 45] take raw point clouds and leverage Point-
Net++ [25] to extract sparse point features and generate
point-wise 3D proposals. Pillar-based works [18, 37] finish
voxelization in bird eye’s view and extract pillar-wise fea-
tures with PointNet++. Voxel-based methods [46, 39, 28]
voxelize point clouds and obtain voxel-wise features with
3D sparse convolutional networks, which has become one
of the most popular data treatment. Besides, range-based
works [1, 33] were proposed for long-range and fast detec-
tion. Recently, designing efficient 3D detectors has drawn
some attentions [5, 45] with raw point data treatment. In this
work, we focus on exploring model-agnostic knowledge
distillation methods to boost the performance of lightweight
3D detectors.
Knowledge Distillation aims to transfer knowledge from
a large teacher model to a lightweight student network,
which has become a thriving area in efficient deep learn-
ing. The simple-yet-common used KD method [12] distills
knowledge between teacher and student on the output pre-
diction logits. Another line of research proposed to help
student’s optimization with hints stored in informative in-
termediate features from teacher [27, 14, 17, 11, 16, 3].
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Figure 3. Overview of the proposed representation disparity-aware distillation (RDD) framework. We first select representative region pairs
based on the representation disparity and formulate a balanced mask for each region pair. Then we distill student in both feature-level and
logit-level to effectively eliminate the representation disparity.

In 2D detection task, some works attempt distillation tech-
niques [19, 36, 6, 26, 41, 24] by emphasizing instance-wise
distillation and feature knowledge. Mimic [19], FG [36]
and GID [6] sample local region features with box propos-
als or custom indicators for foreground-aware feature imi-
tation. Label KD [24] utilizes teacher’s information for la-
bel assignment of student. Moreover, recent methods have
also been proposed to distill the 3D LiDAR-based detec-
tors. PointDistiller [44] captures and makes usage of the se-
mantic information in the local geometric structure of point
clouds for compressing the student. [40] leverages cues in
teacher prediction to determine the important areas for dis-
tillation. Nevertheless, existing 3D LiDAR-based KD only
leverage the information from well-trained teachers but ne-
glect the distillation-needed areas in the students. In the
contrary, in this work, we propose an enhanced 3D detec-
tion KD method which takes into consideration represen-
tation disparity and effectively transfer the comprehensive
information from well-trained teachers to compact students.

3. Representation Disparity-aware Distillation

Fig. 3 illustrates the framework of our RDD for 3D ob-
ject detection. To complete our landscape, in Sec. 3.1,
we first model our distillation objective under the prin-
ciple of information bottleneck (IB) [30, 38, 35]. Then,
Sec. 3.2 depicts the generation of region proposal pairs be-
tween teacher and student, and representation disparity in
each pair. Lastly, we detail our distillation losses including
feature-level representation disparity-aware distillation and
logit-level representation disparity-aware distillation.

3.1. Knowledge Distillation Objective

Usually, knowledge distillation involves a to-be-trained
student detector and a pre-trained teacher detector, and we
distinguish them with scripts S and T , respectively. We
start with a novel perspective of information bottleneck (IB)
principle [30] to explore KD in 3D detectors. As discussed
in [38], IB is commensurate with the best compression
hypothesis that advocates minimizing data misfitting and
model complexity in concert such that the task-irrelevant in-
formation can be well diminished in the compressed model
for a better performance. Considering the facts in 3D object
detection that the point clouds are overwhelmingly sparse
and the extreme imbalance keeps going between informa-
tive instances and redundant background, an efficient infor-
mation extraction is therefore particularly important.

Given a set of point clouds X , KD objective in the IB
principle is written as:

min
θS
B ,θS

D

[I(X; fS)− δI(fS ; yGT )]− βI(fS ; fT ), (1)

where fT and fS are the high-level feature maps from the
neck/backbone of the teacher and the student, respectively.
yGT denotes ground-truth. θSB and θSD are the parameters of
backbone and detection part in student respectively. Mean-
while, δ, β are Lagrange multipliers [30]. I() returns the
mutual information between its two input variables. With
I(fS ; yGT ) maximizing the mutual information between
the features and ground-truth, the first item I(X; fS) mini-
mizes the mutual information between the point cloud data
and the high-level feature maps of student to control the
noise introduction. This part can be treated as the orig-
inal detection loss of the detector [43, 18]. With teacher
model’s features as guidance, the second item βI(fS ; fT )



maximizes the mutual information to preserve more teacher
information in student. The collective cooperation between
the two items guides student to focus more on beneficial
information and less on noise information [35, 38, 30].

3.2. Region Pairs with Representation Disparity

Region Pairs. We denote {RT
i |(pTreg,i, pTcls,i)}Mi=1

and {RS
i |(pSreg,i, pScls,i)}

M+N
i=M+1 as the outputs of teacher

and student where the i-th region proposal RT
i /R

S
i ∈

RC×H×W contains two information including a regression
coordinate preg,i to model the proposal position and a clas-
sification probability pcls,i to tell the proposal category.
Note that in the center-based 3D detectors, e.g., Center-
Points [43], each proposal corresponds to a Gaussian area in
the heatmaps, while in the anchor-based 3D detectors, e.g.,
PointPillars [18], each proposal corresponds to a region in
the intermediate features.

As shown in the left of Fig. 4, the recent study [40] uni-
laterally passes on teacher proposals of higher classification
probability to the corresponding regions of student. On the
one hand, it ignores the efficacy of student information; on
the other hand, the representation disparity is neglected as
discussed in Sec. 1. In this paper, we propose to bilaterally
transfer information between teacher and student. Specifi-
cally, as depicted in the right of Fig. 4, for each single region
in teacher (student) model, we crops a counterpart feature
map patch in the same location of student (teacher) model to
form a total ofM+N region pairs {(RT

i , R
S
i )}

M+N
i=1 . Here,

{RS
i }Mi=1 accords with cropped region patches in student

and {RT
i }

M+N
i=M+1 is in tune with these patches in teacher.

For ease of representation, the superscripts T and S will be
dropped from time to time in the following contents.

Then, our distillation considers representation disparity
issue by weighting the patch-level distance under the IB
principle. Before diving into details, we first channel-wise
normalize proposal Ri considering the large-scale magni-
tude gap between the pre-trained teacher and the to-be-
trained student, as:

R̂i;c,:,: =
exp(

Ri;c,:,:

τ )∑
c′∈{1,2,...,C} exp(

Ri;c′,:,:
τ )

, (2)

where Ri;c,:,: denotes the c-th channel of Ri and τ = 4 in
this paper denotes a hyper-parameter controlling the statis-
tical attributions of the channel-wise alignment operation

Representation Disparity. Under the framework of IB
principle, we define and evaluate representation disparity as
mutual information between student patch R̂S

i and teacher
patch R̂T

i . This is formulated as:

I(R̂S
i ; R̂

T
i ) = H(R̂S

i )−H(R̂S
i |R̂T

i ), (3)

where H() returns the information entropy. A smaller
I(R̂S

i ; R̂
T
i ) indicates higher disparity between R̂S

i and R̂T
i .

(a) (b)

Figure 4. Illustration for the generation of the region pairs. Each
single region in one model generates a counterpart feature map
patch in the same location of the other model.

Then, a naive way to measure mutual information be-
tween teacher and student I(fS ; fT ) in the KD objective of
Eq. (1) is to sum up mutual information of all patch pairs as:

I(R̂S
i ; R̂

T
i ) =

M+N∑
i=1

miI(R̂
S
i ; R̂

T
i ). (4)

Nevertheless, it does not take into account the represen-
tation disparity among different region pairs. Given this,
prior to a formal distillation, we propose to optimize a
weighting vector m = [m1,m2, ...,mM+N ] ∈ RM+N to
identify disparate region pairs, leading to our learning ob-
jective as:

min
m

M+N∑
i=1

miI(R̂
S
i ; R̂

T
i )︸ ︷︷ ︸

I(fS ;fT |m)

+λ∥m∥1,
(5)

where the minimization leads mi ∈ m to be large to
penalize high disparity stemming from pair R̂S

i and R̂T
i .

The term minm ∥m∥1 is involved to prevent the model to
equally distill all alternative region pairs. Also, to indicate
the disparity degree. we clip mi to 1 or 0 if its value is be-
yond [0, 1]. λ > 0 is a hyper-parameter to determine the
sparsity of m.

Moreover, the introduction of m leads our format of
I(fS ; fT ) to I(fS ; fT |m) as manifested in Eq. (5). To-
gether with our representation disparity, the KD objective
under IB framework finally changes from Eq. (1) to:

min
θS
B ,θS

D

[I(X; fS)− δI(fS ; yGT )]− βI(fS ; fT |m∗),

s. t. m∗ = argmin
m

I(fS ; fT |m) + λ∥m∥1.
(6)

Our objective involve two sub-problems. In each training
iteration, we first perform inner-level optimization to de-
rive a current optimal m∗; and then solves the upper-level
optimization to conduct distillation based on explicit dis-
tillation losses in Sec. 3.3. Notice the inner-level optimiza-
tion causes negligible costs compared to the upper-level one



since the size of region pairs is not large. On the contrary, it
derives distillation to focus more on disparate region pairs
for a better performance.

3.3. Knowledge Transferring

We present the upper-level optimization in Eq. (6). Re-
call in Sec. 3.1 we analyze that the first item [I(X; fS) −
δI(fS ; yGT )] is in compliance with the original detection
loss such as proposal classification and coordinate regres-
sion. Our central is to hand over the specific format of the
second term I(fS ; fT |m∗), which according to Eq. (3) and
Eq. (5) can be explicitly derived as:

I(fS ; fT |m∗) =

M+N∑
i=1

m∗
i (H(R̂S

i )−H(R̂S
i |R̂T

i )). (7)

Considering the intrinsic entropy of R̂S
i remains un-

changed within each iteration, therefore H(R̂S
i ) is regarded

as a constant. Maximizing I(fS ; fT |m∗) turns to minimiz-
ing H(R̂S

i |R̂T
i ). Unfortunately, it is hard to directly mini-

mize H(R̂S
i |R̂T

i ). Instead, we choose to minimize norm
distance between R̂S

i and R̂T
i as a substitute since both of

them reach optimal when R̂S
i = R̂T

i .
In view of that feature pyramid network (FPN) [20] has

been adopted in most 3D detectors for robustness of multi-
scale detection [43, 18, 39], it is natural to choose the
neck feature maps after FPN for distillation. After forming
the region pairs, the feature-level representation disparity-
aware distillation loss is computed as:

Lfeat =
1

M +N

M+N∑
i=1

m∗
i ∥φ(ψ(R̂S

i ))− R̂T
i ∥2, (8)

where φ indicates the RoI Align [10]. ψ is 1 × 1 convolu-
tion followed by batch normalization [15] and ReLU [23] to
align channel-wise discrepancy between teacher region R̂T

i

and and student region R̂S
i [6, 36].

In addition to FPN outputs, another neglected special
kind of feature maps come to the logits in the classifica-
tion and regression branches. Previous 2D and 3D meth-
ods [40, 36, 12] conduct distillation on the whole or pivotal
part of the detection head outputs or on the conventional
feature maps, degrading the student performance [6]. The
probable cause can be attributed to the extreme imbalance
between instances and backgrounds in 3D LiDAR-based
detection task. Therefore, based on the weighting vector
m, we also take into consideration the regression coordi-
nate and classification probability of each region proposal
R̂i, and form our logit-level representation disparity-aware
distillation loss as:

Llogit =
1

M +N

M+N∑
i=1

m∗
i (∥pScls,i − pTcls,i∥1

+ ∥(pSreg,i − pTreg,i)∥1),

(9)

in which pcls,i and preg,i denote the classification probabil-
ity and proposal coordinates for the i-th region proposal Ri

as introduced in Sec. 3.2. It should be noted that, for the
center-based 3D detector [43], the regression loss item do
not exist.

Finally, the exact definition of our KD objective in
Eq. (1) is given as:

L = Lcls + γLreg︸ ︷︷ ︸
I(X;fS)−δI(fS ;yGT )

+α1Lfeat + α2Llogit︸ ︷︷ ︸
−βI(fS ;fT )

, (10)

where Lcls and Lreg are the original detection losses su-
pervised by the ground-truth labels. The γ, α1 and α2 are
trade-off parameters between different objectives.

4. Experiments
Comprehensive experiments are conducted to evaluate

our proposed method on two datasets for object detec-
tion: nuScenes [2] and KITTI [8]. First, we introduce
the datasets, metrics, implementation details and compact
model architecture in Sec. 4.1. Then we select the hyper-
parameters, validate the effectiveness of the components,
and analyze the information of our method through abla-
tion studies in Sec. 4.2. Finally, in Sec. 4.3 and Sec. 4.4, we
compare our method with other image-based 2D distillation
methods implemented on 3D detectors, and other 3D distil-
lation methods to demonstrate the superiority of RDD.

4.1. Experimental Settings

Datasets and Evaluation Metrics. For nuScenes
dataset [2], metrics are mean average precision (mAP) and
the nuScenes detection score (NDS). These metrics are
computed in the physical unit. For KITTI dataset [8], we
report the average precision calculated by 40 sampling re-
call positions for 3D object detection on the validation split.
Following the typical protocol, the IoU threshold is set as
0.7 for class Car and 0.5 for class Pedestrians and Cyclists.

Training & Validation. For experiments conducted on
nuScenes dataset, we follow the same setups as the original
CenterPoint [43]. We use AdamW [22] to train the model.
The weight decay for AdamW is 1e− 2. Following a cyclic
schedule [31], the learning rate is initially 1e−4 and gradu-
ally increased to 1e−3, and finally decreased to 1e−8. We
train for 20 epochs on 8 NVIDIA Tesla V100 GPUs. During
inference, we take the top 100 highest-scored objects as the
final predictions. We do not use any post-processing such
as non maximum suppression (NMS). We use the toolkit
provided with the nuScenes dataset for evaluation.

For experiments conducted on KITTI dataset, we use
AdamW [22] to train the model. The weight decay for
AdamW is 1e − 2. Following a cyclic schedule, the learn-
ing rate is initially 1e−4 and gradually increased to 1e−3,
which is finally decreased to 1e− 8. We train for 80 epochs
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Figure 5. Influence of λ, α1 and α1 using CP-Voxel-S [40] on
nuScenes [2].

Table 1. Effects of different components in RDD with CP-Voxel-S
and CP-Pillar-v0.4 [40] on nuScenes [2]. All experiments use ℓ2
loss for distillation. Teacher models are marked in grey.

Model
Region

Selection mAP NDS

CP-Voxel - 56.6 64.7

CP-Voxel-S

- 54.0 62.1
Hint 52.9 61.1
FG 54.3 62.6

RDD 57.1 65.0
CP-Pillar - 49.1 59.7

CP-Pillar-v0.4

- 46.5 55.5
Hint 45.6 55.1
FG 47.6 57.2

RDD 50.0 58.9

on 8 NVIDIA Tesla V100 GPUs. We apply axis aligned
non maximum suppression (NMS) with an overlap thresh-
old of 0.5 IoU, following [18] for inference. We evaluate
the model performance using the toolkit provided with the
KITTI dataset.

Compact Model Architecture. We apply CenterPoint-
Voxel and CenterPoint-Pillar [43] on nuScenes, and SEC-
OND [39] and PointPillars [18] on KITTI.

For CP-Voxel and CP-Pillar [43], we follow [40] to
adopt width and input resolution compression. Specifically,
we compress the channels of {encoder, backbone&neck,
head} (i.e., {Pillar Feature Encoding (PFE), Bird eye’s
view Feature Encoding (BFE), Head} in [40]) into {1×,
0.5×, 0.5×}, {0.75×, 0.5×, 0.5×} and {0.5×, 0.25×,
0.25×}, forming the CP-Voxel-S, CP-Voxel-XS and CP-
Voxel-XXS. We follow [40] to change the voxel size
of CP-Pillar from 0.32 to 0.4, 0.48 and 0.64, forming
the CP-Pillar-v0.4, CP-Pillar-v0.48 and CP-Pillar-v0.64.
For SECOND [39], we also follow [40] to compress the
width of SECOND [39], where the channels of {encoder,

Table 2. Evaluating the components of RDD based on CP-Voxel-S
and CP-Pillar-v0.4. RDD-F and RDD-L denote w/ or w/o distilla-
tion loss in Eq. (8) and Eq. (9), respectively.

Student RDD-F RDD-L mAP NDS

CP-Voxel-S

- - 54.0 62.1
✓ 56.8 64.0

✓ 57.0 64.3
✓ ✓ 57.1 65.0

CP-Pillar-v0.4

- - 46.5 55.5
✓ 49.7 58.0

✓ 49.2 57.9
✓ ✓ 50.0 58.9

backbone&neck} (i.e., {PFE, BFE} in [40]) are reduced to
{0.75×, 0.5×} and {0.5×, 0.5×}, forming the SECOND-
S and SECOND-XS. For PointPillars [18], we compress
the width of PointPillars [18] forming the PointPillars-S
and PointPillars-XS, in which the channels of {encoder,
backbone&neck} are reduced to {0.75×, 0.5×} and {0.5×,
0.5×}.

4.2. Ablation Study

Hyper-parameter Selection. We first select hyper-
parameters λ of Eq. (5) and α1, α2 of Eq.(10) in this part,
with experiments conducted on nuScenes dataset. Note
that γ in Eq.(10) is sett following CenterPoint [43], SEC-
OND [39], and Pointpillar [18] when conducted our expeir-
ments on these detectors. We show the model performance
(mAP) with different setups of hyper-parameters λ in Fig. 5,
in which the performances increase first and then decrease
with the uplift of λ from left to right. Since λ controls
the decline of ∥m∥1 related to the proportion of selected
distillation-desired region pairs, λ = 0 denotes all the al-
ternative region pairs are equally distilled leading to a un-
satisfactory performance. While with λ increasing to more
than 0.1, the proportion of selected distillation-desired re-
gion pairs is not large enough for effectively eliminating
the representation disparity, which also affects the perfor-
mance. In conclusion, the CP-Voxel-S [40] obtains better
performances with λ set as 0.1. The figure also shows that
the CP-Voxel-S [40] obtains best performances with α1 and
α2 set as 0.2 and 0.2. However, enlarging α1 and α2 de-
generates the performance of the detectors. Based on the
ablative study above, we set hyper-parameters {λ, α1, α2}
as {0.1, 0.2, 0.2} for the experiments in this paper.

Component Ablation. We first compare our represen-
tation disparity-aware (RDD) region selecting method with
other methods to select regions: Hint [4] (using the neck
feature without region mask) and FG [36]. We show the
effectiveness of RDD with center-based 3D detectores [43]
on nuScenes dataset [2] in Tab. 1. On the CP-Voxel-S [40],



the introducing of RDD achieves improvements of the mAP
and NDS by { 3.1%, 4.2%, 2.8%} and {2.9%, 3.9%, 2.4%}
compared to non-distillation, Hint [4], and FGFI [36], un-
der the same student-teacher framework. We also evaluate
the RDD on the Pillar-based 3D detector, i.e., CP-Pillar-
v0.4 [40]. Our RDD selection method improves the mAP
and NDS by {3.5%, 4.4%, 2.4%} and {3.4%, 3.8%, 1.7%}
compared to non-distillation, Hint [4], and FGFI [36], su-
pervised by the same teacher (CP-Pillar [43]).

Then we evaluate the proposed distillation losses, i.e.,
Lfeat in Eq. (8) (RDD-F) and Llogit in Eq. (9) (RDD-L),
in Tab. 2. As listed, RDD-F and RDD-L improve the per-
formance when used alone, and the two losses further boost
the performance considerably when combined together. For
example, the RDD-F improve the mAP of CP-Voxel-S [40]
by 2.8% and the RDD-L achieves 3.0% mAP improvement.
While combining the RDD-F and RDD-L together, the per-
formance improvement achieves 3.1%. These ablative ex-
periments further validates the effectiveness of our method.

4.3. Results on nuScenes

We first compare our method with image-based 2D and
3D distillation methods for the task of 3D object detection
on nuScenes [2]. Note that for width compressed students,
we use the same input voxel size as [43], i.e. 0.1. We mainly
discuss the mAP and NDS (default nuScenes metric) in the
following. We evaluate the proposed RDD on CenterPoint
detectors [43] in Tab. 3. For CP-Voxel-S, compared to non-
distillation of GID-L [6], GID-F [6], FG [36] and LAD [24],
our RDD boosts the performance of mAP and NDS by
{3.1%, 3.0%, 3.7%, 2.8%, 4.1%} and {2.9%, 2.9%, 3.2%,
2.4%, 3.3%}, respectively. Moreover, our RDD improves
the mAP and NDS of CP-Voxel-S by 1.4% and 0.7% re-
spectively, compared with previous state-of-the-art 3D dis-
tillation method (PP-logit-KD). It is worth noting that our
RDD trained CP-Voxel-S even surpasses the teacher de-
tectors by 0.5% mAP and 0.3% NDS but taking up only
41.6% FLOPs and 51.3% parameters of the teacher, which
is a significant achievement. For CP-Voxel-XS, our RDD
improves the performance of mAP and NDS by {1.0%,
0.8%, 1.1%, 0.7%, 1.0%} and {0.3%, 0.5%, 0.8%, 0.3%,
0.6%}, compared to non-distillation of GID-L [6], GID-
F [6], FG [36] and LAD [24]. In addition, our RDD im-
proves the mAP and NDS of CP-Voxel-XS by 0.5% and
0.4%, compared with previous state-of-the-art 3D distilla-
tion method (PP Logit KD). For CP-Voxel-XXS, our RDD
surpasses non-distillation of GID-L [6], GID-F [6], FG [36]
and LAD [24] by {2.7%, 2.6%, 2.4%, 2.3%, 2.8%} mAP
and {2.4%, 1.4%, 1.5%, 1.7%, 1.6%} NDS. Moreover, our
RDD boosts the mAP and NDS of CP-Voxel-XXS by 1.5%
and 0.1% respectively, compared with previous state-of-the-
art 3D distillation method (PP Logit KD). Above experi-
ments well validates the effectiveness of our method.

Table 3. Experimental results on nuScenes [2]. # F and # P in-
dicate float operations (FLOPs) and parameters of the detector.
Teacher models are marked in gray shadow.

Detector
# F/# P

(G/M)
Method mAP (↑) NDS (↑)

CP-Voxel 114.8 / 7.8 - 56.6 64.7
No Distill 54.0 62.1

GID-L 54.1 62.1
GID-F 53.4 61.8

FG 54.3 62.6
LAD 53.0 61.7

PP Logit KD 55.7 64.3

CP-Voxel
-S

47.8 / 4.0

RDD 57.1 65.0
No Distill 53.0 61.8

GID-L 53.2 61.6
GID-F 52.9 61.3

FG 53.3 61.8
LAD 53.0 61.5

PP Logit KD 53.5 61.7

CP-Voxel
-XS

36.0 / 2.8

RDD 54.0 62.1
No Distill 46.7 55.5

GID-L 46.8 56.5
GID-F 47.0 56.4

FG 47.1 56.2
LAD 46.6 55.3

PP Logit KD 47.9 57.8

CP-Voxel
-XXS

12.0 / 1.0

RDD 49.4 57.9
CP-Pillar 333.9 / 5.2 - 49.1 59.7

No Distill 46.5 55.5
GID-L 47.3 56.4
GID-F 47.6 56.8

FG 47.7 57.2
LAD 46.9 55.7

PP Logit KD 48.6 57.5

CP-Pillar
-v0.4

212.9 / 5.2

RDD 50.0 58.9
No Distill 45.3 54.2

GID-L 45.4 54.5
GID-F 46.1 55.3

FG 47.0 56.2
LAD 45.2 54.4

PP Logit KD 47.3 57.5

CP-Pillar
-v0.48

149.4 / 5.2

RDD 48.8 58.5
No Distill 44.0 52.3

GID-L 44.2 52.6
GID-F 44.4 53.9

FG 44.7 53.7
LAD 43.9 53.2

PP Logit KD 45.0 55.9

CP-Pillar
-v0.64

85.1 / 5.2

RDD 45.8 56.1

Besides, our method generates convincing results on
CP-Pillar based detectors [43]. As shown in the 24-th
to 45-th rows of Tab. 3, the performance of the proposed
RDD with CP-Pillar-v0.4, CP-Pillar-v0.48 and CP-Pillar-
v0.64 outperforms the non-distillation baseline by {3.5%,



Table 4. Experimental results for 3D detection on KITTI [8]. # F
and # P indicate float operations (FLOPs) and parameters of the
detector. Teacher models are marked in gray shadow.

3D
Detector

# F
(G)

# P
(M)

Method Moderate
mAP@R40(↑)

SECOND 80.5 5.3 - 67.2
No Distill 65.6

GID-L 66.3
GID-F 66.8

FG 66.6
LAD 67.0

PointDistiller 67.8
PP Logit KD 67.7

SECOND
-S

23.0 1.6

RDD 68.2
No Distill 64.2

GID-L 65.0
GID-F 65.2

FG 65.3
LAD 65.7

PointDistiller 66.3
PP Logit KD 66.4

SECOND
-XS

20.5 1.4

RDD 67.0
PointPillars 34.3 4.8 - 60.3

No Distill 58.6
GID-L 58.9
GID-F 59.1

FG 59.4
LAD 59.2

PointDistiller 62.3
PP Logit KD 62.2

PointPillars
-S

9.8 1.5

RDD 63.0
No Distill 58.9

GID-L 59.2
GID-F 59.6

FG 59.4
LAD 59.7

PointDistiller 60.0
PP Logit KD 60.2

PointPillars
-XS

8.7 1.3

RDD 60.9

3.5%, 1.8%} and {3.4%, 4.3%, 3.8%} on mAP and NDS,
a large margin. Compared with previous state-of-the-art
3D distillation methods, our RDD achieves {1.4%, 1.5%,
0.8%} and {1.4%, 1.0%, 0.2%} improvement on mAP and
NAS respectively with CP-Pillar-v0.4, CP-Pillar-v0.48 and
CP-Pillar-v0.64, which well validates the efficacy of our
method. The above experimental results prove the superi-
ority of our RDD method on both Voxel-based and Pillar-
based CenterPoint [43].

4.4. Results on KITTI

We further show that our RDD can generalize well
to KITTI [8] dataset with anchor-based detectors SEC-

OND [39] and PointPillar [18]. As shown in Tab. 4, for
SECOND-S, compared to non-distillation, GID-L [6], GID-
F [6], FG [36] and LAD [24], our RDD boosts the per-
formance of moderate mAP@R40 by {2.6%, 1.9%, 1.4%,
1.6%, 1.2%}. Moreover, our RDD improves the moder-
ate mAP@R40 of SECOND-S by 0.4% and 0.5%, com-
pared with PointDistiller [44] and PP Logit KD [40].
And SECOND-S trained with our RDD even surpasses
its teacher model by 1.0%. And for SECOND-XS, our
RDD surpasses previous image-based 2D distillation meth-
ods GID-L [6], GID-F [6], FG [36] and LAD [24] by by
{2.8%, 2.0%, 1.8%, 1.7%, 1.3%} in moderate mAP@R40.
SECOND-XS trained with our RDD also surpasses pre-
vious 3D distillation method, PoinrDistiller and PP Logit
KD, by 0.7% and 0.6% on the moderate mAP@R40, which
well validates the effectiveness of our method. Moreover,
our method can also be generalized to PointPillars [18].
As shown in the 20-th to 36-th rows of Tab. 4, the per-
formance of the proposed RDD with PointPillars-S and
PointPillars-XS outperforms the non-distillation baseline
by 4.5% and 2.0% on the moderate mAP@R40, a large
margin. Compared with PoinrDistiller, our RDD achieves
1.7% and 0.9% improvement on the moderate mAP@R40
with PointPillars-S and PointPillars-XS. Our RDD also sur-
passes PP Logit KD by 1.8% and 0.7% improvement on the
moderate mAP@R40 with PointPillars-S and PointPillars-
XS, which well validates the efficacy of our method. The
above results are of great significance in the 3D LiDAR-
based object detection.

5. Conclusion

This paper presents a novel method for training com-
pact 3D LiDAR-based detectors with knowledge distilla-
tion to eliminate the representation disparity (RDD). RDD
employs a information bottleneck (IB) principle to select
the regions with maximum representation disparity and pro-
poses effective distillation losses to supervise the represen-
tation disparity. As a result, our RDD significantly boosts
the performance of compact 3D detectors. Extensive exper-
iments show that RDD surpasses state-of-the-art compact
3D detectors and other knowledge distillation methods in
3D LiDAR-based object detection.
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