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Abstract

Modern object detectors have taken the advantages of
backbone networks pre-trained on large scale datasets. Ex-
cept for the backbone networks, however, other components
such as the detector head and the feature pyramid network
(FPN) remain trained from scratch, which hinders fully tap-
ping the potential of representation models. In this study,
we propose to integrally migrate pre-trained transformer
encoder-decoders (imTED) to a detector, constructing a
feature extraction path which is “fully pre-trained” so that
detectors’ generalization capacity is maximized. The es-
sential differences between imTED with the baseline detec-
tor are twofold: (1) migrating the pre-trained transformer
decoder to the detector head while removing the randomly
initialized FPN from the feature extraction path; and (2)
defining a multi-scale feature modulator (MFM) to enhance
scale adaptability. Such designs not only reduce randomly
initialized parameters significantly but also unify detector
training with representation learning intendedly. Experi-
ments on the MS COCO object detection dataset show that
imTED consistently outperforms its counterparts by ~2.4
AP. Without bells and whistles, inTED improves the state-
of-the-art of few-shot object detection by up to 7.6 AP. Code
is available at github.com/LiewFeng/imTED.

1. Introduction

Over the past two years, vision transformers (ViTs) [6]
have been promising representation models. The vanilla
transformer trained with a sophisticated self-supervised
learning method, e.g., masked autoencoder (MAE) [11],
demonstrated great potential. Since the introduction of
transformers [35] to computer vision, the effort of tam-
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Figure 1. Comparison of the baseline detector e.g., Faster R-
CNN [30] equipped with a transformer backbone (upper) with the
proposed imTED (lower). The baseline detector solely transfers a
pre-trained backbone network, e.g., the transformer encoder, but
training the detector head and FPN from scratch. By contrast, our
imTED approach integrally migrates the pre-trained transformer
encoder-decoder. It significantly reduces the proportion of ran-
domly initialized parameters and improves detector’s generaliza-
tion capability.

ing them for object detection has never stopped [3, 19].
This is motivated by the observation that ViTs pre-trained
on extraordinarily large-scale datasets incorporate over-
completed and versatile features, which guarantee the per-
formance and generalization capability of detectors fine-
tuned on small datasets. [17,19].

Modern object detectors, such as Faster R-CNN and
Mask R-CNN [12,30], typically consist of a backbone net-
work, a neck component and a detector head. However,
except for the backbone network, other components that oc-
cupy a significant proportion of parameters remain trained
from scratch, Fig. 1(upper). Such components, including
but not limited to the region proposal network (RPN) [30],
the feature pyramid network (FPN) [20] and the detector
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head [9], fail to take advantages of the representation mod-
els pre-trained on large-scale datasets.

In this study, we do not design any new components for
object detection; instead, we devote to take full advantages
of pre-trained models to improve detector’s generalization
capability. Specifically, we propose to integrally migrate
pre-trained transformer encoder-decoders (imTED) to de-
tectors, Fig. 1(lower), constructing a feature extraction path
which is not only “fully pre-trained” but also consistent with
pre-trained models, as much as possible.

As shown in Fig. 1(lower), imTED employs the ViT en-
coder pre-trained with MAE [ 1] as backbone, and uses the
decoder as the detector head. It breaks the routine to re-
move the randomly initialized FPN from the feature extrac-
tion path while leveraging the adaptive respective field pro-
vided by the attention mechanism in ViTs [0, 28] to handle
objects at multiple scales. These designs support the in-
tegral migration of pre-trained encoder-detector to the ob-
ject detection pipeline. By adding linear output layers, 7.e.,
a light-weight classification layer and a bounding-box re-
gression layer, atop the migrated encoder-decoder, imTED
realizes object classification and localization. To enhance
the capacity for multi-scale object detection, we introduce
a multi-scale feature modulator (MFM), which combines
both the advantages of FPN with those of fully pre-trained
models.

The competitiveness of imTED is validated upon popular
detectors including Faster R-CNN and Mask R-CNN [12,

]. Experiments on the MS COCO dataset demonstrate
that imTED with ViT-base model outperforms its counter-
part by ~2.4 AP at moderate computational cost. Benefiting
from the integral migration of pre-trained models, imTED
demonstrates strong generalization capability, which is val-
idated by low/few-shot detection tasks. When reducing pro-
portions of the training data, performance gains of imTED
monotonously increase. When training a few-shot detector,
by freezing the backbone network while finetuning the rest
detector components, imTED improves the state-of-the-art
by up to 7.6 AP. imTED opens up a promising direction for
few-shot object detection using vision transformers.

The contributions of this study include:

* We integrally migrate pre-trained transformer encoder-
decoders imTED) to object detectors, constructing a
“fully pre-trained” feature extraction path to improve
detectors’ generalization capacity.

* We redesign the feature extraction path to guarantee
the “integral migration” of the pre-trained transformer
encoder-decoders. We introduce a multi-scale feature
modulator (MFM), to improve the scale adapatiblity of
imTED.

* imTED not only achieves significant performance
gains on object detection and few-shot object detec-

tion, but also takes a step towards unifying detector
training with representation learning.

2. Related Work

Representation Models. Object detection has widely
explored representation models pre-trained upon large-scale
datasets. Over the past decade, CNNs [13, 15,31, 33,37]
have been preferred representation models. Recently, vi-
sion transformers [6, 7, 25, 36] demonstrated greater po-
tential. Vision transformers including ViT [6], Swin [25],
MVIT [7], and PvT [36] became promising models for im-
age recognition. The vision transformers [I, 11,27, 39]
trained with self-supervised paradigms were validated to
have higher generalization capability. Such generalization
capability was pushed to a new height by MAE [1 1], which
constructed not only representation models for feature ex-
traction but also decoders for image reconstruction.

Model object detectors, either CNN-based [9, 12,23,24,

] or transformer-based [2, 40], utilized pre-trained rep-
resentation models as encoders to extract features, while
left the FPN and detector head using randomly initialized
parameters. These randomly initialized parameters, when
finetuned using few training samples, experience difficult to
achieve promising performance. Considering that the back-
bone, the FPN [22] and the detector head occupy most of the
learnable parameters of an object detector, to make them be
“fully pre-trained” is an important problem to be solved.

Feature Pyramid Network. FPN [22] leveraged a top-
down structure with lateral connections to construct high-
level semantic feature maps at scales, enhancing the flex-
ibility for multi-scale representation. It was designed to
adapt hierarchical CNN features but not compatible with
plain representation models, e.g., ViT [6]. To solve this
problem, a small network was designed to obtain multi-
scale features [19], but this unfortunately caused more pa-
rameters being randomly initialized.

The ViTDet method [17] proposed to remove the top-
down feature fusion to simplify FPN, but remains not con-
structing a “fully pre-trained” feature extraction path. The
major difference between ViTDet [17] and our imTED ap-
proach lies in the detector head. imTED simply feeds the
last feature map of the MAE encoder to the Rol-Align com-
ponent, without applying FPN. The aligned features are fed
to the pre-trained transformer decoder for object classifica-
tion and localization. Such designs guarantee that the fea-
ture extraction path be consistent with that of the pre-trained
model.

Detector Head. DETRs [2, 40] are representative de-
tectors, which leverage transformers as the detector head.
Given CNN features as input, the transformer encoder-
decoder reasons the relations of the objects and the global
image context to output the final set of predictions. How-
ever, the vision transformers in DETRs were randomly ini-



tialized and only used to process features extracted by the
backbone network. By contrast, the transformer in our
imTED is pre-trained and utilized to not only extract fea-
tures but also perform feature transformation. As a variant
of DETR, ViDT [32] replaced the CNN backbone with a
pre-trained transformer but still leaved the following trans-
former neck randomly initialized.

Recently, ViTDet [17] and MIMDet [&] tried the pow-
erful representations pre-trained by MAE [11] for object
detection. However, ViTDet solely leverages the pre-
trained MAE encoder but deprecates the pre-trained de-
coder. Whereas, the proposed imTED utilizes both the
pre-trained encoder and the pre-trained decoder. Although
MIMDet [8] utilizes both the encoder and decoder for fea-
ture extraction, the core idea is leveraging the reconstruc-
tion ability of decoder to mask input image patches, which
reduces the computation cost. It keeps the randomly initial-
ized FPN and detector head, as well as introducing more
randomly initialized layers for multi-scale feature extrac-
tion. By contrast, the imTED approach in this study uti-
lizes the pre-trained encoder to extract features and the pre-
trained decoder as the detector head, constructing a “fully
pre-trained” feature extraction path, for the first time to our
best knowledge.

3. Approach

The goal of this study is to integrally migrate the pre-
trained transformer encoder-decoder as the pillars of an ob-
ject detector. To this end, we choose encoder-decoders
pre-trained by MAE [11] and migrate them to conven-
tional two-stage detectors, e.g., Faster R-CNN and Mask
R-CNN [12,30]. In what follows, we first describe the moti-
vation of imTED. We then address how to integrally migrate
the pre-trained encoder-decoders. Finally. we describe the
implementation details of an imTED detector. We also show
that modulating multi-scale features to the fully pre-trained
feature extraction path further boosts the detection perfor-
mance.

3.1. Motivation

MAE pre-trains encoder-decoder representation models
based on the pretext task of masked image modeling [11].
By randomly masking image patches and reconstructing the
masked patches, it trains an encoder for feature extraction
and a decoder for image context modeling. It was validated
that the MAE decoder has the ability to reconstruct masked
pixels under a high mask ratio of 75% [ 1], demonstrating
strong capacity to model image context information. This
piques our curiosity: could the spatial context modeling ca-
pacity of the MAE decoder benefits object localization?

To answer this question, we conduct an experiment
about single object detection on the ImageNet Localization

Table 1. Object detection and localization performance under three
decoder variants on the ImageNet Localization Dataset. mAP and
CoLoc are calculated under 0.5 IoU. CoLoc measures the correctly
localized object ratio.

Model Variants mAP CoLoc Acc.

pre-trained encoder 434 774 77.1
+ random decoder 439 (+0.5) 77.6 (+0.2) 77.7 (+0.6)
+ pre-trained decoder 44.8 (+1.4) 78.3 (+0.9) 78.0 (+0.9)

Dataset [5]' In the experiment, detectors are trained to pre-
dict a single object in each image to avoid the interference of
complicated feature-object matching, design of FPN, and/or
Rol alignment. Three variants of the object feature extractor
are compared: (i) pre-trained encoder only; (2) pre-trained
encoder with randomly initialized decoder; (3) pre-trained
encoder with pre-trained decoder imTED). Following the
feature extractor, an object localization head and a classifi-
cation head is used to realize object detection.

As shown in Table 1, the introduction of the randomly
initialized decoder boosts the detection performance by 0.5
mAP and the localization performance by 0.2 CoLoc. Go a
step further, the pre-trained decoder improves the detection
performance by 1.4 mAP and the localization performance
by 0.9 CoLoc. The significant performance gains validate
that the context modeling capacity of the pre-trained de-
coder does benefit object localization, which motivates our
integral migration approach.

3.2. Constructing A Fully Pre-trained Feature Ex-
traction Path

Baseline Detectors. The Faster R-CNN [30] and Mask
R-CNN [12] are employed as baseline detectors. The de-
tector mainly consists of four components: a backbone net-
work, a feature pyramid network (FPN), a region proposal
network (RPN) and a detector head. By adding a mask
head atop Faster R-CNN, Mask R-CNN can simultaneously
conduct object detection and instance segmentation. The
components of a conventional detector are partially pre-
trained. The backbone network is pre-trained on large-scale
datasets, while the FPN, RPN and detector head, which oc-
cupy a large proportion (~ 40%) of learnable parameters,
are trained from scratch. The reason to use randomly initial-
ized components lies in that the backbone networks speci-
fied for image classification [5] can not be directly applied
for multi-scale feature extraction and object localization.

Integral Migration of Encoder-Decoder. As shown in
Fig. 2, we redesign the feature extraction path by integrally
migrating the transformer encoder and decoder pre-trained
with MAE. The created imTED detector not only leverages
the encoder for feature extraction but also the decoder for

IPlease refer to the supplementary material for details of dataset prepa-
ration.
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Figure 2. Architecture of the imTED detector. By integrally migrating the transformer encoder-decoder, imTED constructs a feature
extraction path, which is “fully pre-trained”. The reconstructed feature pyramid is only applied for object proposal generation but does not
involve the feature extraction procedure. With these designs, the proportion of randomly initialized network parameters of the detector is

significantly reduced.

feature transformation. It then leverages a fully connected
layer, a light-weight layer, for object classification and lo-
calization. Notice that the proposal generation pipeline re-
mains unchanged, ¢.e., the FPN and RPN remain using ran-
domly initialized parameters. Whereas, the proposal gen-
eration pipeline is only responsible for producing region of
interests (Rols) but does not involve object feature extrac-
tion or transformation. Thereby, the randomly initialized
parameters would not deteriorate detector’s generalization
capacity.

With these redesigns, the imTED detector has signif-
icantly fewer parameters trained from scratch, mostly lie
in the proposal generation path, Fig. 2. When using the
ViT-S [6] model, for example, the Faster R-CNN detector
has ~17.7M parameters trained from scratch, while imTED
changes this figure to ~3.3M, which infers a reduction of
81.3%. As is known, larger proportions of pre-trained pa-
rameters imply higher generalization capability. imTED
thereby enjoys significantly higher performance than the
baseline detector.

Removing Feature Pyramid Network. In Faster R-
CNN, FPN can be deployed atop the encoder to augment
the features to multiple resolutions Fig. 3(a). With FPN,
large objects are represented by the low-resolution features
and small ones by high-resolution features. However, FPN
is constructed by using randomly initialized parameters,
which violates the “fully pre-trained” idea. Fortunately,
benefiting from the global attention mechanism, the trans-
former encoder is able to construct an adaptive receptive
field [28], which reduces the requirement of scale alignment
between objects and features. As a result, we are able to re-
move the FPN from the feature extraction path, Fig. 3(b). It
is no doubt that removing FPN has a negative impact on the
multi-resolution representation capability of features. Nev-

ertheless, significant performance gains are observed in ex-
periments, which supports the idea that constructing a “fully
pre-trained” feature extraction path is more important than
the multi-scale prior.

3.3. Detector Implementation

As described in Sec. 3.2, by migrating the transformer
encoder as the backbone, plugging the decoder to the detec-
tor head, and removing the FPN, we construct a “fully pre-
trained” feature extraction path. The architecture of RPN is
not updated as it plays the role of generating region propos-
als but does not disturb the feature extraction stream. An
imTED detector is then implemented by simply adding a
few linear layers and a proposal generation module to the
fully pre-trained encoder-decoder, Fig. 2.

Backbone Network. There is no modification to the
transformer encoder except for resizing the encoder’s posi-
tional embeddings so that they are consistent with input im-
age sizes. The transformer encoder, pre-trained on a large-
scale dataset, outputs a single-scale feature map which is
down-sampled by a factor of 16 relative to the input image.
The single-scale feature map is fed to the Rol-Align module
for proposal feature extraction.

Region Proposal Generation. In the two-stage detec-
tion architecture [30], dense and multi-scale region propos-
als are used for object localization. To produce multi-scale
feature maps, we up-sample or down-sample intermedi-
ate ViT feature maps by placing four resolution-modifying
modules at equally spaced intervals of d/4 transformer
blocks following [19], where d denotes the total number of
blocks. The multi-scale feature maps are fed to the FPN,
the output of which is further fed to the RPN for proposal
generation. The training of the RPN parameters, i.e., the
weights of the fully connected output layer, is consistent
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Figure 3. The involvement of (a) a conventional Faster R-CNN detector to (b) a single-scale detector (imTED-SS) and (c) the imTED

detector with multi-scale feature modulating.

with that of Faster R-CNN [30].

Detector Head. A pre-trained MAE decoder is migrated
to the detector head to replace the randomly initialized net-
work parameters, Fig. 2. The detector head consists of the
pre-trained decoder and two linear layers. Given the feature
map extracted by the encoder, an Rol-Align module is used
to extract features for each region proposal. The extracted
features are then embedded with location information by
summarizing with position embeddings [| 1]. The features
with position embedding are then fed to the decoder and
transformed with alternative attention and MLP layers. The
transformed features are finally fed to the linear classifica-
tion and regression layers to predict object categories and
location offsets.

3.4. Multi-scale Feature Modulator

Although the single-scale feature extracted by the trans-
former encoder is adaptive to object scales to some extent,
we are wondering could the multi-scale feature representa-
tion be recalled back, in a new fashion, to further enhance
the scale adaptability? To defend the idea of “fully pre-
training”, we can not directly call the FPN back to the fea-
ture extraction path; instead we redefine FPN as a multi-
scale feature modulator (MFM), which acts after the Rol-
Align module Fig. 3(c). Feature modulation for region pro-
posals is defined as an adaptive linear weighting procedure,
as

F=Fs;s+axF,;, (1)

where F € RE*H*W denotes the weighted features. F, €
REXHXW denotes single-scale feature extracted by the pre-
trained encoder and F,,,; € RE*H*W denotes multi-scale
features extracted by the randomly initialized FPN, which is
constructed by using the single-scale feature as input [20].
o € RY is alearnable weight vector. H and W respectively
denote the height and weight of the output feature maps of
the Rol Align module [30]. Both H and W are set to 7, fol-
lowing the setting of Faster R-CNN [30]. C'is the channel
dimension.

At the start-point of detector training, the elements of
o in Eq. 1 are initialized to zeros. When detector train-
ing proceeds, o gradually updates so that the single-scale

feature extracted by encoder is adaptively combined with
the multi-scale features. In a learnable way, the multi-scale
representation capacity is modulated to the single-scale rep-
resentation. The evolution of Faster R-CNN to imTED-SS
and imTED is illustrated in Fig. 3.

4. Experiment
4.1. Setting

The ViT models are categorized to ViT-S, ViT-B and
ViT-L [6] according to the parameter scales. These models
are pre-trained on ImageNet-1K using the self-supervised
MAE method [11] for 1600 epochs. By adding a proposal
generation module, Rol-Align module, multi-scale feature
modulator and light-weight linear output layers atop the
pre-trained encoder-decoder, the imTED detector is con-
structed. The detectors are evaluated on the MS COCO
dataset [21], which consists of ~118k training images and
5k validation images. Data augmentation strategies are de-
fined by resizing image with shorter size between 480 and
800 while the longer side is no larger than 1333 [2] . The
detector is trained using the AdamW optimizer [26] with
a learning rate le-4, a weight decay of 0.05. The training
lasts for 3xschedule (36 epochs with the learning rate de-
cayed by 10 at epochs 27 and 33). The batch size is 16,
distributed across 8 GPUs (2 images per GPU). For the ViT-
S/B/L models, a layer-wise Ir decay [!] of 0.75 and a drop
path rate of 0.1/0.2/0.3 are also applied.

4.2. Detection Performance

In Table 2, imTED detectors are evaluated and com-
pared with the baseline and state-of-the-art detectors. By
replacing the ResNeXt101 backbone with a pre-trained ViT
model, the baseline detector improves the average preci-
sion (AP) from 43.1 to 50.5, setting a solid baseline. Upon
the solid baseline, imTED-SS with ViT-B model improves
the AP by 1.7 (from 50.5 to 52.2), which is a large mar-
gin for the challenging task. Note that this improvement
is achieved without using FPN in the feature extraction
path, which substantially validates the “integral migration”
idea. When using multi-scale feature modulation (MFM),
the total performance gain increases to 2.4 (52.9 vs. 50.5).



Table 2. Object detection performance on the MS COCO dataset. Comparison of the proposed imTED detector with the state-of-the-art
detectors using vision transformers as backbones. None of compared detection methods (ViTDet, MIMDet, imTED-SS and imTED) uses

relative position embedding.

Approach Backbone Pre-train  Epochs Faster R-CNN Mask R-CNN
AP  AP;y AP;; APPox  Apmask
Baseline [37] ResNeXt101 1k, sup 36 431 63.6 472 445 39.7
Baseline [25] Swin-B 1k, sup 36 - - - 48.5 43.4
Baseline [ 18] MViTv2-B 1k, sup 36 - - - 51.0 45.7
Baseline [30] ViT-B 1k, MAE 36 505 714 555 513 453
ViT-Adapter [4]  ViT-S 1k, sup 36 - - - 48.2 42.8
imTED-SS(ours)  ViT-S 1k, MAE 36 473 686 51.0 480 424
imTED(ours) ViT-S 1k, MAE 36 48.2 684 52.6 48.7 42.7
ViT-Adapter [4]  ViT-B 1k, sup 36 - - - 49.6 43.6
Lietal. [19] ViT-B 1k, MAE 100 - - - 50.3 44.9
ViTDet [17] ViT-B 1k, MAE 100 - - - 51.6 45.9
MIMDet [£] ViT-B 1k, MAE 36 - - - 517 46.1
imTED-SS(ours) ViT-B 1k, MAE 36 522 728 571 523 46.0
imTED(ours) ViT-B 1k, MAE 36 529 732 579 533 46.4
ViT-Adapter [4]  ViT-L 22Kk, sup 36 - - - 52.1 46.0
Lietal. [19] ViT-L 1k, MAE 100 - - - 53.3 47.2
ViTDet [17] ViT-L 1k, MAE 100 - - - 55.1 48.9
MIMDet [8] ViT-L 1k, MAE 36 - - - 54.3 48.2
imTED(ours) ViT-L 1k, MAE 36 554 754 60.6 55.5 48.1

Table 3. Ablation studies using ViT-S as the backbone (encoder) in 1x schedule.

pre-trained weights.

* indicates that the module is initialized using MAE

Detector Head FPN MFM Params FLOPs AP AP59 AP;s; APs APy APL
Conv Layers v X 42.6M 403G 424 629 46.0 253 455 564
Decoder v X 30.IM 415G 422 624 458 258 450 57.0
Decoder* v X 30.IM 415G 425 63.0 46.1 256 454 57.7
Decoder* X X 30.IM 415G 432 639 469 250 466 58.6
Decoder* X v 30.3M 430G 44.0 646 476 262 473 593

imTED respectively improves the AP5q by 1.8 (from 71.4
to 73.2), and the AP~5 by 2.4 (from 55.5 to 57.9). When us-
ing the Mask R-CNN framework, it respectively improves
the AP®*® by 2.0 and the AP™*** by 1.1, which are all sig-
nificant margins. imTED also significantly outperforms the
state-of-the-art detectors, 7.e., MIMDet and ViTDet, which
use pre-trained transformers as backbones. ViTDet solely
leverages the pre-trained encoder but deprecates the de-
coder. MIMDet leverages both the encoder and decoder for
feature extraction but remains using a randomly initialized
detector head, which deteriorates its generalization capabil-
ity. imTED overcomes these disadvantages and achieves
higher performance. Without using MFM, the AP*** and
AP™5F of imgTED-SS respectively outperform the ViT-
Det detector (which uses FPN) by 0.7 (52.3 vs. 51.6) and
0.1 (46.0 vs. 45.9). When using MFM, the improvements of

AP and AP™%** rise up to 1.7 and 0.5. When using the
large backbone (ViT-L), the AP** and AP™%** of imTED
respectively outperform MIMDet by 1.1 and 0.9. Note that
even only trained for 36 epochs, the imTED is compara-
ble to, if not outperforms, ViTDet which is trained for 100
epochs.

4.3. Ablation Study

In ablations, we fine-tune the detector for 1x schedule
(12 epochs with the learning rate decayed by 10x at epochs
9 and 11) on the train2017 split and evaluate on the val2017
split. By default, the ViT-S [34] is set as the backbone (en-
coder), and a 4-layer decoder with 256 dimensions is em-
ployed as the detector head. Unless otherwise specified, the
ablation experiments are performed on Faster R-CNN.

Integral Migration. The baseline detector (Faster R-
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CNN) only uses a pre-trained encoder as backbone follow-
ing [19]. Its predictions are obtained from FPN, convo-
lutional (Conv) and fully connected layers in the detector
head. By replacing the Conv layers in the detector head with
the pre-trained MAE decoder and removing the FPN, we
construct an integrally pre-trained feature extraction path.
In Table 3, when replacing Conv layers in the detector head
with a decoder without pre-training, there is a little perfor-
mance drop -0.2 (42.2 vs. 42.4) observed. When using the
encoder as the backbone and the decoder pre-trained by the
MAE as the detector head, the AP performance improves
0.3 (42.5vs.42.2).

Removing FPN. By skipping FPN and constructing a
fully pre-trained feature extraction path, imTED further im-
proves AP by 0.7 (43.2 vs. 42.5). The total performance
gain (43.2 vs. 42.4) over the baseline detector, considering
the extensively investigated problem and the challenging as-
pects of the dataset, validates the effectiveness of the pro-
posed imTED approach.

MFM. In Table 3, when using multi-scale features to
modulate the feature extracted by fully pre-trained models,
imTED improves AP performance by 0.8 (44.0 vs. 43.2).
This shows the compatibility of fully pre-trained models
with the randomly initialized module. In total, imTED im-

Table 4. Detection performance using ViT-S in 1x schedule under
different detector head depth.

Depth  FLOPs AP APsy AP;5 APy APy APL

1 371G 423 628 458 2511 454 56.5
2 390G 43.1 634 468 26.1 463 574
3 410G 439 642 473 260 469 58.7
4 430G 440 646 476 262 473 593

proves the AP performance by 1.6 (44.0 vs. 42.4).

Training Loss Analysis. As shown in Fig. 4(left),
imTED’s localization loss decreases faster than the base-
line detector using either a randomly initialized decoder or
a randomly initialized FPN. imTED benefits from both the
integral migration and multi-scale feature representation,
demonstrating larger advantages on the localization ability.
On the other hand, the compared detectors have similar clas-
sification loss curves, Fig. 4(right). This shows that imTED
benefits a lot from the strong localization capacity of the
pre-trained decoder.

Depth of Decoder. In Table 4, we evaluate the effect of
depth of decoder (transformer blocks). Performance gradu-
ally saturates when the depth of decoder increases and the 4-
layer decoder achieves the best performance. While larger
objects benefit more from deeper decoders than smaller
ones, the computational cost increases with the number of
decoder layers.

Performance Gains During Training. The imTED de-
tector significantly improves AP during training, Fig. 5,
which demonstrates that imTED not only speeds up the con-
vergence of training but also raises the performance upper-
bound. Particularly, imTED achieves larger performance
gains under larger IoU thresholds, which implies improved
localization capacity.

Computational Cost. In Table 3, replacing the Conv
layers with the pre-trained decoder brings moderate in-
crease of computational cost, ¢.e., the FLOPs increases
from 403G to 415G. When introducing MFM as the mod-
ulator, the FLOPs further increases from 415G to 430G. In
total, the FLOPs increase by 6.7%.

4.4. Generalization Capacity

Low-shot Object Detection. imTED has greater gener-
alization capacity because its feature extraction procedure
is consistent with the pre-trained representation models. To
validate this capacity, we evaluate the performance gains of
imTED over the baseline detector by gradually reducing the
training samples, which is termed low-shot object detection,
Fig. 6(left). When the percentage of training data reduces,
the performance gains of imTED over the baseline detector
monotonously increase. Larger performance gains with less
training data demonstrate greater generalization capability.



We also evaluate the detection performance of object cat-
egories under different numbers of training instances. As
shown in Fig. 6(right), for the object categories of fewer
training instances, imTED outperforms the baseline detec-
tor by larger margins. This further validates the effective-
ness of imTED for low-shot object detection, which implies
higher generalization capability.

Few-shot Object Detection. imTED can be applied for
few-shot object detection without any modification. Fol-
lowing Meta YOLO [14], the object categories in MS
COCO are divided into two groups: base classes with ade-
quate annotations and novel classes with K -shot annotated
instances. On MS COCO, 20 classes are selected as novel
ones and the remaining 60 classes as base ones. The base
classes are used to initialize the detector, i.e., endowing it
the ability to localize objects, through base training. The de-
tector is then finetuned upon the novel classes for few-shot
object detection. In Table 5, imTED respectively improves
the state-of-the-arts of few-shot detection by 3.5 (19.0 to
22.5) and 7.6 (22.6 to 30.2) under 10-shot and 30-shot set-
tings. The large performance gains further validate the gen-
eralization capability of the proposed imTED detectors.

Occluded Object Detection. We configure a sub-set
of (534) images with occluded objects from the validation
set of MS COCO. If two ground-truth objects has an IoU
larger than 0.5, the corresponding image will be selected.
In Table 6, by introducing the decoder and removing FPN,
imTED improves the AP performance of occluded object
detection by 1.2 (36.6 to 37.8). When using FPN as the
modulator, the AP improvement increases to 2.4 (36.6 to
39.0). The total performance gain on the occluded subset
is larger than that of the full set of MS COCO (2.4 vs. 1.6),
demonstrating the superiority of integral migration on the
occluded object detection task. As is known, MAE learns
features via a form of denoising autoencoder, where each
image is occluded with random patch masks and fed to the
encoder while the decoder predicts the original pixel val-
ues of the masked (occluded) patches. This occlusion-and-
prediction procedure performed on a large mount of im-
ages enables MAE models intrinsically learning occlusion
invariant features. By integral migration, the imTED detec-
tor retains the capacity of MAE pre-trained models, which
facilities detecting occluded objects.

5. Conclusion and Future Remarks

We significantly improved the conventional detection
pipeline by integrally migrating pre-trained transformer
encoder-decoders (imTED). The key idea is to construct a
feature extraction path which is not only “fully pre-trained”
but also consistent with MAE models. By migrating an
MAE decoder to the detector head and removing FPN,
imTED updated Faster R-CNN to a simpler yet more ef-
fective detector, where FPN is employed as a feature mod-
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Figure 6. Performance gains on low-shot object detection. Left:
Performance gains when reducing training samples. Right: Per-
formance gains with respect to training sample numbers.

Table 5. Performance comparison of few-shot object detection on
the MS COCO dataset.

Shots  Method Detector AP
Meta YOLO [ YOLOV2 5.6
CME [16] FasterR-CNN + R101 15.1
FCT [10] PVTv2-B2-Li 17.1
10 Meta-DETR [ DETR + R101 19.0
DeFRCN [29] FasterR-CNN + R101 18.5
Baseline Faster R-CNN + ViT-B  14.8
imTED(ours) imTED + ViT-B 22.5
Meta YOLO [ YOLOvV2 9.1
CME [16] FasterR-CNN + R101 16.9
FCT [10] PVTv2-B2-Li 21.4
30 Meta-DETR [ DETR + R101 222
DeFRCN [29] FasterR-CNN + R101 22.6
Baseline Faster R-CNN + ViT-B  22.2
imTED(ours) imTED + ViT-B 30.2

Table 6. Ablation studies using ViT-S as the backbone (encoder)
on occluded objects in 1x schedule. * indicates that the module is
initialized with MAE pre-trained weights.

Detector Head FPN MFM AP AP;qg APrs

Conv Layers v X 36.6 555 388
Decoder v X 369 56.1 392
Decoder* v X 375 57.1 395
Decoder* X X 378 573 422
Decoder* X v 39.0 589 413

ulator to further enhance scale adaptability. Experiments
on general, low/few-shot and occluded object detection
demonstrated the performance gains brought by imTED,
with striking contrast with the state-of-the-arts. imTED pro-
vides an insight to fully exploit the potential of pre-trained
masked autoencoders.

Despite the fact that imTED is implemented with less
parameters, the computational cost of the decoder is moder-



ately larger than the detector head with Conv layers. In the
future, one solution is to use cascaded rejection strategies to
reduce object proposals. The other solution is to configure
a light-weight decoder using knowledge distillation.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

(14]

Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training
of image transformers. arXiv preprint arXiv:2106.08254,
2021. 2,5

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, volume
12346, pages 213-229, 2020. 2, 5

Wuyang Chen, Xianzhi Du, Fan Yang, Lucas Beyer, Xiao-
hua Zhai, Tsung-Yi Lin, Huizhong Chen, Jing Li, Xiaodan
Song, Zhangyang Wang, et al. A simple single-scale vision
transformer for object localization and instance segmenta-
tion. arXiv preprint arXiv:2112.09747, 2021. 1

Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong
Lu, Jifeng Dai, and Yu Qiao. Vision transformer adapter for
dense predictions. arXiv preprint arXiv:2205.08534, 2022.
6

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. Imagenet: A large-scale hierarchical image
database. In IEEE CVPR, pages 248-255. IEEE CS, 2009. 3
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 1,2,4,5

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichtenhofer.
Multiscale vision transformers. In [EEE CVPR, pages 6824—
6835, 2021. 2

Yuxin Fang, Shusheng Yang, Shijie Wang, Yixiao Ge, Ying
Shan, and Xinggang Wang. Unleashing vanilla vision trans-
former with masked image modeling for object detection.
arXiv preprint arXiv:2204.02964, 2022. 3, 6

Ross Girshick. Fast r-cnn. In IEEE ICCV, pages 1440-1448,
2015. 2

Guangxing Han, Jiawei Ma, Shiyuan Huang, Long Chen,
and Shih-Fu Chang. Few-shot object detection with fully
cross-transformer. arXiv preprint arXiv:2203.15021, 2022.
8

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollér, and Ross Girshick. Masked autoencoders are scalable
vision learners. arXiv preprint arXiv:2111.06377, 2021. 1,
2,3,5

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In IEEE ICCV,2017. 1,2, 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In /EEE
CVPR, pages 770-778, 2016. 2

Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng,
and Trevor Darrell. Few-shot object detection via feature
reweighting. In IEEE ICCV, pages 8420-8429, 2019. 8

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. NeurIPS, 25,2012. 2

Bohao Li, Boyu Yang, Chang Liu, Feng Liu, Rongrong Ji,
and Qixiang Ye. Beyond max-margin: Class margin equi-
librium for few-shot object detection. In IEEE CVPR, pages
7363-7372,2021. 8

Yanghao Li, Mao Hanzi Mao, Ross Girshick, and Kaiming
He. Exploring plain vision transformer backbones for object
detection. arXiv preprint arXiv:2203.16527,2022. 1,2,3,6
Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Man-
galam, Bo Xiong, Jitendra Malik, and Christoph Feichten-
hofer. Improved multiscale vision transformers for classifica-
tion and detection. arXiv preprint arXiv:2112.01526, 2021.
6

Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaim-
ing He, and Ross Girshick. = Benchmarking detection
transfer learning with vision transformers. arXiv preprint
arXiv:2111.11429,2021. 1,2,4,6,7

Tsung-Yi Lin, Piotr Dollar, Ross B. Girshick, Kaiming He,
Bharath Hariharan, and Serge J. Belongie. Feature pyramid
networks for object detection. In IEEE CVPR, pages 936—
944,2017. 1,5

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dolldr, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In ECCV, pages 740-755, 2014. 5

Tsung-Yi Lin, Piotr Dolldr, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In IEEE CVPR, pages 2117-
2125,2017. 2

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. In /IEEE
ICCV, pages 2980-2988, 2017. 2

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In ECCV, pages
21-37. Springer, 2016. 2

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
IEEE CVPR, pages 10012-10022, 2021. 2, 6

Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2018. 5

Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye,
and Furu Wei. BEIiT v2: Masked image modeling
with vector-quantized visual tokenizers. arXiv preprint
arXiv:2208.06366, 2022. 2

Zhiliang Peng, Wei Huang, Shanzhi Gu, Lingxi Xie, Yaowei
Wang, Jianbin Jiao, and Qixiang Ye. Conformer: Local fea-
tures coupling global representations for visual recognition.
arXiv preprint arXiv:2105.03889, 2021. 2, 4

Limeng Qiao, Yuxuan Zhao, Zhiyuan Li, Xi Qiu, Jianan Wu,
and Chi Zhang. Defrcn: Decoupled faster r-cnn for few-shot
object detection. In IEEE ICCV, pages 8681-8690, 2021. 8



(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with re-
gion proposal networks. In NIPS, pages 91-99, 2015. 1, 2,
3,4,5,6

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

Hwanjun Song, Deqing Sun, Sanghyuk Chun, Varun Jam-
pani, Dongyoon Han, Byeongho Heo, Wonjae Kim, and
Ming-Hsuan Yang.  Vidt: An efficient and effective
fully transformer-based object detector. arXiv preprint
arXiv:2110.03921,2021. 3

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In /JEEE CVPR, pages 1-9, 2015. 2

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In /ICML, volume 139, pages 10347-10357, 2021.
6

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, ; ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurlIPS, 30, 2017. 1
Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In IEEE CVPR, pages 568—
578,2021. 2

Saining Xie, Ross Girshick, Piotr Dolldr, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In /EEE CVPR, pages 1492-1500, 2017. 2,
6

Gongjie Zhang, Zhipeng Luo, Kaiwen Cui, and Shijian Lu.
Meta-detr: Few-shot object detection via unified image-level
meta-learning. arXiv preprint arXiv:2103.11731, 2(6), 2021.
8

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang
Xie, Alan Yuille, and Tao Kong. ibot: Image bert pre-training
with online tokenizer. arXiv preprint arXiv:2111.07832,
2021. 2

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 2

10



	1 . Introduction
	2 . Related Work
	3 . Approach
	3.1 . Motivation
	3.2 . Constructing A Fully Pre-trained Feature Extraction Path
	3.3 . Detector Implementation
	3.4 . Multi-scale Feature Modulator

	4 . Experiment
	4.1 . Setting
	4.2 . Detection Performance
	4.3 . Ablation Study
	4.4 . Generalization Capacity

	5 . Conclusion and Future Remarks

