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Abstract

Object detection via inaccurate bounding boxes super-
vision has boosted a broad interest due to the expensive
high-quality annotation data or the occasional inevitabil-
ity of low annotation quality (e.g. tiny objects). The previ-
ous works usually utilize multiple instance learning (MIL),
which highly depends on category information, to select
and refine a low-quality box. Those methods suffer from
object drift, group prediction and part domination prob-
lems without exploring spatial information. In this pa-
per, we heuristically propose a Spatial Self-Distillation
based Object Detector (SSD-Det) to mine spatial informa-
tion to refine the inaccurate box in a self-distillation fash-
ion. SSD-Det utilizes a Spatial Position Self-Distillation
(SPSD) module to exploit spatial information and an in-
teractive structure to combine spatial information and cate-
gory information, thus constructing a high-quality proposal
bag. To further improve the selection procedure, a Spa-
tial Identity Self-Distillation (SISD) module is introduced in
SSD-Det to obtain spatial confidence to help select the best
proposals. Experiments on MS-COCO and VOC datasets
with noisy box annotation verify our method’s effective-
ness and achieve state-of-the-art performance. The code
is available at https://github.com/ucas-vg/
PointTinyBenchmark/tree/SSD-Det.

1. Introduction
Object detection [18, 38, 58, 30, 57] relying on large-

scale datasets like MS-COCO[31] has significantly pro-
gressed and achieved good performance. However, accurate
bounding box annotations are expensive and challenging in
natural contexts [12]. Especially in many professional sce-
narios, it is difficult to label accurate annotations without
domain knowledge (e.g., agricultural crop observation and
medical image processing) [12, 1]. As shown in Fig. 1a
in some complex datasets, the human annotators may also
annotate inaccurate bounding boxes due to the inherent
ambiguities[20] of objects. In addition, labelling with a de-
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(a) Labelling strategies lead to inaccurate annotations (red box).

(b) Three problems during previous MIL refining. Because their se-
lections depend solely on classification, (i,ii): the refined box (green
box) drifts to another object or makes a group prediction (merging
across multiple objects) due to neighbor disturbance. Yellow boxes
are proposals in the middle person’s MIL bag. (iii): Local part may
be more discriminative than the entire object and will be predicted.

Figure 1: The sources of inaccurate box annotations and
three problems caused by previous refinement methods.

tector or weak signal[11] (e.g., point) is much cheaper but
brings more inaccuracy. Therefore learning robust detectors
with inaccurate bounding boxes[12, 4, 35, 53, 25] is a prac-
tical and meaningful task and has boosted a broad interest.

To use the inaccurate annotations, most related meth-
ods [12, 11] refine the inaccurate annotations as Fig. 1a
shows, and then train a detector head or re-train a detector
with the refined box as the new supervision. There are two
main steps during refining: 1) Bag Construction: For each
object, obtaining some proposals around the inaccurate an-
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notated bounding box to form the object-level proposal bag;
2) Proposal Selection: Selecting the top-k proposals with
the highest classification confidence from each bag and then
weighting average them to obtain the refined box.

During the proposal selection, they usually utilize mul-
tiple instance learning (MIL) [10] supervised by category
information to choose the proposals with high classification
confidence from the constructed bags. However, they pay
less [12] or no [11] attention to mining spatial information,
leading to the following problems as shown in Fig. 1b: (1)
Object Drift: For each object, some proposals in the con-
structed bag do not have a high IoU with the original object
but with another nearby object. These proposals are not
spatially adjacent to the original object but still have high
classification confidence, as the rightmost (the yellow box)
proposal of O2 shows in the left-bottom corner of Fig. 1b.
Only the category confidence is relied on for selecting pro-
posals for O2, and the rightmost proposal will be selected
as the refined box. It means the refined box drifts to another
object (Fig. 1b (i)), reducing the recall; (2) Group Predic-
tion: Most works [7, 11, 56] select the top-k proposals by
classification confidence and then weight average them as
the refined box, causing the group prediction problem, as
shown in Fig. 1b (ii); (3) Part Domination: The detector
often focuses on the object’s semantic region, which can
statistically represent the category (e.g. the face). As shown
in Fig. 1b (iii), the high classification confidence of the an-
imal is in the discriminant part (the face) rather than the
entire object as mentioned by [44, 39].

To address these problems, we propose a Spatial Self-
Distillation based detector (SSD-Det) to integrate the spa-
tial cues into the bounding box refinement. SSD-Det
has two important components: the Spatial Position Self-
Distillation (SPSD) module for the bag construction step
and the Spatial Identity Self-Distillation (SISD) module for
the proposal selection step. To construct high-quality pro-
posal bags, SPSD utilizes a neighborhood sampler to gen-
erate a balanced and flexible initial proposal bag for each
object and then trains a regressor with the supervision of the
annotated inaccurate bounding boxes. Finally, high-quality
proposal bags are constructed with proposals corrected by
the regressor. The mechanism behind SPSD is that the net-
work learns the spatial information from the reliable sam-
ples, e.g. those low-noise annotations, in the dataset and
then guides the noisy samples to produce high-quality pro-
posals, as shown in Fig. 2. In addition, to further com-
bine the category information and the spatial information,
an interactive structure is implemented by alternately us-
ing SPSD to mine spatial cues and MIL to utilize the cat-
egory information. With SPSD and the interactive struc-
ture, a high-quality proposal bag can be constructed. Ex-
periments on MS-COCO show that SPSD can significantly
improve the mean/max IoU between objects and proposals

Figure 2: The mechanism of Spatial Self-Distillation. By
assigning higher weight, the low-noise annotations can be
seen as reliable samples to guide the training of proposals’
spatial position and identity learning in SPSD and SISD.

(about 18/10 points, Fig. 5) in the constructed bag. Instead
of selecting proposals by classification confidence, we have
proposed the SISD module in the proposal selection step.
We use it to obtain each proposal’s spatial confidence by
predicting the IoU with the object and combining the IoU
with classification confidence to select the top-k proposals.
It is worth mentioning that SISD is an object-related IoU
predictor, which means that the predicted IoU may be dif-
ferent for the same proposal that appears in different ob-
jects’ bags. Accordingly, it guarantees that SISD can better
handle object drift and group prediction problems. Experi-
ments on MS-COCO and VOC datasets verify the effective-
ness of our method and bring state-of-the-art performance.
The contributions are as follows:

1) We further investigate the inaccurate-box supervised
object detection tasks and propose an end-to-end training
SSD-Det that combines the spatial and the category infor-
mation in an interactive fashion.

2) We utilize an SPSD module to generate higher-quality
proposals sampling through statistic-guide spatial position
distillation, raising the upper bound of the refinement.

3) To add spatial cues to classification confidence, we
also introduce an SISD module to select a proposal belong-
ing to the object rather than the category.

4) The performance of our proposed SSD-Det improves
the mean average precision (AP) of the best previous
method (e.g. over 10 AP on 40% noisy MS-COCO) and
achieves state-of-the-art under various noise rate box super-
vision on MS-COCO and VOC datasets.

2. Related Work
2.1. Object Detection

Classic object detection [15, 38, 37, 32, 30, 3, 43, 57]
is supervised by an accurate bounding-box. One-stage
detectors utilize anchors as the sliding-window, such as
YOLO [37], SSD [32], and RetinaNet [30]. Two-stage de-
tectors mine spatial information to predict proposals (e.g.
selective search [47] in Fast R-CNN [15] or RPN in Faster
R-CNN [38]) and conduct classification and bounding-box



regression with filtered proposals sparsely. Transformer-
based (i.e. DETR [3], Deformable-DETR [62], and Swin-
Transformer [33]) detectors utilize global information for
better representation. Sparse R-CNN [43] combines a trans-
former’s advantages and CNNs for detection.

2.2. Weakly-Supervised Object Detection (WSOD)

WSOD trains object detectors with image tag supervi-
sion. Only with the category annotation, the majority of pre-
vious methods treat each image as a bag and candidate pro-
posals as instances. They follow the multiple instance learn-
ing (MIL) pipeline [1, 44, 46, 7, 48], which highly depends
on category information. However, the MIL loss function
leads to a non-convex optimization problem; thus, MIL so-
lutions are usually stuck into the local minima. Context in-
formation [24, 51], spatial regularization [1, 9, 48], and op-
timization strategy [44, 48, 46] are proposed to address the
problems. SPE [28] introduces Transformer into WSOD
and uses attention to generate proposals. SD-LocNet [59]
tackles the initialized noisy object locations in WSOD and
proposes a self-directed localization network to identify the
noisy object instances. [44, 46, 7] use the pseudo label for
classification’s iterative refinement. However, we use the
pseudo box as a better self-distillation teacher. [54, 39]
conduct regression to move the proposals, whereas we con-
duct regression to distill for better bag construction. In this
work, we also formulate box correction as a MIL problem.

2.3. Semi-Supervised Object Detection (SSOD)

Semi-supervised learning in object detection can be
roughly categorized into two groups: consistency based [22,
45] and pseudo label based [27, 36, 41, 49, 64, 52]. [52]
presents an end-to-end SSOD approach with two simple
techniques named soft teacher and box jittering to facili-
tate the efficient leverage of the teacher model. Both Soft
Teacher [52] and SSD-Det obtain pseudo-labels from can-
didate boxes, adopting distillation, box jitter and classifica-
tion scores weighting policy. However, they are different:
1) SSOD selects candidate boxes from the teacher model’s
detection results, while SSD-Det generates them with a gen-
erative approach, due to no any accurate supervised data
for ensuring high-quality boxes in the detection results. 2)
[52] is based on FixMatch [40] and requires maintaining
two networks for teacher-student distillation structure. In
contrast, our approach only needs a multi-head detector
with a shared backbone for self-distillation. 3) Box Jitter:
[52] calculates box variance from jittering for result selec-
tion, while we aim to generate candidate boxes that com-
bine SISD-predicted IoU and classification scores, select-
ing boxes closer to the ground truth. 4) We use classifica-
tion scores as weights for the next stage’s loss, while [52]
employs them as a criterion for selecting reliable samples.

2.4. Learning with Noisy Annotations

Training CNNs under noisy labels has been an active re-
search area. Previous research focuses on the classification
task, and develops various techniques to deal with noisy
labels, such as sample selection [17, 23] for training, la-
bel correction [42, 34], and robust loss functions [60, 14]
against noisy labels. Recently, many efforts [4, 25, 35, 53,
11, 12] have been devoted to the object detection task. On
the one hand, Simon et al. [4] first investigates the impact
of different types of label noise on object detection. They
propose a per-object co-teaching method to alleviate the
effect of noisy labels. On the other hand, [53] proposes
a meta-learning framework for noisy annotations consist-
ing of noisy category labels and bounding boxes. [11, 12]
utilize object-level MIL to refine the inaccurate box. OA-
MIL [12] constructs proposal bags through label assign-
ment in a discriminant style. P2BNet [11] originally con-
ducts point-supervised object detection tasks. However, it
can be seen as the box correction in its refinement stage.
It uses hand-craft anchors to generate proposal bags. Our
method inherits the generative style of P2BNet and con-
ducts spatial distillation to mine spatial information.

2.5. Knowledge Distillation

Knowledge distillation (KD) [21] aims to learn compact
and efficient student models guided by excellent teacher
networks. It is first applied to object detection in [5], in
which hint learning and KD are both used for multi-class
object detection. Recently, many efforts [26, 50, 8, 16, 55]
aim to mimic the feature. [61] shows that localization
knowledge is more important and proposed a localization
distillation method. We also transfer the spatial knowledge
from reliable labeled instances to correct inaccurate bound-
ing boxes (shown in Fig. 2) in a self-distillation manner.

3. Methodology
This work aims to learn a robust detector with inaccu-

rate bounding boxes. Instead of training a detector with the
original inaccurate bounding box, we follow most related
works [11, 12] that design a branch to refine the inaccurate
bounding box and then train the detector head or detector
with the refined bounding box. The most important part is
how to design a refining policy. We first design a two-stage
basic box refiner (gray region in Fig. 3) as a naive solution
that modified from [11]. Then, SPSD and SISD are pro-
posed and added to further mine the spatial cues for box
refinement, yielding SSD-Det. Therefore, the overall loss
function is formulated as:

L = LBasic + α1 · LSPSD + α2 · LSISD + α3 · LDet (1)

where α1, α2 and α3 are set as 0.25, 0.25 and 4 respectively.
LDet denotes the loss of detector or detection head. During
inference, only the detector or the detection head is used.



Figure 3: The framework of SSD-Det. It contains basic box refiner, SPSD module, SISD module and a detector head.
Neighborhood sampler is adopted around the inaccurate annotation. Then, SPSD module generates better proposal bags
which are fed into basic box refiner for MIL training. The selected proposals are average weighted as the refined box and
supervise the next SPSD training. Meanwhile, the SISD module predicts the IoU between proposals and the object, and the
estimated IoU is multiplied by classification score for better proposal selection to generate the refined box. SPSD shares
backbone with the detector.

3.1. Basic Box Refiner

Motivated by [12] and WSOD [1], we design the basic
box refiner (detailed structure figure is in supplementary)
that leverages classification confidence to refine the inaccu-
rate box annotation. Then the refine annotation is used to
train a detection head or detector. Following [11], we de-
sign a two-stream structure as a MIL classifier to select the
best proposal for box refinement.

Giving an image with inaccurate box annotation, for
each object, B is a bag of proposals (bounding boxes) that
are generated around its inaccurate annotation by a sampler
policy (e.g., selective search[47], edge box[63], neighbor-
hood sampler in Sec. 3.2). Meanwhile a feature map is ex-
tracted with a backbone network. And then through 7 × 7
RoIAlign [18] and two fully connected (fc) layers, features
of proposal in B are extracted and denote as F. The ba-
sic box refiner takes proposal bag B ∈ RP×4 and features
F ∈ RP×D as inputs, where P , D are denoted as the num-
ber of proposals in B, feature dimension respectively.

Following [11] and [1], as Eq. 2 described, we apply
the classification branch fcls to F yields Ocls, which is then
passed through the softmax function over classification di-
mension K to obtain the score Scls ∈ RP×K , where K
represents the number of instance categories. Likewise, in-
stance selection branch fcls is applied to F to yield Oins,
and instance score Sins is obtained through softmax func-
tion over P proposals. The proposal score S is obtained by
computing the Hadamard product of the classification score
and the instance score. The bag score Ŝ is obtained by the

summating of the P proposal boxes’ proposal scores.

Ocls = fcls(F) ∈ RP×K ; [Scls]pk = e[O
cls]pk

/ K∑
k=1

e[O
cls]pk .

Oins = fins(F) ∈ RP×K ; [Sins]pk = e[O
ins]pk

/ P∑
p=1

e[O
ins]pk .

S = Scls ⊙ Sins ∈ RP×K ; Ŝ =
P∑

p=1

[S]p ∈ RK .

(2)
where [·]pk is the value at row p and column k in the matrix.

The basic box refiner has two similar stages. The loss of
stage I(termed LI ) adopt the MIL paradigm with the form
of cross-entropy (CE) loss, defined as:

LI = CE(Ŝ, c) = −
K∑

k=1

ck log(Ŝk) + (1− ck) log(1− Ŝk)

(3)
where c ∈ {0, 1}K is the one-hot category label. And each
object’s proposals with the top-k highest proposal score S
are weighted to obtain the refined box.

The stage II takes the refined box of stage I as input and
performs fine refining with a similar structure as stage I.
Differently, the focal loss is adopted in stage II instead of
cross entropy loss. In order to cooperate with focal loss,
the classification branch uses the sigmoid σ(x) instead of
softmax function and we sample some negative samples
N to further suppress the background. With the bag score
Ŝ and the negative sample scores Scls

neg , the loss is:

LII =
〈
cT, Ŝ∗

〉
· FL(Ŝ, c) +

∑
N

β · FL(Scls
neg, cneg)

}
(4)

where FL is the focal loss [30], Ŝ∗
j represents the bag score

predicted by stage I.
〈
cTj , Ŝ

∗
j

〉
represents the inner product



of the two vectors, meaning the predicted bag score of the
ground-truth category. β is the average of

〈
cTj , Ŝ

∗
j

〉
. They

are used to weight each object’s FL for stable training. The
overall loss function of the basic refiner here is:

LBasic = LI + αII · LII (5)

where αII are the loss weights of the two stages.
During training, the refined box of stage II is used as su-

pervision for a detection head or detector. After training, the
basic box refiner will be removed, leaving a well-trained de-
tection head or detector. In this way, we can train a detector
under inaccurate annotations.

3.2. Spatial Position Self-Distillation (SPSD)

Like most MIL paradigm methods, basic box refiner has
two main components: bag construction and proposal selec-
tion. And the main idea is to use classification information
to guide the refining. In this paper, we add spatial informa-
tion to improve refining. Specifically, SPSD is proposed to
use spatial information to enhance bag construction.

Bag construction aims to obtain proposals for each ob-
ject, while proposal selection is to select the proposals from
the object bag. Then, the refined box is averaged over the
selected proposals. Therefore, the quality of the proposals
in constructed bag determines the upbound of refining. The
bag construction can be implemented in a variety of ways.
In this paper, the basic box refiner adopts a naive neighbor-
hood sampler for bag construction. basic box refiner adopts
a naive neighborhood sampler for bag construction.

Neighborhood Sampler. Proposals around the inaccu-
rate box are sampled to construct an object bag. For each
inaccurate box b∗ = (b∗x, b

∗
y, b

∗
w, b

∗
h), its scale and aspect

ratio with s and v are adjusted and its positions ox, oy are
jittered to obtain the diverse proposal b = (bx, by, bw, bh):

bw = v · s · b∗w, bh = 1/v · s · b∗h,
bx = b∗x + bw · ox, by = b∗y + bh · oy.

(6)

These proposals b are used to construct the positive pro-
posal bag B to train the MIL classifier. Thanks to the hand-
craft sampling way, the number of proposals in different
objects’ proposal bags is controllable and balanced. How-
ever, the hand-craft neighborhood sampler strategy is diffi-
cult to set hyper-parameters, and the sampling space is dis-
crete. For example, when the jitter region is small, the opti-
mization space of refining is limited, while when it is large,
more background will be introduced. Hence, we propose
the SPSD module to mine spatial information for higher-
quality proposal bag construction.

Statistically Guided Adaptive Sampling. Instead of
simply using a neighborhood sampler, we adopt a statisti-
cally guided adaptive sampling by adding SPSD modules
into the basic box refiner. Taking the constructed proposal
bag B of hand-craft neighborhood sampler as input, the

RoI features of proposals in B are extracted and fed into
the two shared fc layers to obtain F. Then a regression fc
layer fdis, supervised by the inaccurate annotated bounding
box b∗, is introduced to predict the adaptive proposal bag
Bdis = fdis(F) ∈ RP×4, in which the proposals are closer
to the object. Later, Bdis as the constructed proposal bag is
fed into stage I of basic box refiner. In order to combine cat-
egory and spatial information, we implement an interactive
structure by alternately using SPSD to mine the spatial cues
and using MIL in basic box refiner to utilize the category
information. Specifically, the refined bounding box b̂∗ of
stage I that selected by the classification confidence is used
to supervision of a new SPSD module for stage II. Similar
as stage I, The new SPSD takes proposal bag Bdis of hand-
craft neighborhood sampler as input. Through the RoI align
and the two shared fc layers, the feature F̂ is extracted. An
extra fc layer ˆfdis is then utilized to conduct further regres-
sion. Different with stage I, the obtained ˆBdis is supervised
by the refined b̂∗. The loss function of the spatial distillation
for adaptive sampling can be defined as LSPSD in Eq. 7.

LSPSD =
1

P

{ P∑
p=1

L1([Bdis]p, b
∗) +

P∑
p=1

L1([ ˆBdis]p, b̂∗)
}

(7)

where the L1 is the L1 loss function for loose restrictions.
The idea behind SPSD is that the dataset with inaccu-

rate annotation still has many reliable, high-quality boxes
and inaccurate boxes. Supervised by the high-quality boxes
statistically, the network can guide those proposals sampled
around the inaccurate bounding box to regress to the ground
truth. With the self-distillation mechanism, SPSD learns the
semantic-spatial correspondence knowledge from the reli-
able samples in the dataset and then propagates the knowl-
edge to produce high-quality proposals.

Adaptive Negative Sampling. Negative samples are in-
troduced in Stage II to better suppress the background. With
the sampled ˆBdis, we can adaptively sample the negative
samples with a small IoU (set smaller than 0.3 by default)
with all positive proposals in all bags, to compose the nega-
tive sample set N for stage II.

3.3. Spatial Identity Self-Distillation (SISD)

The basic box refiner selects the proposals only depend-
ing on classification confidence during proposal selection.
To select the proposal which has high classification confi-
dence and is also spatially close to the object from the bag,
we propose a SISD module to predict the IoU between pro-
posals and their corresponding object. Afterwards, through
the combination between the IoU and the classification con-
fidence, top-k proposals are selected. In SISD, we design
an Object Relevance Enhancement (ORE) module to distin-
guish different objects’ features with the same RoI region.
And an identity predictor is designed to predict each pro-
posal’s IoU with the object.



Method Backbone 20% Box Noise Level 40% Box Noise Level
AP AP50 AP75 AP s APm AP l AP AP50 AP75 AP s APm AP l

V al Set
Clean-FasterRCNN [38] ResNet-50 37.9 58.1 40.9 21.6 41.6 48.7 37.9 58.1 40.9 21.6 41.6 48.7
Clean-FasterRCNN [38] ResNet-101 39.4 60.1 43.1 22.4 43.7 51.1 39.4 60.1 43.1 22.4 43.7 51.1
Clean-Retinanet [30] ResNet-50 36.7 56.1 39.0 21.6 40.4 47.4 36.7 56.1 39.0 21.6 40.4 47.4
Noisy-FasterRCNN [38] ResNet-50 30.4 54.3 31.4 17.4 33.9 38.7 10.3 28.9 3.3 5.7 11.8 15.1
Noisy-Retinanet [30] ResNet-50 30.0 53.1 30.8 17.9 33.7 38.2 13.3 33.6 5.7 8.4 15.9 18.0
FreeAnchor[58] ResNet-50 28.6 53.1 28.5 16.6 32.2 37.0 10.4 28.9 3.3 5.8 12.1 14.9
Co-teaching[17] ResNet-50 30.5 54.9 30.5 17.3 34.0 39.1 11.5 31.4 4.2 6.4 13.1 16.4
SD-LocNet[59] ResNet-50 30.0 54.5 30.3 17.5 33.6 38.7 11.3 30.3 4.3 6.0 12.7 16.6
KL loss[20] ResNet-50 31.0 54.3 32.4 18.0 34.9 39.5 12.1 36.7 3.7 6.2 13.0 17.4
OA-MIL[12] ResNet-50 32.1 55.3 33.2 18.1 35.8 41.6 18.6 42.6 12.9 9.2 19.9 26.5
SSD-Det ResNet-50 33.6 57.3 35.3 19.5 37.2 43.3 27.6 53.9 26.0 16.0 31.0 34.9
SSD-Det ResNet-101 34.3 57.6 36.7 19.1 38.1 44.3 28.4 54.3 27.2 16.5 31.9 36.4
SSD-Det+FR ResNet-50 34.4 57.3 36.8 20.0 38.2 44.0 29.3 54.8 29.0 17.1 32.9 36.9
SSD-Det+FR ResNet-101 36.2 59.1 39.2 20.9 40.2 47.1 30.6 56.7 30.7 18.1 34.5 39.0

Test Set
Clean-FasterRCNN [38] ResNet-50 37.7 58.7 40.8 21.7 40.6 46.7 37.7 58.7 40.8 21.7 40.6 46.7
Noisy-FasterRCNN [38] ResNet-50 30.7 54.9 31.3 18.0 33.7 37.7 10.4 29.0 3.3 6.0 11.3 14.6
OA-MIL[12] ResNet-50 32.3 55.8 33.7 18.5 35.0 40.2 18.5 42.3 12.8 9.3 19.1 25.1
SSD-Det ResNet-50 33.5 57.3 35.5 19.1 36.0 41.9 28.0 54.1 26.5 16.5 30.0 34.5
SSD-Det+FR ResNet-50 34.7 57.9 37.2 20.0 37.7 42.7 29.7 55.6 29.3 17.5 32.4 36.2

Table 1: Performance comparison on COCO. FR is Faster R-CNN. *-FR refers to a retrained Faster R-CNN (R50+FPN) using
refined annotations from SSD-Det for improved performance.. Clean-* and Noisy-* means original and noisy annotation.

Object Relevance Enhancement (ORE). ORE en-
hances object-relevant features, making SISD an object-
relevant IoU predictor. ORE allows the predicted IoU to
be different for the same proposal in other objects’ bags. In
addition, we integrate the feature of the bag’s corresponding
object into the proposal feature, making the feature of dif-
ferent bags’ proposals distinct. That is the so-called ORE.
For a proposal bag B, the feature F is obtained through the
RoI align and two fc layers. It is worth mentioning that the
two fcs do not share the parameters with those in the refiner
since the optimization goals are contradictory. To represent
the feature of the bag’s corresponding object, F+ ∈ R1×D

is calculated by averaging features of P proposals in pro-
posal bag B. The object feature F+ is broadcast into RP×D,
and then added to the proposal features to obtain the object-
relevant features F∗ = F+ F+.

Spatial Identity Prediction. By a following identity fc
layer, U ∈ RP×1 is predicted. The pseudo label T ∈ (0, 1)

is IoU between proposals in B and the merged box b̂∗ of
stage I. For better optimization, the linear normalized T ′ =
(T − 0.5)/0.5 ∈ (−1, 1) is utilized as supervision. The
object function of the identity predictor is identified in:

LSISD = smoothL1(U, T
′) (8)

where the smoothL1 represents the smooth L1 loss. The
predicted spatial confidence U ′ is obtained by normalizing
the U . Finally, S∗ = U ′ · S is used to select the top-k
proposals for merging as the refined boxes.

Method Backbone Box Noise Level
10% 20% 30% 40%

Clean-FasterRCNN [38] ResNet-50 77.2 for clean
Clean-RetinaNet [30] ResNet-50 73.5 for clean
Noisy-FasterRCNN [38] ResNet-50 76.3 71.2 60.1 42.5
Noisy-RetinaNet [30] ResNet-50 71.5 67.6 57.9 45.0
KL loss[20] ResNet-50 75.8 72.7 64.6 48.6
Co-teaching[17] ResNet-50 75.4 70.6 60.9 43.7
SD-LocNet[59] ResNet-50 75.7 71.5 60.8 43.9
FreeAnchor[58] ResNet-50 73.0 67.5 56.2 41.6
OA-MIL[12] ResNet-50 77.4 74.3 70.6 63.8
SSD-Det ResNet-50 77.1 74.8 71.5 66.9

Table 2: Performance comparison on the VOC 2007 test set.
The evaluation metric is AP50. The Clean-* and Noisy-*
means original annotation and noisy annotation.

4. Experiment

4.1. Experimental Settings

Datasets and Evaluation Metrics. For experimen-
tal comparisons, two publicly available datasets are used
for object detection with inaccurate bounding boxes: MS-
COCO [31] and PASCAL VOC 2007 [13]. MS-COCO
(2017 version) has 118k training and 5k validation images
with 80 common object categories. PASCAL VOC 2007 is
one of the most popular benchmarks in generic object de-
tection with 20 classes.

Evaluation Metric. We use mean average precision



2-Ref SPSD SISD Re-Train
20% Box Noise Level 40% Box Noise Level

AP AP50 AP75 AP s APm AP l AP test AP test
75 AP AP50 AP75 AP s APm AP l AP test AP test

75
30.0 57.1 29.0 16.9 33.1 39.8 - - 22.8 51.1 16.1 13.3 25.0 30.4 - -

✓ 31.2 56.7 31.6 17.8 34.5 41.0 31.4 32.0 24.6 52.0 20.1 14.3 28.2 31.9 25.0 20.5
✓ ✓ 33.0 56.9 34.8 18.7 35.5 42.2 33.1 34.8 27.2 53.7 24.7 15.9 30.3 35.2 27.6 25.6
✓ ✓ ✓ 33.6 57.3 35.3 19.5 37.2 43.3 33.5 35.5 27.6 53.9 26.0 16.0 31.0 34.9 28.0 26.5
✓ ✓ 31.8 56.8 33.1 18.4 35.7 40.8 32.3 33.7 26.5 54.0 23.3 15.7 30.3 33.8 26.8 23.3
✓ ✓ ✓ 34.1 57.6 36.4 19.0 37.7 43.8 34.3 36.6 29.0 55.1 27.8 17.0 32.5 36.7 29.3 28.4
✓ ✓ ✓ ✓ 34.4 57.3 36.8 20.0 38.2 44.0 34.7 37.2 29.3 54.8 29.0 17.1 32.9 36.9 29.7 29.3

Table 3: Modules ablation of SPSD, SISD and Re-Train on MS-COCO validation set (without) and test set (with test). The
Re-Train means we generate the pseudo label by SSD-Det and re-train a Faster R-CNN detector.

Methods (w/o SISD) AP AP50 AP75 APs APm APl

Neighborhood Sampler 24.6 52.0 20.1 14.3 28.2 31.9
SPSD (II) w/o weighted 26.0 53.3 22.5 15.6 29.4 33.4
SPSD (II) w/ weighted 26.3 53.4 22.5 15.6 29.3 33.8
SPSD (I+II) w/ weighted 27.2 53.7 24.7 15.9 30.3 35.2

Table 4: Different setting of SPSD.

ORE Strategies of SISD AP AP50 AP75 APs APm APl

w/o SISD 27.2 53.7 24.7 15.9 30.3 35.2
SISD w/o ORE 27.3 53.3 25.7 16.9 30.2 35.0
+ subtract 27.2 53.8 24.6 15.7 30.4 35.0
+ concatenate 27.2 54.0 24.5 16.1 30.2 34.8
+ add 27.6 53.9 26.0 16.0 31.0 34.9
+ add w/ shared fcs 23.0 49.9 17.6 12.6 25.3 30.4

Table 5: Different ORE strategies of SISD.

Num. 0 1 2 3
AP/AP50 24.6 / 52.0 26.3 / 53.4 27.2 / 53.7 27.0 / 53.1

Table 6: Number of SPSD module.

mAP@[.5,.95] and (mAP@.5) for MS-COCO and VOC.
The {AP,AP50, AP75, APSmall, APMiddle, APLarge} is
reported for MS-COCO and AP50 for VOC.

Synthetic Noisy Dataset. Following [12], We simulate
noisy bounding boxes by perturbing clean boxes from the
original annotations. The details are in the appendix. We
simulate various box noise levels ranging from 10% to 40%
for the VOC and {20%, 40%} for the MS-COCO.

Implementation Details. We implement our method on
FasterRCNN [38] with ResNet50-FPN [19, 29] backbone,
based on MMDetection [6]. All settings of our method and
previous methods employ FPN for fair comparison. Similar
to the default setting of object detection on MS-COCO, the
stochastic gradient descent [2] algorithm is used to optimize
on 1x training schedule. The batch size is two images per
GPU on 8 GPUS. For the VOC dataset, the batch size is two
images per GPU on 2 GPUS. The performance we report is
on a single scale (1333 * 800 for MS-COCO and 1000 *
600 for VOC).

4.2. Comparison with State-of-the-Art

We compare our method with several state-of-the-art
approaches [20, 17, 59, 58, 12] on MS-COCO and VOC
2007 datasets. We denote Clean-FasterRCNN and Noisy-
FasterRCNN as FasterRCNN models trained under clean
(original annotations) and noisy annotations with the default
setting, respectively.

MS-COCO Dataset. Table 1 shows the comparison re-
sults on the MS-COCO. Inaccurate bounding box annota-
tions significantly deteriorate the vanilla Faster R-CNN’s
detection performance. Co-teaching and SD-LocNet only
slightly improve the detection performance, especially un-
der 40% box noise. That indicates that small-loss sam-
ple selection and sample weight assignment can not tackle
noisy box annotations well. KL Loss slightly improves
the performance under 20% and 40% box noise. By treat-
ing an object as a bag of instances, OA-MIL is somehow
robust to noisy bounding boxes and performs better than
other methods. Nevertheless, the previously-mentioned la-
bel assignment bag construction limits its ability to handle
heavy noise. Our approach is more robust to noisy bound-
ing boxes. It outperforms other methods by a large margin
under high box noise levels and significantly boosts the de-
tection performance across all metrics. For example, un-
der 40% box noise, the end-to-end SSD-Det achieves 27.6
AP and 53.9 AP50, 9.0 and attains 11.3 point improve-
ment compared with state-of-the-art method OA-MIL, re-
spectively. Also, through re-training on FasterRCNN, the
performance further reaches 29.3 AP and 54.8 AP50. With
the backbone of ResNet-101, the performance achieves con-
sistent improvement. On MS-COCO test set, our method
also achieves state-of-the-art performance.

VOC 2007 Dataset. Table 2 shows the comparison re-
sults on the VOC 2007 test set. Co-teaching, SD-LocNet
and KL Loss, can not address inaccurate bounding box an-
notations well. OA-MIL improves the performance on dif-
ferent noisy datasets. Our approach obtains further im-
provements to 77.10, 74.80, 71.50, 66.90 AP50 on 10%,
20%, 30 % and 40 % noisy box datasets, respectively.



Figure 4: Qualitative detection results on COCO validation. Previous methods miss objects and face part prediction problems.
Our method misses fewer objects, and the bounding box quality is better, especially for small or overlapped objects.

Methods Box Refiner+Re-Train SSD-Det SSD-Det+Re-Train
AP/AP50 29.0 / 54.4 27.6/53.9 29.3 / 54.8

Table 7: Comparisons of end-to-end and Re-Train.

4.3. Ablation Study and Analysis

To further analyze SSD-Det’s effectiveness and robust-
ness, we conduct more experiments on COCO val set if
there are no other instructions. Except for Table 3, the noise
level of these experiments is 40%.

Ablation of Modules. Ablation study of each compo-
nent in our approach is given in Table 3, including: (i)
Different stages of our basic box refiner. i.e. training ob-
ject detector without the stage II (2-Ref), where the pseudo
boxes predicted by the stage I are served as the supervi-
sion for training a parallel detector. (ii) SPSD, i.e. training
without SPSD, where the object-bag is constructed directly
by neighborhood sampling around the noisy ground-truth
or the predicted pseudo boxes of the stage I. (iii) SISD. (iv)
Re-Train with FasterRCNN (Re-Train).

Effectiveness of SPSD. SPSD further improves the de-
tection performance on the MS-COCO, especially under
high box noise levels, e.g. under 40% box noise level, SPSD
boosts the performance from 24.6 to 27.2, as shown in Ta-
ble 3 (row 3). In Table 4, we conduct further ablation on
SPSD. With SPSD bag construction only in stage II, the
performance increases by 1.4 AP . The performance fur-
ther improves with the proposal score of stage I as weights.
With SPSD in all stages, the AP reaches 27.2. Fig. 5 shows
the bag quality. With SPSD, the mean IoU increases from
40.3 to 58.7 and the max and top-10 IoU increase to 78.3
and 75.1, which indicates a better upper bound of proposal
selection. More high-quality proposals bring better opti-
mization and easier proposals selection.

Number of SPSD. As shown in Table 6. When adding

Detectors

Clean-supervised Noise-supervised
(w/ ours)

AP AP50 AP AP50 AP AP50

FasterRCNN 37.9 58.1 10.3 28.9 29.3 54.8
SparseRCNN [43]† 45.0 64.1 6.0 20.3 34.3 60.2
De-DETR [62]† 46.8 66.3 5.0 16.9 35.2 60.9

Table 8: Experiments on advanced detectors. De-DETR is
Deformable DETR. † uses multi-scale data augment. ’w/
ours’ means using our method under noisy supervision.

Figure 5: Bag quality (IoU of proposals with GT) of con-
struction in SSD-Det. B.S. (blue) means neighborhood
sampler. SPSD I (orange) denotes single SPSD adopted.
SPSD II (yellow) is two SPSD and interactive structure
adopted. SPSD II significantly improves the quality.

3 SPSD, performance drops slightly, probably due to the
accumulation of errors outweighing the performance gain
from extra stages. Hence, 2 SPSD is our default setting.

Effectiveness of SISD. SISD is designed to select
object-aware proposals in box selection. Under 40% and
20% box noise, the detection performance improves from
27.2 to 27.6 and 33.0 to 33.6, which verifies the effective-
ness of the module, shown in Table 3. We also study the



Methods Drift Rate (%) Group Rate (%) Part Rate (%)
all s m l all s m l all s m l

OA-MIL[12] 15.1 17.8 17.1 7.4 6.7 2.8 3.4 1.4 2.8 3.4 2.7 2.3
Ours 1.5 1.0 1.3 1.4 1.7 1.2 0.5 0.7 1.0 0.5 1.1 1.3

Table 9: Breakdown of different problems during refine-
ment (COCO under 40% noise level). s, m and l mean
small, middle and large scale.

Dataset our Quality (Average IoU) Frequency (%)
All Part Oversize Shift Reliable Part Oversize Shift

Detector as Annotator

Objects-F 44.3 24.1 33.6 13.3 40.1 28.4 9.8 21.7
✓ 47.0 30.8 41.8 16.8 49.2 23.1 8.0 19.4

COCO-F 45.1 25.4 33.3 15.7 40.0 27.5 12.0 20.5
✓ 48.2 32.1 40.6 19.6 49.5 22.2 10.0 18.3

Point-based Annotator

COCO-P 55.6 30.4 25.0 29.8 65.6 9.5 23.2 1.7
✓ 65.2 46.7 36.4 40.9 74.9 5.9 18.5 0.6

Table 10: Analysis of noisy annotations types and quality.

strategies of ORE in SISD (Table 5). The minus or concat
on object feature F+

j and proposal feature Fj do not work.
With add strategy, the performance is 27.60. If SISD shares
the two fc layers, the performance drops to 22.99 since the
optimization goals are contradictory (Identity distinguishes
objects in the same category). If we directly use the RoI
feature without ORE, the performance drops to 27.32 AP ,
verifying the effectiveness of the object relevance strategy.

Affect of Re-Train. As most WSOD methods do, we
re-run the experiments by training a fully supervised de-
tector for better performance. We find that if the SSD-Det
only trains the refiner and uses the pseudo label to train the
FasterRCNN, the result is good but lower than re-train af-
ter the end-to-end training given in Table 7 (row 1). This is
because joint training is beneficial for box refinement.

Experiments on Advanced Detectors. We re-train re-
cent detectors, e.g. SparseRCNN and Deformable DETR,
under the boxes refined by our method. Table 8 verifies that
our method achieves consistency improvement.

The computational cost discussion. Similar to OA-
MIL, our method adds SSD head to Faster R-CNN for aux-
iliary training to refine the noisy annotation and the head is
not used during inference, the calculation cost during infer-
ence is same to standard Faster R-CNN.

4.4. Visualization and Discussion.

Fig. 4 shows that OA-MIL faces missing instances and
grouping instances issues for small or overlapped objects
(as mentioned in [12]), while our method still works well.
For a better intuitive understanding of SISD and SPSD, we
visualize the bag construction quality in Fig. 5 Then, we
makes noise types breakdown of ’Drift’, ’Group’ and ’part
dominance’ issues. We give the definition of IoU , IoG and

IoD:

IoU =
A(I)

A(D) + A(G) − A(I)
, IoG =

A(I)

A(G)
, IoD =

A(I)

A(D)
(9)

where A(*) is area of box *, D and G are refined box and
gt box respectively, and I is insertion between D and G.
We statistically count the proportion of three noise types
of ’bad’ refined boxes (having small IoU with gt) in Table
9: (i) Drift: ’bad’ refined box has a higher IoU with an-
other nearby object. (ii) Group: ’bad’ refined box has high
IoG with multiple objects. (iii) Part: ’bad’ refined box has a
high IoD. Table 9 shows quantitative results for each noise
type of baseline and ours. The drift, group, part problems
reduce from 15.1%, 6.7%, 2.8% to 1.5%, 1.7%, 1.0% , re-
spectively, demonstrating our improvement.

Experiments on Real-life Noisy Annotations. Real-
life noisy annotations stem from: low-quality data (e.g.,
occlusion, blur), human annotator errors and automatic
machine annotator limitations. Noise from human er-
rors is quite subjective, since differences between anno-
tators. For a more objective analysis, noisy annotations
from machine annotator is used for experiments. With-
out loss of generality, Faster R-CNN well-trained on MS-
COCO was applied to Objects365 images, yielding Objects-
F dataset,and to COCO-val images, producing COCO-
F dataset. P2BNet [11], a point-based annotator, was
used on COCO-val images with point annotations, gener-
ating COCO-P dataset. SSD-Det effectively improves low-
quality boxes. As shown in Table 10,with SSD-Det’s refine-
ment, the average IoU increases for Objects-F (from 44.3
to 47.0), COCO-F (from 45.1 to 48.2) and COCO-P (from
55.6 to 65.2) datasets. Further, the proportion of reliable an-
notations increases, and noise categories’ frequency (Part,
Oversize, and Shift) decreases for all datasets.

5. Conclusion

This paper investigates problems during refinement
caused by solely using category information to select pro-
posals. We also propose SSD-Det to mine spatial infor-
mation in a self-distillation fashion. SSD-Det introduces
the SPSD module to learn semantic-spatial correspondence
knowledge with neighborhood sampler and an interactive
structure to combine spatial information and category infor-
mation, thus producing a high-quality proposal bag. SISD
in SSD-Det is utilized to improve the proposal selection
procedure by integrating object-relevant spatial confidence.
Complete ablations on multiple datasets verify the effective-
ness of SSD-Det.
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Appendix

A. Codes

The code of this paper is also included as a zip file (ssd-
det.zip) in the supplementary. The submitted version con-
tains training codes on MS-COCO[31] and VOC[13]. The
details are given in README.md in the zip file.

B. Details of SSD-Det Deployment

Structure Details. Fig. 6 depicts the detailed structure
of the basic box refiner, while Fig. 8 depicts the detailed
structure of our SSD-Det.

Implementation Details. ResNet-50 is used as the
backbone network unless otherwise specified, and FPN is
adopted for feature fusion. The mini-batch is 16 images; all
models are trained with 8/2 GPUs and 2 images per GPU
for MS-COCO/VOC. The training epoch numbers are set
as 12, and the learning rate is set as 0.02/0.002 and decays
by 0.1 at the 8-th and 11-th epoch for MS-COCO/VOC. In
default settings, the backbone is initialized with the pre-
trained weights on ImageNet and other newly added lay-
ers are initialized with Xavier. In 40% noise rate in MS-
COCO, the original settings of basic sampling are:(v · s) ∈
{0.7, 0.8, 1, 1.2, 1.3}, (v/s) ∈ {0.7, 0.8, 1, 1.2, 1.3} and
(ox, oy) ∈ {(0, 0), (2, 0), (0, 2), (−2, 0), (−2,−2)} is used
to jitter the centre position. Those are set the half for the
20% noise rate dataset. The settings in VOC are the same
and adaptively changed for other noise rate datasets. In neg-
ative sampling, we randomly sample 500 boxes, filter out
those which have high IoU (0.3) with all positive proposals
and obtain the final negative sample set N . The loss weights
are set as α1, α2, α3 and α4 are set as 1, 0.25, 0.25 and 4,
respectively, without much hyper-parameter tuning.

Synthetic Noisy Dataset. Following [12], we simulate
noisy bounding boxes by perturbing clean boxes from the
original annotations. Specifically, cx, cy, w, and h de-
note an object’s the center x coordinate, center y coordinate,
width, and height, respectively. We simulate an inaccurate
bounding box by randomly shifting and scaling the box as
follows: {

ĉx = cx+∆x · w, ĉy = cy +∆y · h
ŵ = (1 +∆w) · w, ĥ = (1 +∆h) · h

(10)

where ∆x, ∆y, ∆w, and ∆h obey the uniform distribu-
tion U(−r, r), and r is the box noise level. For example,
when r = 40%, ∆x, ∆y, ∆w, and ∆h are in the range of
(−0.4, 0.4). We simulate various box noise levels ranging
from 10% to 40% for the VOC dataset and {20%, 40%}
for the MS-COCO dataset. Eq. 10 is conducted on every
bounding box in the training dataset.

C. Details of Average IoU
Average IoU is the evaluation metric of the performance

of dataset refine, and the higher average IoU means the bet-
ter performance. Table 11 shows that the quality of dataset
refinement is greatly improved after OA-MIL solves the
drift problem. By simply filtering out the pseudo box with
IoU = 0, the performance of OA-MIL improves from 47.6
to 54.4. Further, once filtering out the pseudo box with
IoU = 0, the performance of OA-MIL improves from 47.6
to 54.4. If the pseudo frame with IoU ≤ 0.5 is filtered
out, OA-MIL’s refinement performance is close to ours. If
only the proposals whose IoU with GT is greater than 1e-
5 are counted (second line), the average IoU of OA-MIL is
greatly increased, meaning lots of extremely low-quality re-
fined results, while IoU of our SSD-Det remains essentially
unchanged.

Methods Average IoU
IoU≥0 IoU >0 IoU >0.3 IoU >0.5

(40% Noise Level) 46.4 - - -
OA-MIL[12] 47.6 54.4 57.1 67.5
SSD-Det 65.1 65.1 67.7 72.7

Table 11: The average IoU of different methods’ refined
boxes with clean GT on MS-COCO under 40% Noise
Level.

D. Qualitative Results
Affect of Re-Train. As most WSOD methods do, we re-

run the experiments by training a fully supervised detector,
e.g. Faster R-CNN or RetinaNet, to regress the object loca-
tions more precisely. As shown in Table 7, we get a better
result of 20.29 AP and 34.37 AP on 40% and 20% noise
datasets. We also find that if the SSD-Det only trains the
refiner and uses the pseudo label to train the FasterRCNN,
the result is good but lower than re-train after the end-to-
end training given in Table 7 (row 1). This is because joint
training is beneficial for box refinement.

Methods AP AP50 AP75 APs APm APl

Box Refiner+Re-Train 29.0 54.4 28.2 17.7 32.3 36.4
SSD-Det 27.6 53.9 26.0 16.0 31.0 34.9
SSD-Det+Re-Train 29.3 54.8 29.0 17.1 32.9 36.9

Table 12: Comparisons of end-to-end and re-train (40%
noise).

Experiments on Different Detectors. Experiments are
conducted on ResNet50. We re-train the different detectors
with corrected labels. Table 13 shows the detection results,
verifying the robustness of our method.

Visualization. Fig. 8 shows the refined boxes predicted
by OA-MIL and our SSD-Det on the MS-COCO datasets



Figure 6: The basic box refiner.

Figure 7: SSD-Det (SPSD shares backbone with the detector).

with 40% box noise. We can observe that OA-MIL suffers
from object drift, group prediction, part domination prob-
lems. Fig. 9 shows the qualitative results of the OA-MIL
and our SSD-Det on the MS-COCO datasets with 40% box
noise.

Detectors AP AP50 AP75 APs APm APl

Faster R-CNN 29.3 54.8 29.0 17.1 32.9 36.9
RetinaNet 28.6 52.8 28.8 17.1 32.3 36.4
RepPoints 28.6 53.7 28.0 16.8 32.0 37.0
Free-Anchor 29.4 54.1 29.6 17.0 32.4 37.6
Sparse R-CNN 34.3 60.2 36.4 22.4 37.5 43.7
Deformable-DETR 35.0 60.7 37.4 23.6 38.1 44.4

Table 13: Different detectors for re-train (40% noise).



Figure 8: Examples of the refined instances (MS-COCO train set under 40% noise level).

Figure 9: Qualitative results on MS-COCO validation set.


