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Figure 1. Illustration of the data, model, and task discrepancies between the pre-training and fine-tuning stages in object detection. In
mostly pre-training phase, only the backbone is updated via classification task supervision on object-centric datasets such as ImageNet.
However, the whole detector is fine-tuned in the multi-objects-based datasets, supervising via classification and regression tasks. By bridg-
ing these discrepancies with self-supervised pre-training, AlignDet achieves significant improvements across various detection algorithms,
model backbones, data settings, and training schedules on COCO. Project Page: https://liming-ai.github.io/AlignDet.

Abstract
The paradigm of large-scale pre-training followed by

downstream fine-tuning has been widely employed in var-
ious object detection algorithms. In this paper, we re-
veal discrepancies in data, model, and task between the
pre-training and fine-tuning procedure in existing practices,
which implicitly limit the detector’s performance, general-
ization ability, and convergence speed. To this end, we pro-
pose AlignDet, a unified pre-training framework that can
be adapted to various existing detectors to alleviate the
discrepancies. AlignDet decouples the pre-training pro-
cess into two stages, i.e., image-domain and box-domain
pre-training. The image-domain pre-training optimizes the
detection backbone to capture holistic visual abstraction,
and box-domain pre-training learns instance-level seman-
tics and task-aware concepts to initialize the parts out of
the backbone. By incorporating the self-supervised pre-
trained backbones, we can pre-train all modules for various
detectors in an unsupervised paradigm. As depicted in Fig-
ure 1, extensive experiments demonstrate that AlignDet can
achieve significant improvements across diverse protocols,

⋆Equal contribution. †Corresponding author.

such as detection algorithm, model backbone, data setting,
and training schedule. For example, AlignDet improves
FCOS by 5.3 mAP, RetinaNet by 2.1 mAP, Faster R-CNN
by 3.3 mAP, and DETR by 2.3 mAP under fewer epochs.

1. Introduction
In recent years, there has been significant progress

in large-scale pre-training and fine-tuning optimization
paradigms in computer vision. A series of pre-training al-
gorithms have been designed to learn domain-sensitive or
task-aware concepts to boost downstream performance [19,
24, 1]. As for object detection, current approaches gener-
ally leverage ImageNet [14] to pre-train the backbone with
classification-oriented supervision. However, compared to
the detection-oriented fine-tuning process, this pre-training
paradigm exhibits three discrepancies, as shown in Figure 1:

• Data: most pre-training methods are conducted on single
object-centric datasets, like ImageNet. However, the de-
tection datasets, e.g., COCO [37], usually consist of mul-
tiple objects with different scales and locations. The dif-
ferences in data characteristics and domain can cause the
pre-training to deviate from the downstream task.
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Method
Discrepancy Generalization

Data Model Task Anchor-based Point-based Query-basedObject-centric Multi-object Backbone Neck Head Classification Regression
Supervised Backbone ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓

MoCo [24], SwAV [6] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓

DenseCL [57], SelfEMD [38] ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓

PixPro [63], InsLoc [66], SoCo [58] ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗

UP-DETR [12], DETReg [2] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. We compare with other unsupervised pre-training algorithms in terms of solving the discrepancies and the generalization ability.
Taking task discrepancy as an example, previous methods can only introduce the pretext task of classification or regression in the pre-
training stage, while AlignDet can build both tasks to learn the semantic and positional information of the objects.

• Model: current pre-training algorithms mainly focus on
partial modules (such as the backbone) within the model
due to the diversity and complexity of detectors. Some
key detection components (such as the RPN and regres-
sion head) remain random initialization.

• Task: existing pre-training approaches only regard the
classification task as the pretext task, failing to capture
object-aware positional context, including proposal gen-
eration, target assignment, and box regression.

These discrepancies potentially bring limited results,
poor generalization, and slow convergence speed [48, 52].

As summarized in Table 1, a series of works are pro-
posed to bridge the gap between pre-training and fine-
tuning processes in object detection. The initial exploration
is to construct dense-level contrastive learning to capture
task-sensitive context for dense predictions [57, 38, 63, 66,
58, 59]. Some researchers attempt to pre-train other de-
tection modules, such as FPN [35, 63] and classification
head [58]. However, these approaches require hundreds of
epochs of pre-training on object-centric datasets and per-
form poorly when pre-training on COCO. In addition, they
neither pre-train all modules, such as the regression head
in RetinaNet [36] nor construct appropriate regression pre-
training tasks, thus failing to resolve the model and task
discrepancies, as illustrated in Figure 2. UP-DETR [12]
and DETReg [2] pre-train the entire DETR-like detectors by
introducing DETR-sensitive pretext tasks. However, these
tasks cannot be applied to other detectors since they rely
heavily on the transformer-based decoder. Although the
above approaches can alleviate the gap to varying degrees,
they cannot comprehensively solve the three discrepancies
simultaneously or be generalized to various detectors. This
leads us to ask: how to design a pre-training framework that
can address the discrepancies in data, model, and task, and
is applicable to all detection algorithms?

To answer the above question, we propose AlignDet,
a universal and pre-training framework for object detec-
tion. AlignDet decouples the pre-training process into two
stages, image-domain pre-training and box-domain pre-
training. The image-domain pre-training optimizes the de-
tection backbone to capture holistic visual abstraction, and
the box-domain counterpart learns object-level concepts to

Figure 2. Compared with other box-level pre-training methods
(e.g., InsLoc [66] and SoCo [58]), our advantages are: 1) Data:
AlignDet works well on COCO with only 12 epochs pre-training;
2) Model: All the modules can be efficiently and fully pre-trained.
3) Task: Both classification and regression knowledge are learned.

initialize the parts out of the backbone. The detector is op-
timized via box-level contrastive learning and coordinate-
related regression losses. It contributes to fully adapting to
various detectors, further boosting the performance in the
following fine-tuning process, as illustrated in Figure 1. The
contributions of this work are summarized in four aspects:

• New Insight: We point out that existing detection algo-
rithms are constrained by the data, model, and task dis-
crepancies between pre-training and fine-tuning.

• Novel Method: We propose AlignDet to address this is-
sue, which constructs detection-oriented pre-training by
learning classification and regression knowledge. It de-
couples the pre-training into the image domain for the
backbone and the box domain for other modules.

• Efficiency and Pioneering: The module-based decouple
takes full advantage of the existing pre-trained backbones
to efficiently pre-train other modules. By incorporating
self-supervised pre-trained backbones, we make the first
attempt to fully pre-train various detectors using a com-
pletely unsupervised paradigm.

• High Effectiveness: The comprehensive experiments
demonstrate that AlignDet achieves significant perfor-
mance improvements under various settings, including
different detectors, backbones, data settings, and fine-
tuning schedules.



2. Related Work

Object Detection. Current object detection algorithms
can be divided into anchor-based, point-based, and query-
based methods according to different prediction pipelines.
The anchor-based approaches generate multiple anchor
boxes with pre-defined sizes and scales on each pixel of
the feature maps [20, 19, 49, 26, 39, 36]. Usually, they di-
vide the training samples into positives and negatives by In-
tersection over Union (IoU). The point-based methods aim
to find the reference points that correspond to each object,
which can be the center points of each instance [72, 53], pre-
defined or self-learned key points [31, 73, 67]. Rather than
leveraging the pre-defined priors in anchor-based and point-
based methods, the query-based methods represent different
objects [4, 74, 69] through a set of learnable queries.

Self-supervised Pre-training. Self-supervised learning
fully utilizes massive unlabeled data to learn structural
data characteristics, and the pre-trained weights are trans-
ferred into downstream tasks to ensure good initializa-
tion [46, 60, 47, 61, 32, 9, 43, 13]. Numerous pretext
tasks have been proposed for unsupervised pre-training,
such as feature clustering [5], colorization [30], context
prediction [15], rotation prediction [18] and image inpaint-
ing [45]. On the one hand, contrastive learning captures
good representation by maximizing the similarity of differ-
ent views from the same instance [24, 10, 8, 22, 11], which
achieves competitive performance on multiple downstream
tasks. On the other hand, Mask Image Modeling (MIM)
has recently attracted increasing attention in self-supervised
learning. MIM does not require specific data augmentation
and more robust for downstream tasks [1, 71, 64, 23].

Self-supervised Pre-training for Detection. Although
unsupervised pre-training has shown competitive results on
object detection, there exists a series of inconsistencies
in directly transferring image-level pre-trained knowledge
to dense-level downstream tasks. To bridge the gap be-
tween pre-training and fine-tuning, some approaches pro-
pose dense-level contrastive learning to explore the local
feature similarity between different views [57, 63, 38, 70,
50]. Some researchers reveal that merely pre-training the
backbone is insufficient, and they attempt to pre-training
other common modules, such as FPN [35, 58]. However,
these methods require expensive pre-training from scratch,
and other key modules in detectors (such as the regression
head) remain randomly initialized. On the other hand, UP-
DETR [12] and DETReg [2] pre-train the entire DETR-like
detectors by introducing the region matching and feature re-
construction pretext tasks. Although these approaches can
pre-train the whole model adequately, the DETR-oriented
pretext tasks cannot be directly applied to other detection

paradigms. In contrast, AlignDet achieves efficient and ad-
equate self-supervised pre-training for various detectors.

3. Methodology

Recent works extend the ‘pre-training and fine-tuning’
paradigm via constructing unsupervised pre-training pre-
text tasks, resulting in higher performance than supervised
pre-trained counterparts [24, 63]. However, compared to
the detection process, the current pre-training paradigm has
inconsistencies in data, model, and task, as illustrated in
Figure 1. Although these inconsistencies can be alleviated
by training on large-scale labeled datasets [52, 3, 29], it
requires enormous computing resources and manual anno-
tation costs. These problems and limitations inspire us to
propose AlignDet, a universal and self-supervised frame-
work for bridging the discrepancies between pre-training
and fine-tuning in object detection.

The whole pre-training pipeline is summarized in Fig-
ure 3. In the following subsections, we introduce the image-
domain pre-training and box-domain pre-training in Sec-
tion 3.1 and Section 3.2, respectively. We provide pseu-
docode in Algorithm II for a more intuitive understanding of
the AlignDet pipeline, and the comparison with other meth-
ods on technical details in the supplementary material.

3.1. Image-domain Pre-training

Image-domain pre-training optimizes the backbone to
extract high-level semantic abstraction for the subsequent
box-domain pre-training, as shown in Step 1 on the left of
Figure 3. On the one hand, given an image x, the backbone
can be pre-trained with a classifier and classification cate-
gory in the fully-supervised setting. On the other hand, re-
cently arisen unsupervised learning algorithms [24, 10, 11]
help to capture more generalized representations with the
aid of massive unlabeled data. Take SimSiam [11] as an
example, two views x1 and x2 are constructed from the in-
put image with different data augmentation. The backbone
can learn generalized representations by maximizing the
similarity of different views from the same instance. And
the predictor and stop gradient are leveraged to prevent the
mode collapse [11].

Image-domain pre-training is usually conducted on
large-scale image classification datasets such as Ima-
geNet [14], in which each sample mainly contains one or
a few salient objects in the center of the image. It exists
an apparent gap because the pre-training procedure has no
access to the target domain data, which often contains mul-
tiple objects with different scales and locations. Further-
more, the detection head is still randomly initialized and
the regression task is not explicitly learned in this image-
domain pre-training. To this end, we design the box-domain
pre-training to bridge these discrepancies.



Figure 3. The pre-training pipeline of AlignDet. Both supervised and self-supervised pre-training can be employed in the image-domain
stage to capture holistic visual concepts. For the box domain pre-training, selective search is first adopted to generate unsupervised
proposals as pseudo labels, then each proposal is augmented to construct two views with different scales and transformations. Each
predicted box is used to construct contrastive learning and coordinated-related losses for adapting to detection-oriented tasks.

3.2. Box-domain Pre-training

Self-supervised Object Detection. As represented in
Figure 3, given an input image x, we first generate the
unsupervised proposals P = {p1, p2, ..., pn} via selective
search [54]. Each proposal pi ∈ P can be presented as
a bounding box with coordinates (x̂, ŷ, ŵ, ĥ), where (x̂, ŷ)

denotes the coordinates of the box center and (ŵ, ĥ) denotes
the width and height. Then the image x is transformed into
augmented views x1 and x2 by applying a transformation t
sampled from the set of image transformations T . The co-
ordinates of unsupervised proposals P also change into P1

and P2 according to the corresponding image transforma-
tions. In every iteration of the pre-training procedure, the
online detector fq and momentum detector fk will generate
their predicted boxes of the image at different views. By re-
garding the unsupervised proposals P1, P2 as ground truth,
we can obtain the predicted boxes B1, B2 by:

B1 = ϕ(freg
q (x1), P1), B2 = ϕ(freg

k (x2), P2) (1)

where freg(x) denotes the box coordinates predicted by the
regression-related modules freg based on image x. ϕ repre-
sents the target assignment operation, which conducts sam-
ple matching between freg

q (x1) and unsupervised propos-
als P1, such as calculating IoU in anchor-based detectors.
Note that the label-matching method varies with different
detectors and we keep the default assignment mechanism
of the detector without any changes, ensuring our method
can be easily applied to different types of detectors. Dif-
ferent from assigning the category of the matched object in
the dataset and calculating classification loss in formal su-
pervised training, we assign l ∈ {∅, 1, ..., n}, the index of

Some anchor-free detectors [53] use pre-defined points to accomplish
the procedure and some query-based detectors [4, 74] divide positives and
negatives by minimizing regression and classification cost.

each proposal in P to the paired output of online detector
fq and momentum detector fk by ϕ. Here ∅ stands for the
background, which means that the output box did not match
any proposal in P . Then each output box in B1 and B2 can
be rewritten as b = (x, y,w,h, l).

Box-domain Contrastive Learning. After obtaining the
coordinates of each predicted box, we can further obtain
the corresponding features in different views by replacing
the original supervised classification head in the detection
head with the unsupervised head f con:

Z1 = gq(f
con
q (x1, B1)), Z2 = gk(f

con
k (x2, B2)) (2)

where f con(x,B) denotes the extracted features of pre-
dicted boxes B for contrastive learning in the box-domain
pre-training procedure. And g is the feature projection mod-
ule, here we follow the architecture in MoCo v2 [10], i.e.,
a 2-layer MLP head with ReLU [21]. Please note that f con

and freg are usually two different modules in the detection
head, and here we do not draw in Figure 3 for brevity.

In this unsupervised pre-training procedure, contrastive
learning is formulated by the principle that the box rep-
resentation corresponding to the same proposal should be
similar and vice versa. Specifically, we define the set of
query boxes as Q = {b ∈ B1 : l ̸= ∅}. For each query
box q ∈ Q, assuming its assigned proposal index is i and
the feature is zq . The set of positive keys K+ and negative
keys K− for query feature zq can be constructed as:

Z+ = {z ∈ Z1 : l = i} , Z− = {z ∈ Z1 ∪ Z2 : l ̸= i} (3)

Then the box-domain contrastive loss Lcon for all query
boxes in Q is defined as:

Lcon = −
∑

q

∑
z+

log
exp(zq·z+/τ)

exp(zq·z+/τ)+
∑

z−
exp(zq·z−/τ) (4)



where τ is a temperature hyper-parameter that controls the
difficulty of the task of contrastive learning [56], we set 0.5
in our paper for all methods.

Overall Loss. For a prediction box qi = (x, y,w,h, l),
where qi ∈ Q. l is the index of its corresponding proposal
in P1 which calculated by the label assign function ϕ. And
we define it as p̂l = (x̂, ŷ, ŵ, ĥ), The coordinate-related re-
gression losses are calculated according to each detector,
and we do not make any modifications during pre-training:

Lreg =
∑
q

K∑
k=1

λk · Lk((x, y,w,h), (x̂, ŷ, ŵ, ĥ)) (5)

where K is the number of coordinate-related losses, and λk

denotes the loss factor. Lk could be any regression loss like
IoU loss in FCOS [53] or L1 loss in Mask R-CNN [26].
Then the overall loss is the combination of box-level con-
trastive loss Lcon and the coordinate-related losses Lreg:

L = λcon · Lcon + λreg · Lreg (6)

where λcon, λreg are the loss hyper-parameters, and we
keep the same with the default setting from the correspond-
ing detector. We freeze the backbone in the box-domain
stage to avoid detectors over-fit to noisy pseudo labels.
Box-domain pre-training addresses data and task discrepan-
cies by employing multi-object data to construct detection-
oriented pretext tasks. By cooperating with image-domain
pre-training, AlignDet contributes to pre-train all modules
within the detector, thus solving the model discrepancy.

4. Experiments
4.1. Settings

Datasets. In the image-domain pre-training stage, both
the ImageNet [14] and COCO [37] dataset can be used to
optimize the backbone. And the box domain pre-training
employs the box domain datasets that contain non-object-
centric and multi-object images. Unless otherwise spec-
ified, we pre-train all methods on the COCO train2017
dataset [37] without any labels, then evaluate the detection
model on the COCO val2017 dataset. We also follow [10]
to fine-tune the detectors on the VOC 07+12 train-val set
and evaluate on the VOC 07 test set.

Data Augmentation. For the box-domain pre-training
data augmentation, we follow SoftTeacher [65] but remove
the RandomCrop and other box-jitter transforms to ensure
all objects exist in both views. The image resolution is [640,
800] to construct the multi-scale proposals and objects in
the pre-training procedure. In the fine-tuning phase, we fol-
low the default augmentation settings of different methods
in mmdetection [7]. And we follow [24, 22, 58, 63, 57, 6]
to use multi-scale training for self-supervised backbones.

Algorithm 1 AlignDet Pseudocode, PyTorch-like
# x: input images
# p: selective search proposals
# aug: independent random augmentation

for x, p in data_loader:
(x1, p1), (x2, p2) = aug(x, p), aug(x, p) # augmentation
x1, x2 = backbone(x1), backbone(x2) # frozen backbone
x1, x2 = neck_q(x1), neck_k(x2) # feature pyramid

# proposals as pseudo labels, boxes are predicted
b1, b2 = head_q.f_reg(x1, p1), head_k.f_reg(x2, p2)
z1, z2 = head_q.f_con(x1, b1), head_k.f_con(x2, b2)
z1, z2 = g_q(z1), g_k(z2) # feature projection

L = loss_con(z1, z2) + loss_reg(b1, b2, p1, p2) # losses
ema_update(neck_q, neck_k, head_q, head_k)

Pre-training and Fine-tuning Details. In the pre-
training phase, we fix all parameters of the backbone and
update the neck and head. Other hyper-parameters and set-
tings are set as default in mmdetection [7] except the hyper-
parameters of prediction sampling. In the fine-tuning phase,
all the pre-trained weights except for the projection module
are used to initialize the object detection model. Synchro-
nized batch normalization [28] is used in both backbone
and FPN following previous work [24, 22, 58, 25], which
helps calibrate magnitudes for pre-trained models [24]. All
pre-training follows the default 1x (90k) schedule except 50
epochs for DETR. We adjust the learning rate and weight
decay following previous work [58]. If not specified, the su-
pervised pre-trained ResNet-50 [27] in PyTorch [44] is used
by default for both the pre-training and fine-tuning stages.
The hyper-parameter details of different methods and ex-
periments are summarized in the supplementary material.

4.2. Experimental Results

Detectors and Data Settings. To demonstrate the gen-
eralization of our approach, we leverage AlignDet to pre-
train different detectors, including FCOS [53] (single-stage
and point-based), RetinaNet [36] (single-stage and anchor-
based), Faster R-CNN and Mask R-CNN [26] (two-stage
and anchor-based), and DETR [4] (query-based). Here
Faster R-CNN uses RoI Align following previous work [7,
24], and Mask R-CNN is fine-tuned with both detection and
instance segmentation annotations following [58]. We ran-
dom sample 1%, 5%, 10%, and 20% images from COCO
train2017 set as the fine-tuning data. We provide 5 different
data folds for each low-data setting, and the final perfor-
mance is the average of all results. To avoid over-fitting and
demonstrate the advantage of faster convergence, besides
the standard 1x (90k iterations) training schedule, we also
report the results of 12k iterations in a low-data regime fol-
lowing [62]. Table 2 summarizes the detection performance
of various detectors with different data settings.

Compared with ImageNet pre-training, our AlignDet
has significantly improved performance under different set-
tings. Even with complete data (100%) and fine-tuning
schedule (90k), there are nearly 1.0 mAP improvements for



Detector Align COCO 12k COCO 90k
1% Data 5% Data 10% Data 20% Data 100% Data 1% Data 5% Data 10% Data 20% Data 100% Data

FCOS ✗ 8.1 16.5 21.5 23.6 22.1 7.3 16.0 20.0 23.8 36.6
FCOS ✓ 9.5 (+1.4) 18.6 (+2.1) 23.3 (+1.8) 26.3 (+2.7) 27.4 (+5.3) 8.5 (+1.2) 17.3 (+1.3) 21.1 (+1.1) 25.1 (+1.3) 37.5 (+0.9)

RetinaNet ✗ 8.0 17.8 21.0 23.0 24.2 8.3 18.0 22.2 25.9 36.3
RetinaNet ✓ 9.8 (+1.8) 19.3 (+1.5) 23.5 (+2.5) 25.9 (+2.9) 26.3 (+2.1) 9.9 (+1.6) 19.0 (+1.0) 23.1 (+0.9) 26.6 (+0.7) 37.3 (+1.0)

Faster R-CNN ✗ 9.2 18.7 24.2 26.6 27.3 6.5 14.0 18.8 24.1 37.9
Faster R-CNN ✓ 11.7 (+2.5) 21.2 (+2.5) 26.9 (+2.7) 29.6 (+3.0) 30.6 (+3.3) 8.9 (+2.4) 16.2 (+2.2) 20.1 (+1.3) 25.2 (+1.1) 39.0 (+1.1)
Mask R-CNN ✗ 8.8 19.1 24.2 26.5 27.2 7.6 15.2 20.0 25.2 38.3
Mask R-CNN ✓ 12.4 (+3.6) 22.4 (+3.3) 27.4 (+3.2) 30.1 (+3.6) 30.5 (+3.3) 9.5 (+1.9) 16.6 (+1.4) 20.8 (+0.8) 25.9 (+0.7) 39.4 (+1.1

Detector Align COCO 50 epochs COCO 100 epochs
DETR ✗ 7.6 18.9 24.1 29.7 35.0 7.7 19.5 25.0 30.4 38.4
DETR ✓ 11.2 (+3.6) 21.4 (+2.5) 26.1 (+2.0) 30.9 (+1.2) 37.3 (+2.3) 10.7 (+3.0) 21.2 (+1.7) 26.0 (+1.0) 31.2 (+0.8) 39.0 (+0.6)

Table 2. With only 12 epochs pre-training on COCO for modules out of backbone, AlignDet achieves consistent improvements across
different detectors, training strategies, and data sizes. All the results are conducted with a supervised pre-trained ResNet-50 backbone.

Backbone Align Schedule APbb APmk

MobileNet v2 ✗ 1x 30.1 27.2
MobileNet v2 ✓ 1x 31.3 (+1.2) 27.9 (+0.7)

ResNet-18 ✗ 1x 34.5 31.1
ResNet-18 ✓ 1x 35.7 (+1.2) 31.9 (+0.8)
ResNet-50 ✗ 1x 38.3 34.3
ResNet-50 ✓ 1x 39.4 (+1.1) 35.3 (+1.0)
Swin-Small ✗ 1x 46.6 41.5
Swin-Small ✓ 1x 47.5 (+0.9) 41.8 (+0.3)
Swin-Small ✗ 3x 48.2 43.2
Swin-Small ✓ 3x 49.1 (+0.9) 43.4 (+0.2)
Swin-Base ✗ 1x 48.8 43.1
Swin-Base ✓ 1x 49.6 (+0.8) 43.6 (+0.5)
Method Align Schedule APbb APmk

SimMIM† (Swin-B) ✗ 3x 51.0 45.1
SimMIM (Swin-B) ✓ 3x 51.6 (+0.6) 45.8 (+0.7)

CBNet v2† (Swin-L) ✗ 1x 57.3 49.7
CBNet v2 (Swin-L) ✓ 1x 57.8 (+0.5) 50.1 (+0.4)

Table 3. AlignDet achieves consistent improvements on different
backbones and the SOTA detector CBNet v2. † denotes our repro-
duced results with official code or models.

Detector Align AP AP50 AP75

FCOS ✗ 52.6 79.6 57.1
FCOS ✓ 53.4 (+0.8) 80.2 (+0.6) 65.2 (+8.1)

RetinaNet ✗ 54.4 79.3 58.7
RetinaNet ✓ 56.0 (+1.6) 80.4 (+1.1) 61.0 (+2.3)

Faster R-CNN ✗ 53.5 81.4 58.2
Faster R-CNN ✓ 57.8 (+4.3) 82.9 (+1.6) 64.7 (+6.5)

DETR ✗ 52.1 76.8 54.9
DETR ✓ 58.2 (+6.1) 81.1 (+4.3) 62.9 (+8.0)

Table 4. Transfer learning results on Pascal VOC benchmark. The
prior knowledge learned by AlignDet pre-training can effectively
help the downstream detection task.

different detection algorithms. AlignDet achieves a notice-
able performance improvement in shorter training iterations
and data settings. For example, AlignDet helps Mask R-
CNN bring at least +3.2 mAP improvement in 12k itera-
tions under diverse data protocols. Furthermore, the detec-
tors suffer from the over-fitting issue in the low-data regime,
in which Mask R-CNN with 90k iterations (15.2 mAP) is
3.9 mAP lower than with 12k iterations (19.1 mAP) at 5%

data. However, AlignDet still can obtain 1.4 mAP improve-
ment under this dilemma, which means that the knowledge
introduced by AlignDet pre-training can help the model
avoid over-fitting. Note that these non-trivial improvements
are achieved by highly efficient pre-training. Only modules
other than the backbone will be updated with 12 epochs pre-
training on a relatively small COCO dataset, which is more
efficient than other methods, as shown in Figure 2.

Detection Backbones and SOTA model. As shown in
Table 3, we validate the effectiveness of AlignDet on var-
ious backbones with the Mask R-CNN framework, includ-
ing MobileNet v2 [51], ResNets [27], and Swin Transform-
ers [40]. The experimental results show that our Align-
Det can improve various backbones effectively. For ex-
ample, AlignDet improves mAP by +1.2, +1.1, and +0.8
on supervised pre-trained MobileNet v2, ResNet-50, and
Swin-Base, respectively. To further verify the effective-
ness of AlignDet, we conducted advanced experiments on a
mask image modeling pre-trained backbone (SimMIM [64]
pre-trained Swin-Base), and the state-of-the-art detection
model without additional detection data (CBNet v2 [34]
with Swin-Large backbone). Both of them use strong data
augmentation and train to convergence. The experiments
demonstrate that AlignDet achieves consistent and impres-
sive performance improvements on the SOTA model (CB-
Net v2) and advanced techniques (SimMIM).

Generalization Analysis. Table 4 shows the transfer re-
sults from COCO pre-training to PASCAL VOC fine-
tuning. The VOC dataset has fewer categories compared
to the COCO dataset, resulting in easier classification by
the model. Therefore, we should focus more on the metric
with a higher IoU threshold, i.e., AP75. The considerable
improvement of AlignDet pre-training on AP75 shows that
our pre-training makes the predicted coordinates more ac-
curate, which also reveals that the prior knowledge learned
by AlignDet pre-training can be effectively transferred into
downstream detection datasets and tasks.



Method Dataset Epochs Mask R-CNN RetinaNet
AP AP50 AP75 AP AP50 AP75

ReSim ImageNet 400 40.3 60.6 44.2 - - -
InsLoc ImageNet 400 42.0 62.3 45.8 - - -
SoCo ImageNet 400 43.0 63.3 47.1 38.3 57.2 41.2
SoCo COCO 530 40.6 61.1 44.4 - - -

Supervised ImageNet 90 39.7 59.5 43.3 37.4 56.6 39.7
DetCo ImageNet 200 40.7 60.5 44.6 38.0 57.0 40.5

DenseCL ImageNet 200 40.3 59.9 44.3 37.5 56.0 39.8
DenseCL COCO 800 39.6 59.3 43.3 - - -
Self-EMD ImageNet 300 40.0 60.4 44.0 - - -
Self-EMD COCO+ 800 40.4 61.1 43.7 37.4 56.5 39.7
SlotCon COCO 800 41.0 61.1 45.0 - - -

MoCo v2 ImageNet 800 40.3 59.9 43.9 37.8 56.4 40.4
+AlignDet COCO 12 41.0 61.0 44.9 38.4 57.1 41.3

PixPro† ImageNet 400 40.9 60.4 44.8 38.4 57.0 41.4
+AlignDet COCO 12 41.7 61.7 45.5 39.0 57.5 41.9

SwAV ImageNet 800 41.6 62.2 45.8 37.1 56.8 39.5
+AlignDet COCO 12 42.3 62.5 46.7 38.5 58.2 41.0

Table 5. AlignDet achieves competitive results compared to other
methods, with only 12 epochs pre-training on COCO. † denotes
our reproduced results with officially released model and code.

Method Backbone Dataset Epochs AP AP50 AP75

From Scratch Sup. R50 - - 39.5 60.3 41.4
From Scratch SwAV R50 - - 39.7 60.3 41.7

UP-DETR [12] SwAV R50 ImageNet 60 40.5 60.8 42.6
DETReg† [2] SwAV R50 COCO 50 39.8 61.0 41.6

AlignDet Sup. R50 COCO 50 41.0 61.9 43.1
AlignDet SwAV R50 COCO 50 41.4 62.1 43.8

Table 6. Comparasion of AlignDet with DETR-specific methods.
AlignDet achieves SOTA performance with the same or fewer pre-
training. All results are fine-tuned with 150 epochs on COCO.

Compare with Other Self-supervised Methods. As
summarized in Table 5, we also validate the effectiveness
of AlignDet on the self-supervised ResNet-50 backbones
with Mask R-CNN and RetinaNet. All the experiments fol-
low the 1x fine-tuning strategy defined in [24]. AlignDet
can significantly improve the detector’s performance un-
der various pre-trained backbones with only 12 epochs of
box-domain pre-training on COCO. For example, AlignDet
boosts the performance by +0.6 mAP under the RetinaNet
with PixPro pre-trained backbone. AlignDet does not out-
perform SoCo on the Mask R-CNN because SoCo conducts
end-to-end pre-training on most modules (except RPN) for
a long time (400 epochs) on the full ImageNet (5.3x larger
than COCO). When SoCo is pre-trained on COCO, its per-
formance drops significantly, While AlignDet only needs
12 epochs (33.3× acceleration) on COCO to pre-train the
modules out of the backbone. It owes to AlignDet decou-
pling the pre-training process and taking advantage of the
existing pre-trained backbones to accelerate convergence.
In addition, SoCo cannot adequately pre-train detectors de-
coupled from regression and classification branches (e.g.,
RetinaNet), leading to sub-optimal performance. On the
contrary, AlignDet achieves significant performance im-
provement with various detectors and backbones. We also
compare with other self-supervised methods explicitly de-

Fine-tuning
Schedule APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

1x 38.3 58.0 42.1 34.3 54.9 36.6
2x 38.8 58.4 42.4 34.7 55.4 37.2
3x 39.0 58.7 42.9 35.0 55.6 37.7
4x 39.2 59.5 42.9 35.6 56.5 38.1

1x (Ours) 39.4 (+1.1) 59.2 (+1.2) 43.2 (+1.1) 35.3 (+1.0) 56.1 (+1.2) 37.7 (+1.1)
2x (Ours) 39.8 (+1.0) 59.3 (+0.9) 43.3 (+0.9) 35.3 (+0.6) 56.4 (+1.0) 37.6 (+0.4)

Table 7. Results with longer fine-tuning epochs. Training the base-
line (ImageNet pre-trained backbone) with longer epochs until
convergence (4x) cannot bring similar improvements as AlignDet.

signed for DETR, as shown in Table 6. AlignDet shows
noticeable improvements over these DETR-specific meth-
ods. For example, AlignDet with 50 epochs pre-training on
COCO surpasses UP-DETR with 60 epochs on ImageNet
by +1.1 mAP. Notably, by incorporating the self-supervised
backbone, we can pre-train all modules within various de-
tectors in a completely unsupervised paradigm.

Training Schedules. We conduct experiments with di-
verse training schedules to eliminate the concern that the
performance gain from pre-training is due to longer train-
ing time. As shown in Table 7, the performance of AlignDet
with 1x pre-training and fine-tuning is even 0.2 mAP higher
than the 4× fine-tuning result of ImageNet pre-training,
which indicates that the performance gain is mainly due to
the design of AlignDet rather than the longer training time.

4.3. Ablation Study

We conduct a series of ablation studies to further under-
stand the advantages of bridging the discrepancies between
pre-training and fine-tuning in terms of data, model, and
task. All experiments are conducted on Faster R-CNN with
ResNet-50 [27] initialized by the supervised pre-trained
weights. The pre-training and fine-tuning procedure adopts
the standard 1x training schedule on COCO [37].

Data Discrepancy: Do data characteristics and domains
matter in pre-training? Yes. Table 8 demonstrates the
effectiveness of bridging the data discrepancy. Leveraging
a single object-centric dataset such as ImageNet to pre-train
the detector backbone will result in a poor performance of
37.9 mAP. By introducing box-domain pre-training in the
COCO dataset, we can fully use multi-object datasets to
mitigate inconsistencies in data characteristics, improving
+1.1 mAP. To further verify the influence of the data do-
main, we also employ selective search to construct the Im-
ageNet Subset, where the number of objects is consistent
with COCO. There is still a noticeable performance gap be-
tween pre-training on ImageNet Subset and COCO, which
shows that the data domain is essential in pre-training.

Model Discrepancy: Are all detector modules necessary
to conduct pre-training? To answer this question, we



Figure 4. t-SNE visualization of ground truth annotations. Align-
Det pre-training results in better class separation.

Image-domain Box-domain AP AP50 AP75 APs APm APl

ImageNet Random Initialization 37.9 58.2 41.1 22.0 41.4 48.6
ImageNet ImageNet Subset 38.7 58.6 42.1 21.7 42.0 50.1
ImageNet COCO 39.0 59.3 42.5 22.3 42.4 50.4

Table 8. Ablation study on data discrepancy. Both the data charac-
teristics and domains matter in pre-training.

Backbone Neck RPN Head AP AP50 AP75 APs APm APl

✓ ✗ ✗ ✗ 37.9 58.2 41.1 22.0 41.4 48.6
✓ ✓ ✗ ✗ 38.4 58.5 41.8 22.2 41.7 50.0
✓ ✓ ✓ ✗ 38.2 58.3 41.4 21.4 41.6 49.7
✓ ✓ ✗ ✓ 38.8 58.8 42.5 21.8 42.2 50.6
✓ ✓ ✓ ✓ 39.0 59.3 42.5 22.3 42.4 50.4

Table 9. Ablation study on the model discrepancy. Each module
benefits from pre-training and leads to improvements.

load part of the pre-trained weights and remain other mod-
ules randomly initialization to investigate the benefit of pre-
training different modules. As summarized in Table 9, we
can obtain the following observations. i) Additional pre-
training Neck improves the mAP by 0.5, of which the most
significant improvement comes from AP75 and APl. It indi-
cates that Neck pre-training brings more accurate prediction
boxes and larger size objects. ii) An interesting finding is
that compared with the variants that the RPN and Head are
all randomly initialized, merely pre-training the RPN causes
performance decreases by 0.2 mAP. It may be because the
randomly initialized head module cannot correctly handle
the coarse results from the RPN. iii) On the contrary, if we
pre-train other modules and maintain random initialization
for RPN, the final performance is only 0.2 mAP lower than
that of full pre-training. It may be because the RPN module
only occupies 1.39% parameters within the whole detector.
In conclusion, complete pre-training of the whole detector
can bring the best downstream performance.

Task Discrepancy: Are detection-oriented pretext tasks
helpful? As shown in Table 10, both the classification
and regression pretext task can improve the detector accu-
racy, boosting the mAP from 37.9 to 38.7. Furthermore,
the improvement brought by the classification pretext task
is mainly reflected in the AP50, while the regression task

Figure 5. Visualization of predictions on COCO Val2017.

Image-domain Box-domain AP AP50 AP75 APs APm APlClassification Classification Regression
✓ ✗ ✗ 37.9 58.2 41.1 22.0 41.4 48.6
✓ ✓ ✗ 38.7 58.8 42.1 22.4 41.9 50.2
✓ ✗ ✓ 38.7 58.6 42.4 22.1 41.8 50.2
✓ ✓ ✓ 39.0 59.3 42.5 22.3 42.4 50.4

Table 10. Ablation study on task discrepancy. Both the classifica-
tion and regression tasks are essential for AlignDet.

comes from the AP75. It reveals that the classification pre-
training brings higher prediction accuracy, while the regres-
sion pretext task helps to predict more accurate coordinates.

Effectiveness of Box-domain Pre-training. To visualize
the effectiveness of box-domain pre-training, we depict t-
SNE visualization [55] for features of 3 classes with each
5000 ground truth annotations. As illustrated in Figure 4,
the features from the randomly initialized contrastive head
f con are clustered into four parts, with each cluster repre-
senting a feature level in the FPN. It reveals that the random
initialization head classifies each box based on the box size.
However, AlignDet provides a good weight initialization for
f con, leading to better class separation. We also visualize
the center points of predicted boxes from Faster R-CNN in
Figure 5. AlignDet focuses on potential objects instead of
messy pixels compared to the random initialization results
without box-domain pre-training. There are more visualiza-
tion results of other methods in the supplementary material.

Freeze Backbone in Box-domain Pre-training. Freez-
ing a layer or all parameters in the backbone is a common
practice in previous work [26, 12, 2]. For example, Mask
R-CNN freezes the first layer of ResNet when training on
COCO, and UP-DETR and DETReg freeze the entire back-
bone during pre-training. Although there is no explana-
tion for this approach in previous works, it significantly de-
grades the performance [12, 2]. Here we offer some conjec-
tures as to why the backbone weights should be fixed dur-
ing the box-domain pre-training stage, demonstrating that
the frozen backbone leads to better performance.

The possible reason is that the amount of parameters is
large for the detection model, while the data is relatively



Figure 6. Compared with other pre-training methods, AlignDet achieves adequate and more efficient pre-training for various detectors.

Frozen Backbone AP AP50 AP75 APs APm APl

✗ 35.5 53.7 37.7 18.5 38.9 47.0
✓ 37.3 56.6 40.1 21.0 40.9 49.8

Table 11. Ablation study on weather freezes the backbone during
the box-domain pre-training.

Training Stage Parameters Dataset Epochs Training Time
Image-domain Pre-training 23.23 M ImageNet 800 77.1 h
Box-domain Pre-training 8.79 M COCO 12 5.6 h

Fine-tuning 32.02 M COCO 12 4.4 h
Table 12. Ablation on training complexity for FCOS (ResNet-50)

small, and the label is noisy. If we train the entire detection
model with small and noisy labels, the detector may over-
fit to these noise proposals, rather than learning semantic
and position priors of objects. Therefore, in the box-domain
pre-training, we freeze all parameters in the backbone. We
also constructed experiments on Table 11 to demonstrate
that fixing the backbone can bring more benefits.

Ablation on Training Complexity. As shown in Ta-
ble 12, the box-domain pre-training introduces only a small
computational overhead compared to the image-domain
backbone pre-training (e.g., MoCo v2 here), yet achieves
significant and wide-ranging improvements as shown in the
paper, the training time is calculated on 8 NVIDIA A100
GPUs (80G). Please note we simply load the pre-trained
backbone weights in practice, and both the selective search
and our AlignDet are easy to implement.

5. Comparison with Other Methods

Compared with box-level contrastive learning counter-
parts (e.g., InsLoc [66], SoCo [58]), AlignDet makes full
use of existing pre-trained backbones to enable efficient
detection-oriented pre-training. We also show the pseudo-
code of SoCo and AlignDet pre-training in the Supplement
Material for a more intuitive comparison. In order to better
understand the differences with other pre-training methods,
we demonstrate the core pipelines of these methods in Fig-
ure 6. Compared with existing pre-training methods, Align-
Det achieves adequate pre-training for all modules by intro-
ducing classification and regression knowledge, thus com-
prehensively addressing data, model, and task discrepancies
between pre-training and fine-tuning.

6. Discussions
How do pre-training and fine-tuning attain alignment?
AlignDet achieves alignments because the box-domain pre-
training can be considered as a type of detection fine-tuning,
the only differences are freezing the backbone and replacing
the classification with box contrastive learning. To achieve
data alignment, we utilize the same multi-object dataset to
maintain uniformity in data properties and domain. The
decoupled pre-training makes all modules can be well pre-
trained to achieve model alignment. Task alignment is pro-
moted via the integration of both regression and classifica-
tion prior knowledge within the box-domain pre-training.

Is Selective Search Burdensome in Pre-training? No.
The generation of selective search proposals is conducted
offline and performed only once before pre-training. In box-
domain pre-training, we randomly select the generated pro-
posals as inputs, and operations of proposals do not bring
too much overhead, as shown in Table 12.

Complexity of AlignDet. Although AlignDet requires
three stages of image-domain pre-training, box-domain pre-
training, and final fine-tuning. But we want to emphasize
that both image-domain pre-training and fine-tuning are
standard paradigms in object detection, so AlignDet only
introduces an additional box-domain pre-training phase.

7. Conclusion
In this paper, we point out that there are data, model,

and task discrepancies between pre-training and fine-tuning
in object detection and propose a unified framework namely
AlignDet to address these issues. AlignDet learns both clas-
sification and regression knowledge and enables highly ef-
ficient pre-training for all modules. Notably, it is the first
framework to facilitate complete unsupervised pre-training
of various detectors. Extensive experiments demonstrate
that AlignDet significantly improves performance across di-
verse protocols. We believe AlignDet provides valuable in-
sights and opens new avenues for visual pre-training.
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A. Overview of Supplementary Material
The supplementary material is organized into the follow-

ing sections:

• Section B: Implementation details for all experiments.

• Section C: More experiments and analysis.

• Section D: Visualization of the selective search pro-
posals and the effectiveness of AlignDet.

• Section E: Broader impact and limitation.

B. Implementation Details
B.1. General Settings

Pre-training. All the hyper-parameters for box-domain
pre-training follow the original fine-tuning settings except
the prediction sampling procedure. For example, the learn-
ing rate is 2e-4 and weight decay is 1e-4 for Mask R-
CNN [26] when fine-tuning on COCO [37] with Ima-
geNet [14] pre-trained backbone. Hence in the box-domain
pre-training stage, we set the same learning rate and weight
decay to pre-train the modules out of the backbone. In terms
of sampling predicted boxes, we select as many positive
samples (predicted boxes that correspond to a ground truth
proposal instead of background) as possible to expand the
data for box-level contrastive learning. All methods apply
the same pre-training data augmentation, which has been
described in Section 4.1 of the main paper. All the experi-
ments are pre-trained on the COCO train 2017 dataset with
12 epochs (1x), except 50 epochs for DETR [4]. During the
pre-training stage, most experiments can be finished with 8
V100 GPUs (32 GB), which is efficient since we only train
other modules out of the backbone (i.e., neck and head).

Fine-tuning. During the fine-tuning stage, we use
SyncBN [28] to calibrate magnitudes for pre-trained models
following MoCo [24]. For the experiments with supervised
pre-trained ResNet [27], we follow the default setting in
mmdetection [7] to freeze the first layer of ResNet, and fine-
tuning the other parameters under standard data augmenta-
tion with single-scale training. For the experiments with
self-supervised backbones, we fine-tune all layers end-to-
end with multi-scale training, and SyncBN is used across all
layers, including the newly initialized batch normalization
layers. For experiments with MobileNetv2 [51] and Swin
Transformers [40], we follow the default training strategy
defined in mmdetection. For the VOC [16] fine-tuning, we
train 12k iterations to avoid over-fitting, and the learning
rate is divided by 10 at 3

4 and 11
12 of total training time.

Since AlignDet pre-trains all modules in the detector
and not just the backbone, we need to adjust the fine-tuned
hyper-parameters to better transfer the pre-trained weights.

Thanks to the experience of previous work [58, 52, 33], ad-
justing the learning rate and weight decay is a good practice.
The main principle of hyper-parameter adjustment in the
fine-tuning stage is to increase the learning rate while reduc-
ing weight decay. The most common setting is to increase
the learning rate by 1.5 times and reduce the weight decay
to half of the original value. The specific values of different
methods and experiments are listed in detail in each subse-
quent paragraph.

B.2. FCOS

FCOS [53] is a single-stage, point-based detector. The
learning rate and weight decay are 0.1, 1e-4 for Align-
Det pre-training and 0.15, 5e-5 for fine-tuning, respectively.
The maximum number of sampled predicted boxes for the
box-domain pre-training is 2048. Other hyper-parameters
are set to the default values in mmdetection.

B.3. RetinaNet

RetinaNet [36] is a single-stage, anchor-based detector.
The learning rate and weight decay are 0.1, 1e-4 for Align-
Det pre-training and 0.15, 5e-5 for fine-tuning, respectively.
The maximum number of sampled predicted boxes for the
box-domain pre-training is 2048. Other hyper-parameters
are set to the default values in mmdetection.

B.4. Faster R-CNN & Mask R-CNN

Faster R-CNN [19] and Mask R-CNN [26] are two-
stage, anchor-based detectors. Here Faster R-CNN uses
the RoI Align [26] operation. The maximum number of
sampled predicted boxes for the box-domain pre-training is
4096. All the experiments including baseline results are re-
implemented with the 4conv1fc RoI head for a fair compar-
ison, following previous work [25, 24]. For Faster R-CNN,
we fine-tune with only object detection annotations, and for
Mask R-CNN, we fine-tune with both object detection and
instance segmentation annotations.

Specifically, for the supervised pre-trained MobileNet v2
and ResNet backbones, the learning rate and weight decay
are 0.2, 1e-4 for AlignDet pre-training and 0.3, 5e-5 for
fine-tuning, respectively. In our experiments, the weight
decay should be smaller for the self-supervised ResNet-
50 backbones, thus we set 5e-6 for PixPro [63] and MoCo
v2 [10], and the learning rate is the same as pre-training, i.e.,
0.02. For SwAV [6] pre-trained backbone, the fine-tuning
learning rate is 3e-2, weight decay is 5e-6, and warmup it-
erations are 1000. For Swin Transformer backbones, the
learning rate is 1e-4 and weight decay is 5e-2 for AlignDet
pre-training. During the fine-tuning stage, the learning rate
is 1e-4 and weight decay is 2e-2.



Algorithm I SoCo Pseudocode, PyTorch-like

# x: input images
# p: selective search proposals
# aug: independent random augmentation

for x, p in data_loader:
(x1, p1), (x2, p2) = aug(x, p), aug(x, p) # augmentation
x1, x2 = backbone_q(x1), backbone_k(x2) # updated
x1, x2 = neck_q(z1), neck_k(z2) # feature pyramid

# proposals as final bboxes
b1, b2 = p1, p2
z1, z2 = roi_align(x1, p1), roi_align(x2, p2)
z1, z2 = g_q(z1), g_k(z2) # feature projection

L = loss_constrastive(z1, z2) # contrastive loss
ema_update(backbone_q, backbone_k, neck_q, neck_k)

B.5. DETR

DETR [4] is a single-stage, query-based detector. A
key factor that leads to slow convergence is the complica-
tion in aligning object queries with target features in differ-
ent feature embedding spaces [68]. However, in the self-
supervised setting, it is difficult to achieve this alignment
because we do not have accurate semantic labels. To allevi-
ate this issue, UP-DETR [12] initializes the query embed-
ding with features extracted from cropped image patches.
DETReg [2] predict the features of cropped image patches
from the corresponding query embedding via L1 loss. How-
ever, these approaches simply use foreground or back-
ground for bipartite matching under the unsupervised set-
ting, lacking explicit semantic information for the label as-
signment. This paradigm leads to the mismatch between
bipartite matching costs and loss calculation, which may
cause unstable matching and affect the effectiveness of pre-
training.

To address this challenge, we make a small modification
to AlignDet. In addition to the common coordinate-based
label assignment and contrastive learning, which is the same
in other methods, we also introduce the category-based as-
signment and corresponding loss to pre-train DETR. Spe-
cially, we crop the selective search [54] proposals from im-
ages and extract their features with supervised pre-trained
backbones. Then we cluster the extracted features into 256
classes using the K-means algorithm [41, 42], the cluster
results are regarded as pseudo-semantic labels to perform
extra label assignment and cross-entropy loss to pre-train
DETR. This has the advantage of introducing explicit cate-
gory information into bipartite matching, which aligns la-
bel assignment and loss calculation in DETR, leading to
more stable matching results. Note that only DETR uses
the clustering results of the features as extra pseudo-labels
for box-domain pre-training, since the label assignment of
other methods in this paper does not require explicit seman-
tic information but only coordinates.

We use both the default supervised pre-trained ResNet-
50 [27] and the self-supervised pre-trained SwAV [6] for
the experiments. The learning rate is 2e-4 for a batch size

Algorithm II AlignDet Pseudocode, PyTorch-like

# x: input images
# p: selective search proposals
# aug: independent random augmentation

for x, p in data_loader:
(x1, p1), (x2, p2) = aug(x, p), aug(x, p) # augmentation
x1, x2 = backbone(x1), backbone(x2) # frozen backbone
x1, x2 = neck_q(x1), neck_k(x2) # feature pyramid

# proposals as pseudo labels, boxes are predicted
b1, b2 = head_q.f_reg(x1, p1), head_k.f_reg(x2, p2)
z1, z2 = head_q.f_con(x1, b1), head_k.f_con(x2, b2)
z1, z2 = g_q(z1), g_k(z2) # feature projection

L = loss_con(z1, z2) + loss_reg(b1, b2, p1, p2) # losses
ema_update(neck_q, neck_k, head_q, head_k)

of 64 during the box-domain pre-training stage, and the loss
weights of contrastive loss and cross-entropy loss are 1.0. In
the fine-tuning stage, the learning rate is 1e-4 for the batch
size of 16, and we fine-tune all the parameters following
previous work [12, 2]. Other hyper-parameters are set to
the default values in mmdetection.

B.6. SimMIM and CBNet v2

To further verify the effectiveness of AlignDet, we con-
ducted advanced experiments with mask image modeling
pre-training method (SimMIM [64]) and SOTA detection
algorithm (CBNet v2 [34]). We chose CBNet v2 because of
its open source code and achieved SOTA performance with-
out requiring additional training data (e.g. training on Ob-
jects365 [52]). However, since they do not open source the
training code corresponding to the most powerful model,
we use the officially released code, models, and configs to
reproduce the results. More specifically, we use the large
scale jittering [17] to fine-tune Mask R-CNN with 3x strat-
egy (SimMIM pre-trained Swin-Large backbone), follow-
ing the settings reported in the original paper. For CBNet
v2, we use the publicly released config [34] to reproduce
the results. Both external links are existing implementations
that follow original papers, not part of our submission.

C. Further Analysis and Experiments

C.1. Pre-training with Longer Epochs

Pre-training the backbone for longer epochs does not
necessarily lead to sustained performance improvements
for downstream tasks, both for supervised [25] and self-
supervised pre-training methods [58, 63, 24]. Here we find
similar results on AlignDet, that is, 12 epochs pre-training is
enough for AlignDet, as shown in Table 13 with RetinaNet.
However, the pre-training for the backbone are usually hun-
dreds of epochs. A potential reason for this phenomenon is
that the pre-training parameters of the two are significantly
different. In most object detection models, the number of
parameters of the backbone is much more than that of the
neck and head modules, so backbone pre-training often re-

https://github.com/open-mmlab/mmdetection/blob/master/configs/common/ssj_270k_coco_instance.py
https://github.com/open-mmlab/mmdetection/blob/master/configs/common/ssj_270k_coco_instance.py
https://github.com/VDIGPKU/CBNetV2/blob/main/configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py


Pre-training Schedule AP AP50 AP75 APs APm APl

1x 37.3 56.6 40.1 21.0 40.9 49.8
2x 37.0 56.2 39.3 20.8 40.6 49.5
3x 37.0 56.1 39.5 20.4 40.6 48.7

Table 13. Ablation study on pre-training schedules. All the results
are fine-tuned with 12 epochs (1x schedule).

quires longer pre-training epochs to learn meaningful repre-
sentation. On the contrary, since the neck and head modules
have relatively few parameters, they can be well-trained
with fewer epochs. Thus a longer pre-training time may
lead to over-fitting and will not bring additional improve-
ments. In addition, detection datasets such as COCO [37]
are usually smaller than pre-training datasets (e.g., Ima-
geNet [14]), which may exacerbate this issue.

D. Visualization
D.1. Selective Search Proposals

We use the same selective search code and filtering strat-
egy as SoCo [58] on the COCO train 2017 dataset, and ap-
ply non-maximum suppression (NMS) with a threshold of
0.5 at the end to remove redundant proposals. The images
used for box-domain pre-training are shown in Figure 8.

D.2. Effectiveness of Box-domain Pre-training

Due to the significant differences in the design and
mechanism of different detection methods, we need to de-
sign different visualization schemes to verify the effective-
ness of our AlignDet under the unsupervised setting.

Faster R-CNN & Mask R-CNN. In this paper, the struc-
tural difference between Faster R-CNN and Mask R-CNN
is only the presence or absence of a mask head, so they have
the same prediction results and visualization for the detec-
tion task. In addition to the main paper, we also provide
more visualizations here in Figure 9. Specifically, we use
RPN to determine which of the predicted boxes are fore-
grounds and feed them into the head to get the predicted
box coordinates. We plot the centers of these boxes instead
of rectangles for better visualization. AlignDet focuses on
objects instead of messy pixels compared to the random ini-
tialization results without box-domain pre-training.

Other Methods. Unlike Faster R-CNN or Mask R-CNN,
other methods do not have an RPN module, which means
we cannot determine which predicted boxes are foreground
and which are background during inference. To demon-
strate the effectiveness of AlignDet, we show the training
losses in Figure 7 using RetinaNet as an example. AlignDet
pre-training significantly accelerates the convergence of the
model, with lower classification loss loss cls and regression
loss loss bbox under the same training iterations.

Figure 7. Fine-tuning losses of RetinaNet on COCO train 2017.

In addition, we also show the fine-tuning results of differ-
ent detection models with or without AlignDet pre-training
in Figure 10 to further demonstrate the effectiveness of our
AlignDet. AlignDet achieves more accurate classification
and precise coordinate results than the random initialization
results without box-domain pre-training.

E. Broader Impact and Limitation
AlignDet represents a significant step forward in the

development of unified and adequate unsupervised detec-
tion pre-training. Our approach enables the fully self-
supervised pre-training of various object detection mod-
els, a milestone that was previously unattainable. Further-
more, the decoupled pre-training paradigm delivers highly
efficient and effective pre-training, by separating the fea-
ture extraction from task-aware learning. The decou-
pled pre-training paradigm can be readily extended to
other vision tasks, allowing the integration of general-
purpose pre-trained backbones with task-aware pre-
trained necks and heads, which opens a door for solv-
ing the discrepancies between general pre-training and
various downstream tasks.

However, the dependence on selective search propos-
als in this paper may represent a potential limitation, we
view it as a direction for future research. Overall, our
work advances the state-of-the-art unsupervised detection
pre-training and offers significant potential for improving
the performance of object detection.



Figure 8. Selective search proposals on COCO train 2017 dataset.



Figure 9. Visualization results of predictions on COCO Val 2017 with Faster/Mask R-CNN. Random Initialization denotes ImageNet pre-
train, and ours means AlignDet pre-training.



Figure 10. Detection results with different models on the public COCO Val 2017 dataset. For each scene, the upper images are the fine-
tuning results without box-domain pre-training, and the lower images are the fine-tuning results after the box-domain pre-training.


