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Abstract

Anomaly detection (AD), aiming to find samples that de-
viate from the training distribution, is essential in safety-
critical applications. Though recent self-supervised learn-
ing based attempts achieve promising results by creating
virtual outliers, their training objectives are less faithful
to AD which requires a concentrated inlier distribution as
well as a dispersive outlier distribution. In this paper,
we propose Unilaterally Aggregated Contrastive Learning
with Hierarchical Augmentation (UniCon-HA), taking into
account both the requirements above. Specifically, we ex-
plicitly encourage the concentration of inliers and the dis-
persion of virtual outliers via supervised and unsupervised
contrastive losses, respectively. Considering that standard
contrastive data augmentation for generating positive views
may induce outliers, we additionally introduce a soft mech-
anism to re-weight each augmented inlier according to its
deviation from the inlier distribution, to ensure a purified
concentration. Moreover, to prompt a higher concentration,
inspired by curriculum learning, we adopt an easy-to-hard
hierarchical augmentation strategy and perform contrastive
aggregation at different depths of the network based on the
strengths of data augmentation. Our method is evaluated
under three AD settings including unlabeled one-class, un-
labeled multi-class, and labeled multi-class, demonstrating
its consistent superiority over other competitors.

1. Introduction

Anomaly detection (AD), a.k.a. outlier detection, aims
to find anomalous observations that considerably deviate
from the normality, with a broad range of applications, e.g.
defect detection [4] and medical diagnosis [45]. Due to the
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Figure 1: The decision regions (light yellow) of RotNet
[26], DROC [49], CSI [51] and our UniCon-HA with ro-
tation used to create virtual outliers. (a) RotNet models the
inlier distribution by predicting rotation angles through a 4-
way classifier; (b) DROC performs instance discrimination
within the union of inliers and their rotations, resulting in a
uniform distribution of data points; (c) CSI combines con-
trastive learning with a rotation classifier, enclosing a sub-
region for inliers; (d) Our UniCon-HA explicitly promotes
the concentration of inliers and the dispersion of rotated vir-
tual outliers, yielding the most compact decision region.

inaccessibility of real-world outliers, it is typically required
to develop outlier detectors solely based on in-distribution
data (inliers). Conventional methods [7, 32, 30, 42, 69, 65]
leverage generative models to fit the distribution by assign-
ing high densities to inliers; however, they make use of raw
images and are fragile caused by background statistics [42]
or pixel correlations [30], unexpectedly assigning higher
likelihoods to unseen outliers than inliers.

Alternatively, discriminative models [52, 47, 16, 43] de-
scribe the support of the training distribution using classi-
fiers, circumventing the complicated process of density es-
timation. Furthermore, some studies [18, 26, 3] observe
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improved performance with the introduction of virtual out-
liers1, followed by a series of methods [49, 51, 61] ex-
ploring outliers in a more effective way. For example,
classification-based AD methods [18, 26, 3] rely on trans-
formations to generate virtual outliers for creating pretext
tasks, with rotation prediction being the most effective. Re-
cently, DROC [49] models the union of inliers and ro-
tated ones via contrastive learning. CSI [51] combines
contrastive learning with an auxiliary classification head
for predicting rotations, further boosting the performance.
Overall, these methods deliver better results than their coun-
terparts without using rotation; unfortunately, their imper-
fect adaptation to AD leaves much room for improvement.

We remark that a good representation distribution for AD
requires: (a) a compact distribution for inliers and (b) a dis-
persive distribution for (virtual) outliers. From our view, the
existing methods [26, 49, 51] demonstrate unsatisfactory
performance due to the lack of a comprehensive consider-
ation of both aspects. RotNet [26] learns representations
which only guarantee that they are distinguishable between
labels, i.e. four rotation angles {0◦, 90◦, 180◦, 270◦}, re-
sulting in less compact concentration for inliers and less dis-
persive distribution for outliers shown in Fig. 1(a). Though
DROC [49] explicitly enlarges the instance-level distance
via contrastive learning and generates a dispersive distri-
bution for outliers, it inevitably pushes inliers away from
each other, failing to meet the requirement of a compact in-
lier distribution [50] (Fig. 1(b)). CSI [51] extends DROC
with a rotation classification head which restricts inliers to
a sub-region determined by separating hyperplanes, making
inliers lumped to some extent (Fig. 1(c)), but the insufficient
degree of concentration by the predictor limits its potential.

We also notice a growing trend [41, 21, 63] in leveraging
models pre-trained on large-scale datasets (e.g. ImageNet
[12]) for AD. However, strictly speaking, they deviate from
the objective of AD that outliers stem from an unknown dis-
tribution and similar outliers are unseen in training.

In this work, we focus on a strict setting where AD
models are trained from scratch using inliers only. We
present a novel method for AD based on contrastive learn-
ing, named Unilaterally Aggregated Contrastive Learn-
ing with Hierarchical Augmentation (UniCon-HA), to ful-
fill the goal of inlier concentration and outlier dispersion
(Fig. 1(d)). The term unilaterally refers to the aggrega-
tion applied to inliers only. For inlier concentration, differ-
ent from other contrastive learning-based AD alternatives
[61, 48, 51, 49] that universally perform instance discrim-
ination within the whole training set regardless of inliers
or outliers, we take all inliers as one class and pull them
together while push outliers away. For outlier dispersion,

1We note that several studies [34, 44, 39, 58] leverage real-world out-
liers to address AD in a relaxed setting, which is out of the scope of this
paper.

we perform instance discrimination within all virtual out-
liers to disperse them around the latent space unoccupied
by inliers. Furthermore, considering that the standard aug-
mentation pipeline for generating multiple positive views
probably induces outliers as false positives [59, 1] (e.g. ran-
dom crop at background regions), we propose to aggregate
augmented views of inliers with a soft mechanism based on
the magnitude of deviation from the inlier distribution, with
distant samples assigned with lower weights. Finally, to
prompt a higher concentration for inliers, inspired by cur-
riculum learning (CL) [2], we adopt an easy-to-hard hier-
archical augmentation and perform aggregation at different
network depths based on the strengths of data augmentation.
Notably, our formulation is free from any auxiliary branches
for transformation prediction [51, 18] or pre-trained mod-
els [5, 15]. We evaluate our method in three typical AD
scenarios including one-class, unlabeled multi-class, and
labeled multi-class settings. Additionally, the results can
be further improved with the introduction of outlier expo-
sure (OE) [25], which is previously deemed harmful in con-
trastive learning-based CSI [51].

Our main contributions are three-fold:

• We present a novel contrastive learning method for
AD, simultaneously encouraging the concentration for
inliers and the dispersion for outliers, with soft aggre-
gation to suppress the influence of potential outliers
induced by data augmentation.

• For a higher concentration of inliers, we propose an
easy-to-hard hierarchical augmentation strategy and
perform contrastive aggregation distributed in the net-
work where deeper layers are responsible for aggrega-
tion under stronger augmentations.

• Experimental results demonstrate the consistent im-
provement of our method over state-of-the-art com-
petitors under various AD scenarios.

2. Related Work
Anomaly Detection. Recent efforts on AD can be

broadly categorized as (a) reconstruction-based [56, 19, 54],
(b) generative [7, 32, 42, 30], (c) discriminative [52, 46] and
(d) self-supervised methods [51, 26, 49]. Generative meth-
ods model the density of training data, and examples situ-
ated in low-density regions are deemed as outliers. Unfor-
tunately, the curse of dimensionality hinders accurate distri-
bution estimation. Deep generative methods [30, 42] prove
effective in high-dimensional data; however, they work on
raw images and still suffer from background statistics [42]
or pixel correlations [30]. One-class support vector ma-
chine (OC-SVM) [46] and support vector data description
(SVDD) [52] are classic discriminative representatives for
AD. While they are powerful with non-linear kernels, their



performance is limited to the quality of underlying data rep-
resentations. Early attempts on AD [52, 46] rely on kernel
tricks and hand-crafted feature engineering, but recent ones
[16, 62, 40, 44, 43] advocate the capability of deep neural
networks to automatically learn high-level representations,
outperforming their kernel-based counterparts. However,
naive training results in a trivial solution with a constant
mapping, a.k.a. hypersphere collapse. Previous methods
regularize learning by introducing architectural constraints
[43], auto-encoder pre-training [43, 44] etc, among which
introducing outliers [51, 49, 26, 18, 25, 44, 33] is the most
effective to prevent from hypersphere collapse [43]. Build-
ing upon the success of self-supervised learning, recent
progress [51, 49, 61, 48] is made by adapting contrastive
learning to AD with improved performance reported. For
example, DROC [49] and CSI [51] leverage distributional
augmentation (e.g., rotation) to simulate real-world outliers
and model the inlier distribution by contrasting original
samples with these simulated outliers. However, the learned
representation is uniformly distributed on the hypersphere,
contradicting the core principle of AD, which emphasizes
that the inlier distribution should remain compact against
outliers [43, 52]. Hence, to align contrastive learning more
harmoniously with AD, we modify the optimization objec-
tive: unlike prior work [51, 49] performing instance dis-
crimination within all training data (comprising both inliers
and virtual outliers), our method explicitly encourages the
concentration of inliers and the dispersion of outliers. This
adaptation better adheres to the principles of AD.

Self-supervised Learning. Self-supervised learning
(SSL), a generic learning framework that automatically gen-
erates data labels via either creating pretext tasks or per-
forming contrastive learning, has achieved notable suc-
cesses in enhancing visual representation learning. Com-
mon pretext tasks include predicting image rotations [17]
or patch positions [13], coloring images [67] and solving
jigsaw puzzles [37, 57], etc. In addition to hand-crafted de-
signs for pretext tasks, contrastive learning [23, 10] serves
as an alternative in the form of instance discrimination for
generic representation learning, benefiting a diversity of
downstream vision tasks, such as image recognition and
object detection. As opposed to vanilla contrastive learn-
ing where each instance itself forms a category, SupCLR
[29], a supervised extension of contrastive learning, con-
siders multiple positive samples tagged by discriminative
labels to help with pulling together intra-class points while
pushing apart inter-class ones. This consistently surpasses
the performance of the cross-entropy (CE) loss. Aligning
with the core concept of AD that inliers are concentrated
and outliers are dispersed, this work capitalizes on the ad-
vantages of both supervised and unsupervised contrastive
learning by explicitly pulling together inliers and pushing
apart outliers, respectively.

3. Method
In this section, we first revisit the preliminaries of un-

supervised and supervised contrastive learning. Then we
introduce our AD method based on contrastive learning,
which is specialized to optimize the concentration of in-
liers and dispersion of virtual outliers along with a soft
mechanism to ensure a purified concentration. Moreover,
we leverage an easy-to-hard hierarchical augmentation to
prompt a higher concentration of inliers along the network
layers.

3.1. Preliminaries

Unsupervised Contrastive Learning. Unsupervised
contrastive learning aims to learn representations from un-
labeled data. The premise is that similar samples as posi-
tive pairs are supposed to have similar representations. The
practical way to create positive pairs is to apply random
augmentation to the same sample independently, e.g. two
crops of the same image or multi-modal views of the same
scene. Formally, let x be an anchor, D+

x and D−
x be the

sets of positive and negative samples w.r.t. x, respectively.
We consider the following common form of the contrastive
loss:

Lcons(x,D
+
x , D

−
x ) :=

− 1

|D+
x |

∑
x′∈D+

x

log
ez(x

′)T z(x)/τ∑
x′∈D+

x ∪D−
x
ez(x′)T z(x)/τ

,
(1)

where |D+
x | denotes the cardinality of D+

x , z(·) extracts the
ℓ2-normalized representation of x and τ > 0 is a temper-
ature hyper-parameter. We, in this work, specifically con-
sider the simple contrastive learning framework i.e. Sim-
CLR based on instance discrimination. For a batch of un-
labeled images B := {x}Ni=1, we first apply a composition
of pre-defined identity-preserving augmentations T to con-
struct two views x̃1

i := t1(xi) and x̃2
i := t2(xi) of the same

instance xi, where t1, t2 ∼ T . The contrastive loss of Sim-
CLR is defined as follows:

LSimCLR(B; T ) =
1

2N

N∑
i=1

Lcons(x̃
1
i , {x̃2

i }, B̃ − {x̃1
i , x̃

2
i })

+Lcons(x̃
2
i , {x̃1

i }, B̃ − {x̃2
i , x̃

1
i }),

(2)

where B̃ := B̃1 ∪ B̃2, B̃1 := {x̃1}Ni=1 and B̃2 := {x̃2}Ni=1.
In this case, D+

x̃1
i

:= {x̃2
i }, D+

x̃2
i

:= {x̃1
i } and D−

x̃2
i

=

D−
x̃1
i
:= B̃ − {x̃2

i , x̃
1
i }.

Supervised Contrastive Learning. SupCLR [29] is a
supervised extension of SimCLR by considering class la-
bels. Different from the unsupervised contrastive loss in
Eq. 1 where each sample has only one positive sample, i.e.
the augmented view of itself, there are multiple positive
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Figure 2: Overview of the proposed UniCon-HA for anomaly detection: (a) we explicitly encourage concentration of inliers
and dispersion of virtual outliers generated by distributionally-shifted transformations with rotation being an example. To
ensure a purified inlier concentration, we propose soft aggregation to re-weight each view of inliers generated by standard data
augmentation e.g. random crop, based on its average similarities with all other inliers; (b) to prompt a higher concentration,
we employ an easy-to-hard hierarchical augmentation strategy and distribute contrastive aggregation at different stages of the
network based on the strengths of data augmentations.

samples sharing the same class label, resulting in multiple
clusters in the representation space corresponding to their
labels. Formally, given a batch of labeled training sam-
ples C := {(xi, yi)}Ni=1 with class label yi ∈ Y , C̃1 :=
{(x̃1

i , yi)|x̃1
i ∈ B̃1}Ni=1 and C̃2 := {(x̃2

i , yi)|x̃2
i ∈ B̃2}Ni=1

are the two sets of augmented views. The supervised con-
trastive loss is given as follows:

LSupCLR(C; T ) =
1

2N

2N∑
i=1

Lcons(x̃i, D
+
xi
, D−

xi
), (3)

where D+
x̃i

:= {x|(x, yi) ∈ C̃1 ∪ C̃2} − {x̃i} and D−
x̃i

:=

B̃ − {x̃i} −D+
x̃i

.

3.2. Unilaterally Aggregated Contrastive Learning

Recall that a good representation distribution for AD en-
tails a concentrated grouping of inliers and an appropriate
dispersion of outliers. Given that only inliers are available
for training, a natural question arises: how to obtain out-
liers? Due to the inaccessibility of real-world outliers, some
attempts are investigated to create virtual outliers, aiming at
a trade-off in various manners, such as through transforma-
tions [51, 3, 26, 33] or by sourcing them from additional
datasets, known as OE [25]. These methods, relying on vir-
tual outliers, display the superiority over their counterparts
based on inliers only; however, they all fall short in fully

addressing both the requirements of a good representation
distribution for AD.

Following the success of introducing virtual outliers, in
this work, we directly treat the goal of encouraging inlier
concentration and outlier dispersion as the optimization ob-
jective via a pure contrastive learning framework. We par-
ticularly design a novel contrastive loss, namely UniCLR, to
unilaterally aggregate inliers and disperse outliers. Differ-
ent from the existing contrastive learning methods for AD
[49, 48, 61, 51] that equally treat each instance from inliers
and virtual outliers as one class and perform universal in-
stance discrimination, we take all inliers as one class while
each outlier itself a distinct class.

Formally, given a training inlier set Din, we first apply
distributionally-shifted augmentation S, e.g. rotation, to in-
liers to create a set of virtual outliers Dvout ≡ {s(x)|x ∈
Din ∧ s ∈ S}. Note that Din and Dvout are disjoint. For
each image xi ∈ Din/Dvout, we further apply identity-
preserving augmentations T to create two views of xi and
finally obtain D̃in := D̃1

in∪D̃2
in and D̃vout := D̃1

vout∪D̃2
vout,

based on which we prepare a batch B̃ := D̃in ∪ D̃vout for
training. The contrastive objective is given as:

LUniCLR(Din ∪ Dvout; T ) =
1

|B̃|

|Din|+|Dvout|∑
i=1

Li
UniCLR,

(4)



Li
UniCLR =


Lcons(x̃

1
i , D̃in − {x̃1

i }, D̃vout)+

Lcons(x̃
2
i , D̃in − {x̃2

i }, D̃vout), xi ∈ Din,

Lcons(x̃
1
i , {x̃2

i }, B̃ − {x̃2
i , x̃

1
i })+

Lcons(x̃
2
i , {x̃1

i }, B̃ − {x̃1
i , x̃

2
i }), xi ∈ Dvout.

(5)

Our formulation is structurally similar to SimCLR
(Eq. 2) and SupCLR (Eq. 3), with some modifications for
AD in consideration of both inlier aggregation and outlier
dispersion. Though our method is originally designed for
inliers without class labels, it can be easily extended to the
labeled multi-class setting where inliers sharing the same
label are positive views of each other while samples from
either other classes or augmented by S are negative.

Soft Aggregation. Data augmentation plays a central
role in contrastive representation learning [10]. Though
the commonly adopted augmentation pipeline in contrastive
learning has witnessed the advanced progress in diverse
downstream tasks, we observe that excessive distortion ap-
plied on the images inevitably shifts the original semantics,
inducing outlier-like samples [59, 1]. Aggregating these
semantic-drifting samples hinders the inlier concentration.
A straightforward solution is to restrict the augmentation
strength and apply weak augmentations to inliers; however,
it cannot guarantee learning class-separated representations,
i.e. reliably aggregating different instances with similar se-
mantics [22, 60]. To take advantage of the diverse samples
by strong augmentations while diminishing the side effects
of outliers, we propose to aggregate augmented views of in-
liers with a soft mechanism based on the magnitude of de-
viation from the inlier distribution, and follow the notions
defined in Eq. 1 to formulate it as follows:

Lsoft cons(x,D
+
x , D

−
x ) :=

− 1∑
x′∈D+

x
wxwx′

∑
x′∈D+

x

log
wxwx′ez(x

′)T z(x)/τ∑
x′∈D+

x ∪D−
x
ez(x′)T z(x)/τ

,

(6)

where wx is the soft weight indicating the importance of
sample x in aggregation. According to Eq. 6, a positive pair
of x and x′ receives more attention only if the correspond-
ing wx and wx′ are both sufficiently large. Specifically, we
measure wx(wx′ ) for x(x′) by calculating the normalized
average similarities with other inliers, i.e. D+

x , as follows:

ωxi
=

∑
xj∈D+

x \{xi} e
z(xi)

T z(xj)/τω∑
xk∈D+

x

∑
xj∈D+

x \{xk}e
z(xk)T z(xj)/τω

, (7)

where τω controls the sharpness of the weight distribution.
Intuitively, if one is away from all other inliers, there is a

high probability that it is an outlier and vice versa. We apply
soft aggregation (SA) only on inliers, i.e., replacing Lcons

with Lsoft cons only for xi ∈ Din in Eq. 5.

3.3. Hierarchical Augmentation

Though the proposed UniCLR is reasonably effective for
aggregating inliers and separating them from outliers, one
can further improve the performance by prompting a more
concentrated distribution for inliers. Inspired by the success
of deep supervision in classification, we propose to aggre-
gate inliers with hierarchical augmentation (HA) at differ-
ent depths of the network based on the strengths of data
augmentation. In alignment with the feature extraction pro-
cess that shallow layers learn low-level features while deep
layers emphasize more on high-level task-related semantic
features, motivated by curriculum learning (CL) [2], we set
stronger augmentation strengths for deeper layers and vice
versa, aiming at capturing the distinct representations of in-
liers from low-level properties and high-level semantics at
shallow and deep layers, respectively. To this end, we ap-
ply a series of augmentations at different network stages and
gradually increase the augmentation strength as the network
goes deep. Each stage is responsible for unilaterally aggre-
gating inliers and dispersing virtual outliers generated with
the corresponding augmentation strengths.

Formally, we have four sets of augmentation Ti, corre-
sponding to four stages resi in ResNet [24]. Each Ti is
composed of the same types of augmentations but with dif-
ferent augmentation strengths. Extra projection heads gi are
additionally attached at the end of resi to down-sample and
project the feature maps with the same shape as in the last
stage. With T1 ∼ T4 applied to inliers Din and outliers
Dvout, we extract their features zi(x) with resi and gi:

zi(x) = gi(resi(Ti(x))), i = 1, 2, 3, 4. (8)

Based on the features extracted by projector gi, we sepa-
rately perform unilateral aggregation for inliers and disper-
sion for outliers at each stage. The overall training loss can
be formulated as:

Lall =
1

4

4∑
i=1

λiLUniCLR(Din ∪ Dvout);Ti), (9)

where λi balances the loss at different network stages.
Through enforcing supervision in shallow layers, the re-

sulting inlier distribution under the strong augmentation be-
comes more compact and more distinguishable from out-
liers.

3.4. Inference

During testing, we remove all four projection heads gi.
While the existing methods [51, 48] depend on specially



(a) One-class CIFAR-10.

Method Network Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

AnoGAN [45] DCGAN 67.1 54.7 52.9 54.5 65.1 60.3 58.5 62.5 75.8 66.5 61.8
PLAD [8] LeNet 82.5±0.4 80.8±0.9 68.8±1.2 65.2±1.2 71.6±1.1 71.2±1.6 76.4±1.9 73.5±1.0 80.6±1.8 80.5±0.3 75.1
Geom [18] WRN-16-8 74.7 95.7 78.1 72.4 87.8 87.8 83.4 95.5 93.3 91.3 86.0
Rot∗ [26] ResNet-18 78.3±0.2 94.3±0.3 86.2±0.4 80.8±0.6 89.4±0.5 89.0±0.4 88.9±0.4 95.1±0.2 92.3±0.3 89.7±0.3 88.4
Rot+Trans∗ [26] ResNet-18 80.4±0.3 96.4±0.2 85.9±0.3 81.1±0.5 91.3±0.3 89.6±0.3 89.9±0.3 95.9±0.1 95.0±0.1 92.6±0.2 89.8
GOAD∗[3] ResNet-18 75.5±0.3 94.1±0.3 81.8±0.5 72.0±0.3 83.7±0.9 84.4±0.3 82.9±0.8 93.9±0.3 92.9±0.3 89.5±0.2 85.1
CSI [51] ResNet-18 89.9±0.1 99.1±0.0 93.1±0.2 86.4±0.2 93.9±0.1 93.2±0.2 95.1±0.1 98.7±0.0 97.9±0.0 95.5±0.1 94.3
iDECODe [27] WRN-16-8 86.5±0.0 98.1±0.0 86.0±0.5 82.6±0.1 90.9±0.1 89.2±0.1 88.2±0.4 97.8±0.1 97.2±0.0 95.5±0.1 91.2
SSD [48] ResNet-50 82.7 98.5 84.2 84.5 84.8 90.9 91.7 95.2 92.9 94.4 90.0
NDA [9] DCGAN 98.5 76.5 79.6 79.1 92.4 71.7 97.5 69.1 98.5 75.2 84.3

UniCon-HA ResNet-18 91.7±0.1 99.2±0 93.9±0.1 89.5±0.2 95.1±0.1 94.1±0.2 96.6±0.1 98.9±0.0 98.1±0.0 96.6±0.1 95.4
UniCon-HA + OE ResNet-18 94.6±0.1 99.3±0.0 96.2±0.1 92.6±0.3 96.2±0.2 96.6±0.1 97.9±0.0 99.1±0.1 99.0±0.0 97.5±0.2 96.9

(b) One-class CIFAR-100 (20 super-classes).

Method Network AUROC

GEOM [18] WRN-16-8 78.7
Rot [26] ResNet-18 79.7
Rot+Trans [26] ResNet-18 79.8
GOAD [3] ResNet-18 74.5
CSI [51] ResNet-18 89.6

UniCon-HA ResNet-18 92.4

(c) One-class ImageNet-30.

Method Network AUROC

Rot [26] ResNet-18 65.3
Rot+Attn [26] ResNet-18 81.6
Rot+Trans+Attn [26] ResNet-18 84.8
Rot+Trans+Attn+Resize [26] ResNet-18 85.7
CSI [51] ResNet-18 91.6

UniCon-HA ResNet-18 93.2

Table 1: AUROC scores on one-class (a) CIFAR-10, (b) CIFAR-100 (20 super-classes) and (c) ImageNet-30. For CIFAR-10,
we report the means and standard deviations of AUROC averaged over five trials. ∗ denotes the values from CSI [51].

designed detection score functions to obtain decent results,
we observe that using the simple cosine similarity with the
nearest one in the learned feature space is sufficiently effec-
tive. The detection score si for a test example xi is given
as:

si(xi; {xm}) = maxm cosine(f(xi), f(xm)), (10)

where {xm} denotes the set of training samples and f(·)
extracts the ℓ2 normalized representation at the end of res4.
Following [51, 3], we observe improved performance using
an ensemble of representations by test-time augmentation.

4. Experiments
We compare our method with the state-of-the-art across

three AD settings: unlabeled one-class, unlabeled multi-
class, and labeled multi-class. Our method is also evaluated
on the realistic MvTec-AD dataset [4]. The area under the
receiver operating characteristic curve (AUROC) is adopted
as the evaluation metric.

4.1. Implementation Details

We use ResNet-18 [24] for all experiments to ensure fair
comparison with [51, 49]. Our models are trained from
scratch using SGD for 2,048 epochs, and the learning rate

is set to 0.01 with a single cycle of cosine learning rate de-
cay. Following [10], we employ a combination of random
resized crop, color jittering, horizontal flip and gray-scale
with increasing augmentation strengths for T1 ∼ T4 to gen-
erate positive views while use rotation {90◦, 180◦, 270◦} as
the default S to create virtual outliers. Thus, Din comprises
all original training samples and |Dout| triples |Din| by ap-
plying s ∈ S on x ∈ Din. We maintain a 1:3 ratio of inliers
to virtual outliers during mini-batch training. Detailed aug-
mentation configurations are available in the supplementary
material. We exclusively apply SA at the last residual stage,
i.e. res4 where the strongest augmentations are employed.
We set τ and τω as 0.5. For OE [25], we use 80 Million
Tiny Images [53] as the auxiliary dataset, excluding images
from CIFAR-10.

4.2. Results

Unlabeled One-class. In this setting, a single class
serves as the inlier, while the remaining classes act as
outliers. Following [26, 51, 49, 3], the experiments
are performed on CIFAR-10 [31], CIFAR-100 (20 super-
classes) [31] and ImageNet-30 [26]. In Tab. 1, we present
a comprehensive comparison of our method with a range of
alternatives including one-class classifiers, reconstruction-
based methods and SSL methods. Notably, SSL methods
using virtual outliers generated by shifting transformations



(a) Unlabeled CIFAR-10.

Method Network SVHN LSUN ImageNet LSUN (FIX) ImageNet (FIX) CIFAR-100 Interp.

Rot [26] ResNet-18 97.6±0.2 89.2±0.7 90.5±0.3 77.7±0.3 83.2±0.1 79.0±0.1 64.0±0.3

Rot+Trans [26] ResNet-18 97.8±0.2 92.8±0.9 94.2±0.7 81.6±0.4 86.7±0.1 82.3±0.2 68.1±0.8

GOAD [3] ResNet-18 96.3±0.2 89.3±1.5 91.8±1.2 78.8±0.3 83.3±0.1 77.2±0.3 59.4±1.1

CSI [51] ResNet-18 99.8±0.0 97.5±0.3 97.6±0.3 90.3±0.3 93.3±0.1 89.2±0.1 79.3±0.2

UniCon-HA ResNet-18 99.5±0.1 98.5±0.2 98.3±0.2 93.3±0.3 97.8±0.1 90.3±0.3 80.7±0.2

UniCon-HA + OE ResNet-18 99.2±0.0 97.8±0.2 95.8±0.1 95.8±0.4 98.3±0.2 91.6±0.2 80.1±0.1

(b) Unlabeled ImageNet-30.

Method Network CUB-200 Dogs Pets Flowers Food-101 Places-365 Caltech-256 DTD

Rot [26] ResNet-18 76.5 77.2 70.0 87.2 72.7 52.6 70.9 89.9
Rot+Trans [26] ResNet-18 74.5 77.8 70.0 86.3 71.6 53.1 70.0 89.4
GOAD [3] ResNet-18 71.5 74.3 65.5 82.8 68.7 51.0 67.4 87.5
CSI [51] ResNet-18 90.5 97.1 85.2 94.7 89.2 78.3 87.1 96.9

UniCon-HA ResNet-18 91.2 97.4 88.0 95.1 91.2 84.5 89.6 96.5

Table 2: AUROC scores on unlabeled (a) CIFAR-10 and (b) ImageNet-30. For CIFAR-10, we report the means and standard
deviations of AUROC averaged over five trials.

such as rotation and translation, yield favorable results com-
pared to those specifically tailored for one-class learning.
Thanks to UniCLR with HA, we achieve enhanced perfor-
mance across all the three datasets. Moreover, introduc-
ing supervision through Outlier Exposure (OE) [25] nearly
solves the CIFAR-10 task, which is previously regarded as
less effective in the contrastive based AD method [51]. We
attribute the success to our contrastive aggregation strategy,
which shapes a more focused inlier distribution when more
outliers introduced.

Unlabeled Multi-class. This setting expands the one-
class dataset to a multi-class scenario, wherein images from
different datasets are treated as outliers. In the case of
CIFAR-10 as the inlier dataset, we consider SVHN [35],
CIFAR-100 [31], ImageNet [34], LSUN [64], ImageNet
(Fix), LSUN (Fix) and linearly-interpolated samples of
CIFAR-10 (Interp.) [14] as potential outliers. ImageNet
(Fix) and LSUN (Fix) are the modified versions of Ima-
geNet and LSUN, designed to address easily detectable ar-
tifacts resulting from resizing operations. For ImageNet-30,
we consider CUB-200 [55], Dogs [28], Pets [38], Flow-
ers [36], Food-101 [6], Places-365 [68], Caltech256 [20]
and DTD [11] as outlier. Tab. 2 shows that our UniCon-
HA outperforms other counterparts on most benchmarks.
Though the training set follows a multi-center distribution,
the straightforward aggregation of all data into a single cen-
ter proves remarkably effective in AD.

Labeled Multi-class. In the multi-class setting with la-
beled data, rather than treating all inliers as a single class, as
seen in the previous scenarios, we designate inliers sharing
identical labels as positives. Conversely, inliers with dif-
fering labels or those generated by distributionally-shifted

augmentations are negatives. From Tab. 4, by incorporat-
ing labels into the UniCLR loss, our method not only im-
proves the performance in unlabeled multi-class setting but
also consistently surpasses other competitors that employ
virtual outliers, i.e. RotNet [26], GEOM [18], CSI [51] and
DROC [49]. It suggests that our method generalizes well to
labeled multi-class inliers.

Realistic Dataset. Following DROC [49], we learn
patch representations of 32×32. Tab. 3 shows that our
method outperforms the counterparts that also incorporate
rotation augmentation. Though CutPaste [33] exhibits bet-
ter performance than ours, it is crucial to understand that
CutPaste is specially designed for industrial anomaly local-
ization, making it unsuitable for our settings. For instance,
CutPaste only achieves 69.4% while ours reaches 95.4% in
the one-class CIFAR-10 scenario.

Level RotNet [26] DROC [49] CutPaste [33] Ours
Image 71.0 86.5 95.2 89.8
Pixel 92.6 90.4 96.0 94.3

Table 3: Image/pixel-level AUROC scores on MVTec-AD.

4.3. Ablation Study

We conduct ablation studies on (a) various shifting trans-
formations and (b) aggregation strategies: SA and HA.

Shifting Transformation. In contrast to CSI [51], we
investigate various shifting transformations beyond rota-
tion, including CutPerm [51], Gaussian blur, Gaussian noise
and Sobel filtering. From Tab. 5, our method consistently
outperforms CSI under different shifting transformations,
with rotation being the most effective. One plausible expla-
nation is that rotation creates more distinguishable negative



(a) Labeled CIFAR-10.

Method Network SVHN LSUN ImageNet LSUN (FIX) ImageNet (FIX) CIFAR100 Interp.

SupCLR [29] ResNet-18 97.3±0.1 92.8±0.5 91.4±1.2 91.6±1.5 90.5±0.5 88.6±0.2 75.7±0.1

CSI [51] ResNet-18 97.9±0.1 97.7±0.4 97.6±0.3 93.5±0.4 94.0±0.1 92.2±0.1 80.1±0.3

UniCon-HA ResNet-18 99.8±0.1 99.1±0.2 99.0±0.1 94.2±0.3 97.9±0.4 92.9±0.2 83.4±0.3

UniCon-HA + OE ResNet-18 98.8±0.2 98.6±0.3 97.9±0.2 95.5±0.3 98.2±0.2 93.4±0.2 83.5±0.1

(b) Labeled ImageNet-30.

Method Network CUB-200 Dogs Pets Flowers Food-101 Places-365 Caltech-256 DTD

Rot [26] ResNet-18 88.0 96.7 95.0 89.7 79.8 90.5 90.6 90.1
Rot+Trans [26] ResNet-18 86.3 95.6 94.2 92.2 81.2 89.7 90.2 92.1
GOAD [3] ResNet-18 93.4 97.7 96.9 96.0 87.0 92.5 91.9 93.7
CSI [51] ResNet-18 94.6 98.3 97.4 96.2 88.9 94.0 93.2 97.4

UniCon-HA ResNet-18 94.9 98.1 97.8 96.7 90.9 94.6 95.2 97.7

Table 4: AUROC scores on labeled (a) CIFAR-10 and (b) ImageNet-30. For CIFAR-10, we report the means and standard
deviations of AUROC averaged over five trials.

Method Perm Sobel Noise Blur Rotation

CSI [51] 90.7 88.3 89.3 89.2 94.3
UniCon-HA 92.1 90.4 90.8 89.8 95.4

Table 5: Ablation study for shifting transformations. Mean
AUROC (%) values are reported on one-class CIFAR-10.

Row SA HA Rot. Cls. One-class Multi-class CIFAR-10
CIFAR-10 Unlabeled Labeled

1 ✓ 94.3 92.4 93.3
2 4 ✓ 94.6 92.8 93.9
3 2-3-4 ✓ 95.1 93.7 95.0
4 ✓ 2-3-4 ✓ 95.3 94.2 95.4
5 92.4 89.4 90.6
6 4 94.8 93.0 93.7
7 ✓ 4 95.0 93.3 93.9
8 2-3-4 95.1 93.8 94.7
9 ✓ 2-3-4 95.4 94.1 95.2

Table 6: Ablation study for SA and HA. Numbers in HA
denote the residual stage(s) performing aggregation.

samples from the original ones, facilitating the learning pro-
cess. Notably, different from CSI [51] and RotNet [26], we
do not learn to differentiate specific transformation types. It
encourages the community to rethink the necessity of trans-
formation prediction through a classifier, such as the task of
4-way rotation prediction. Please refer to the supplementary
material for further analysis on additional transformations.

Aggregation Strategy. Beyond using the UniCLR loss,
we also employ the SA and HA strategies to prompt a more
purified and compact concentration of inliers, respectively.
To assess the efficacy of each strategy, we establish two
baselines: one with a rotation classifier and one without,
conducting vanilla contrastive learning on the union of in-
liers and virtual outliers. The results in Tab. 6 indicate that

both single-stage and multi-stage aggregations yield im-
proved outcomes through SA. This underscores the benefits
of mitigating the impact of the outliers generated by unex-
pected data augmentation, thereby purifying the inlier dis-
tribution. Tab. 6 reveals two pivotal observations regarding
HA: firstly, the presence of UniCLR diminishes the impact
of a rotation classifier (2,3,4 vs. 6,8,9), thanks to promoting
inlier concentration and outlier dispersion. Secondly, en-
abling solely res4 for contrastive aggregation significantly
improves baselines (1 vs. 2, or 5 vs. 6). Broadly, HA leads
to a noteworthy and consistent gain when applied across
more stages (2 vs. 3, or 6 vs. 8).

5. Conclusion
In this work, we address AD with only access to normal

images during training. We underline that the concentra-
tion of inliers and the dispersion of outliers are two critical
factors, which are achieved by a supervised and unsuper-
vised contrastive loss, respectively. To ensure a purified
inlier concentration, we propose a soft mechanism to re-
weight each view of inliers generated by data augmentation
based on its deviation from the inlier distribution. To further
prompt a compact inlier concentration, we adopt an easy-
to-hard HA and perform aggregation at different network
depths based on augmentation strengths. Experiments on
three typical AD settings with different benchmarks demon-
strate the superiority of our method.
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Supplementary Material
In this supplementary material, we provide more experi-

mental details and more experimental results (i.e. per-class
performance) on one-class CIFAR-100 (20 super-classes)
and ImageNet-30, as well as more analysis on distribution-
shifting/identity-preserving augmentations.

A. Experimental Details
Hierarchical Augmentation. We employ HA along

the network to further prompt a higher concentration of
inliers, in which deeper residual stages address stronger
data augmentations. Following [10], we use the combina-
tion of random resized crop, color jittering, gray-scale and
horizontal flip with increasing augmentation strengths for
Ti (i = 1, 2, 3, 4) to generate positive views. Table 7 shows
the detailed augmentation configurations.

Table 7: Augmentation configurations for Ti (i =
1, 2, 3, 4). RRC,CJ,GS,HF are short for random resized
crop, color jittering, gray-scale and horizontal flip, respec-
tively. RRC(i, j) specifies the range of the cropped area
and CJ(b, c, s, h) specifies the range of brightness, con-
trast, saturation and hue.

T1 RRC(0.75, 1), CJ(0.1, 0.1, 0.1, 0.025), GS,HF
T2 RRC(0.54, 1), CJ(0.2, 0.2, 0.2, 0.050), GS,HF
T3 RRC(0.30, 1), CJ(0.3, 0.3, 0.3, 0.075), GS,HF
T4 RRC(0.08, 1), CJ(0.4, 0.4, 0.4, 0.100), GS,HF

An extra projection head gi is additionally attached at the
end of resi to down-sample and project the feature maps
with the same shape as in the last stage res4. Similar to
[66], each gi consists of a series of down-sampling blocks
and projection blocks. Table 11 shows the detailed network
structure.

Soft Aggregation. In Fig. 3, we display two rows of the
augmented views of inliers induced by standard data aug-
mentation T as in CSI [51]. Notably, some views capture
the main body of planes, whereas others are distracted by
the background. It indicates that the generated views prob-
ably suffer from the semantic shift, and imposing such noisy
inliers to be close reduces the purity of the inlier distribu-
tion.

Outlier Exposure (OE) [25]. OE leverages an auxiliary
dataset as outliers and enables anomaly detectors to gener-
alize well to unseen anomalies. In this paper, we investigate
the 80 Million Tiny Images dataset [53] as the OE dataset
with images from CIFAR-10 removed to make sure that the
OE dataset and CIFAR-10 are disjoint. In practice, we use
300K random images2 and observe that only a small frac-

2https://github.com/hendrycks/outlier-exposure
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Figure 3: Illustration of augmented samples for the Plane
class in CIFAR-10. Figures are from the same mini-batch
during training and ranked according to the descent order
of their ωx. Our soft mechanism enables us to identify the
most likely inliers while suppress the potential outliers for
a purified inlier concentration.

tion of this dataset is sufficiently effective for AD. Mean-
while, from Table 8, we observe the increasing performance
with more outliers exposed. Additionally, in the case of no
OE applied, we vary |Dout| by randomly keeping some in-
liers not being rotated. Table 8 shows that we can benefit
more from a larger size of Dout.

Table 8: Ablation w.r.t. OE and |Dout| ratios on CIFAR-10.

0% 25% 50% 75% 100%
|Dout| / 91.3 92.6 94.5 95.4

OE 95.4 95.9 96.2 96.6 96.9

B. Per-class Results on One-class Settings
Tables 9 and 10 present the AD results of our

UniCon-HA on one-class CIFAR-100 (20 super-classes)
and ImageNet-30, respectively. Clearly, our method outper-
forms the other state-of-the-art methods [51, 18, 26, 3, 49],
which also utilize transformations to create virtual outliers
on most classes.

Though sharing the same spirit of creating virtual out-
liers, we develop a completely different way of exploiting
those outliers. Recall that a good representation distribu-
tion for AD requires: (a) a compact distribution for inliers
and (b) a dispersive distribution for (virtual) outliers. Both
the requirements are only partially considered in the pre-
vious literature [51, 18, 26, 3, 49] with sub-optimal results
obtained, while we explicitly encourage the concentration
of inliers and the dispersion of outliers as our training ob-
jective. Interestingly, our method is free from any auxiliary
branches to differentiate the specific types of transforma-
tions, outside of the commonly adopted transformation (e.g.
rotation) prediction based on a classifier for AD.

C. Analysis on Augmentations
Following CSI [51], we try to remove or convert-to-shift

identity-preserving augmentations T , including random re-



Table 9: Per-class AUROC scores on one-class CIFAR-100 (20 super-classes). Numbers in the first column indicate the
super-class IDs. * denotes the results directly adopted from [51] and bold numbers denote the best results.

OC-SVM* [47] Geom [18] Rot*[26] Rot+Trans*[26] GOAD*[3] DROC [49] CSI [51] UniCon-HA (Ours)
0 68.4 74.7 78.6 79.6 73.9 82.9 86.3 89.8
1 63.6 68.5 73.4 73.3 69.2 84.3 84.8 90.2
2 52.0 74.0 70.1 71.3 67.6 88.6 88.9 94.4
3 64.7 81.0 68.6 73.9 71.8 86.4 85.7 89.5
4 58.2 78.4 78.7 79.7 72.7 92.6 93.7 96.3
5 54.9 59.1 69.7 72.6 67.0 84.5 81.9 87.6
6 57.2 81.8 78.8 85.1 80.0 73.4 91.8 93.0
7 62.9 65.0 62.5 66.8 59.1 84.2 83.9 87.8
8 65.6 85.5 84.2 86.0 79.5 87.7 91.6 94.0
9 74.1 90.6 86.3 87.3 83.7 94.1 95.0 97.1

10 84.1 87.6 87.1 88.6 84.0 85.2 94.0 92.2
11 58.0 83.9 76.2 77.1 68.7 87.8 90.1 90.5
12 68.5 83.2 83.3 84.6 75.1 82.0 90.3 93.4
13 64.6 58.0 60.7 62.1 56.6 82.7 81.5 86.9
14 51.2 92.1 87.1 88.0 83.8 93.4 94.4 97.2
15 62.8 68.3 69.0 71.9 66.9 75.8 85.6 84.2
16 66.6 73.5 71.7 75.6 67.5 80.3 83.0 90.8
17 73.7 93.8 92.2 93.5 91.6 97.5 97.5 98.1
18 52.8 90.7 90.4 91.5 88.0 94.4 95.9 98.0
19 58.4 85.0 86.5 88.1 82.6 92.4 95.2 96.7

Mean 63.1 78.7 77.7 79.8 74.5 86.5 89.6 92.4

Table 10: Per-class AUROC scores on one-class ImageNet-30. Numbers in the first and fourth rows indicate the class IDs.
Bold numbers denote the best results.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
CSI [51] 85.9 99.0 99.8 90.5 95.8 99.2 96.6 83.5 92.2 84.3 99.0 94.5 97.1 87.7 96.4

UniCon-HA 87.3 98.7 99.8 93.1 96.4 99.3 97.5 88.4 94.3 89.2 98.9 95.3 97.4 90.0 96.7
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

CSI [51] 84.7 99.7 75.6 95.2 73.8 94.7 95.2 99.2 98.5 82.5 89.7 82.1 97.2 82.1 97.6
UniCon-HA 85.8 99.5 83.9 95.3 79.8 94.5 95.4 98.8 98.7 84.8 89.2 87.1 97.4 86.8 97.9

Table 11: The structure of the projection head gi.

# Down-sampling blocks Projection blocks

g1

SepConv Conv, Conv, BN, ReLU

Linear, ReLU, Linear
Conv, Conv, BN, ReLU
SepConv
SepConv

Conv, BN, ReLU, AvgPool

g2

SepConv
Linear, ReLU, LinearSepConv

Conv, BN, ReLU, AvgPool

g3
SepConv Linear, ReLU, LinearConv, BN, ReLU, AvgPool

g4 AvgPool Linear, ReLU, Linear

sized crop, color jittering, horizontal flip and gray-scale. Ta-
ble 12 confirms the observations from CSI: (1) treating T as
distribution-shifting augmentations leads to a sub-optimal
solution as these augmentations shift the original distribu-

tion less than rotation does, increasing false negative sam-
ples; (2) removing any augmentations from T degrades per-
formance, showing the importance of identity-preserving
augmentations to generating diverse positive views, where
random crop is the most influential.

Table 12: Ablation study w.r.t. augmentations on CIFAR-
10.

Base Crop Color Flip Gray

CSI [51] 94.3 +shift 85.4 87.3 86.2 88.7
-remove 88.0 90.2 93.6 93.7

Ours 95.4 +shift 84.6 90.4 87.4 92.0
-remove 90.8 91.5 94.2 94.9
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