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Abstract

Real-world data tends to follow a long-tailed distribu-
tion, where the class imbalance results in dominance of the
head classes during training. In this paper, we propose a
frustratingly simple but effective step-wise learning frame-
work to gradually enhance the capability of the model in
detecting all categories of long-tailed datasets. Specifically,
we build smooth-tail data where the long-tailed distribution
of categories decays smoothly to correct the bias towards
head classes. We pre-train a model on the whole long-tailed
data to preserve discriminability between all categories. We
then fine-tune the class-agnostic modules of the pre-trained
model on the head class dominant replay data to get a head
class expert model with improved decision boundaries from
all categories. Finally, we train a unified model on the tail
class dominant replay data while transferring knowledge
from the head class expert model to ensure accurate detec-
tion of all categories. Extensive experiments on long-tailed
datasets LVIS v0.5 and LVIS v1.0 demonstrate the superior
performance of our method, where we can improve the AP
with ResNet-50 backbone from 27.0% to 30.3% AP, and espe-
cially for the rare categories from 15.5% to 24.9% AP. Our
best model using ResNet-101 backbone can achieve 30.7%
AP, which suppresses all existing detectors using the same
backbone.

1. Introduction

The success of deep learning are seen in many computer
vision tasks including object detection. Many deep learning-
based approaches [5, 29, 4, 17, 23, 20, 18, 1, 39] are pro-
posed and have shown impressive performance in localizing
and classifying objects of interest in 2D images. However,
it is important for these deep learning-based approaches
to be trained on balanced and representative datasets. Un-
fortunately, most real-world datasets always follow a long-
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Figure 1. LST [10] is more susceptible to catastrophic forgetting
due to their incremental learning scheme with numerous data splits.
We alleviate the problem by building smooth-tail data that flattens
long-tailed datasets and always maintains data from all categories.

tailed distribution, where the head classes have a significantly
larger number of instances than the tail classes. Training on
such imbalanced datasets often leads to bias towards head
classes and significant performance degeneration of the tail
classes due to the extremely scarce samples.

To circumvent the long-tailed distribution problem of ob-
ject detection task, many attempts exploit data re-sampling
and loss re-weighting approaches. Data re-sampling meth-
ods [0, 31] re-balance the distribution of the instance num-
bers of each category. Loss re-weighting methods [28, 30,

] adopt different re-weighting strategies to adjust the loss
of different categories based on each category’s statistics. As
shown in Figure 2, Hu et al. [10] proposes LST which is a
"divide & conquer” strategy that leverages class-incremental
few-shot learning to solve the long-tailed distribution prob-
lem. The model is first trained with abundant labeled data of
the head classes. The categories in the long-tailed training
data is then sorted and divided according to the number of
samples to get the corresponding subsets for incremental
learning and merging of each part in [V phases.

Despite the innovative adoption of class-incremental few-
shot learning on the long-tailed distribution problem, we
find that [10] catastrophically forgets the knowledge of the
head classes and cannot sufficiently learn the tail classes in
their incremental learning process. We postulate that this
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Figure 2. The incremental learning training strategy of [10] on
numerous smaller and balanced data splits inevitably expedites
catastrophic forgetting.

is attributed to three reasons: 1) Categories with high ap-
pearance similarity get divided into different parts due to the
hard divisions. This leads to lower discriminability since
these categories can only be trained together on the exemplar
replay subsets. 2) There is an apparent discrepancy between
the decision boundaries of the current model trained simul-
taneously on the exemplar replay subsets of the head and
tail classes from the previous model trained solely on the
head class subset. This discrepancy impedes the mainte-
nance of the knowledge on the head classes and the learning
of the tail classes. 3) The method divides the long-tailed
dataset into numerous smaller balanced parts. However, this
leads to more knowledge transfer steps and thus expediting
catastrophic forgetting.

In this paper, we adopt a similar incremental few-shot
learning approach to the long-tailed distribution object de-
tection problem. To mitigate the above issues, we propose
a simple but effective step-wise learning framework. We
note that the main difference of long-tailed learning from
class-incremental leaning is that the data of all categories
can co-occur. In contrast to [10] that starts the training on
only the head classes, we start the learning process from pre-
training the model on the whole long-tailed dataset to better
preserve the discriminative capability between the head and
tail classes. In the subsequent steps, we keep the class-
agnostic modules fixed and only update the class-specific
modules of the pre-trained model trained on the whole long-
tailed data. This circumvents the lack of training data in the
tail end of the long-tailed data by preserving knowledge from
the pre-trained model and limiting the network parameters
that need to be updated.

To avoid severe catastrophic forgetting, we first divide all
categories of long-tailed dataset into two parts: head classes
with more than M images each category, and tail classes
with less than M images each category. We then propose
to build smooth-tail data: 1) a head class dominant data
that contain a roughly balanced subset of the head classes
minored with a roughly balanced subset of tail classes, and
2) a tail class dominant data in similar vein. We leverage
the pre-trained model to select representative exemplars for

the head class dominant and tail class dominant data. Sub-
sequently, we fine-tune the pre-trained model on the head
class dominant data to learn a head class expert model. Fi-
nally, we learn a unified model on the tail class dominant
data while preserving knowledge of the head classes with the
head class expert model. Knowledge distillation at feature
level with a head class focused mask is adopt to facilitate the
learning of tail classes from the head class expert model. In
addition, knowledge distillation at classification head is also
adopted, where object query features from the head class
expert model are shared to the unified model to align the
predictions between them.
Our contributions can be summarized as follows:

1. We propose to build smooth-tail data, i.e., a head class
dominant data and a tail class dominant data, to alleviate
the extreme class imbalance of long-tail data and prevent
catastrophic forgetting in our step-wise learning frame-
work.

2. We design a novel step-wise learning framework that
unifies fine-tuning and knowledge transfer for the long-
tailed object detection task.

3. Our framework is frustratingly simple but effective.
We achieve state-of-the-art performances on long-tailed
datasets LVIS v0.5 and LVIS v1.0 in both the overall
accuracy, and especially the impressive accuracy of the
rare categories.

2. Related Works

General Object Detection. A large number of approaches
have been proposed for object detection task, which can be
briefly summarized into two different types based on their
frameworks. Two-stage object detection methods such as
R-CNN [5] apply a deep neural network to extract features
from proposals generated by selective search [29]. Fast R-
CNN [4] utilizes a differentiable Rol Pooling to improve the
speed and performance. Faster R-CNN [24] introduces the
Region Proposal Network to generate proposals. FPN [17]
builds a top-down architecture with lateral connections to
extract features across multiple layers. In contrast, one-stage
object detection methods such as YOLO [23] directly per-
form object classification and bounding box regression on
the feature maps. SSD [20] uses feature pyramid with dif-
ferent anchor sizes to cover the possible object scales. Reti-
naNet [ | 8] proposes the focal loss to mitigate the imbalanced
positive and negative examples. Recently, transformer-based
object detection methods [, 39] beyond the one-stage and
two-stage methods have gained popularity, which achieve
comparable or even better performance. They directly super-
vise bounding box predictions end-to-end with Hungarian
bipartite matching. These object detection models require
the training datasets to possess a roughly balanced cate-
gory distribution, e.g. COCO dataset [19]. However, the



distribution of categories in the real-world scenarios is often
long-tailed and most of these object detection models fail to
maintain their performance. An extreme imbalance leads to
low accuracy on tail classes.

Long-tailed Object Detection. Many existing works have
been proposed to alleviate the challenge of long-tailed ob-
ject detection. These works can be categorized into three
categories. Data re-sampling is the most intuitive among
all methods. Gupta et al. [6] proposes repeat factor sam-
pling (RFS) to create a roughly balanced distribution by
over-sampling data of tail classes based on the frequency
of each category at image-level. Wang et al. [31] pro-
poses a calibration framework to alleviate classification head
bias with a bi-level class balanced sampling approach at
instance-level. Loss re-weighting is another common ap-
proach. EQLV2 [28] adopts a gradient-guided mechanism to
re-weight the loss contribution of each category. EFL [15] in-
troduces a category-relevant modulating factor into focal loss
to overcome the imbalance problem for one-stage object de-
tectors. Wang et al. [30] proposes seesaw loss to re-balance
gradients of positive and negative samples for each category,
with two complementary factors. Wang et al. [32] proposes
to understand the long-tailed distribution in a statistic-free
perspective and present a adaptive class suppression loss.
In addition to the above two common categories of meth-
ods, many works also approach the problem from different
perspectives. AHRL [14] addresses long-tailed object de-
tection from a metric learning perspective, which splits the
whole feature space into hierarchical structure and elimi-
nates the problem in a coarse-to-fine manner. Hu et al. [10]
which mainly focuses on instance segmentation task pro-
poses to alleviate long-tailed distribution problem in a class-
incremental few-shot learning way.

Few-Shot Object Detection and Knowledge Transfer.
Approaches of few-shot object detection can be categorized
into meta-learning based [34, 11, 36, 38] and fine-tuning
based methods [33, 35, 27]. There are two key differences
between few-shot object detection and long-tailed object
detection. On one hand, few-shot object detection merely
focuses on the performance on few-shot categories, which
is different from long-tailed object detection that aims at
detecting all categories accurately. On the other hand, the
datasets of few-shot object detection are comprised of base
data which contains abundant training samples per category
and novel data which contains a few training samples per
category, which are quite different from long-tailed datasets.

Exemplar replay and knowledge distillation are two com-
monly used techniques to transfer knowledge across different
models and remain performance of previous model. In exem-
plar replay based methods, the models strengthen memories
learned in the past through replaying the past information
periodically. They [22, 37, 2] usually keep a small number
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Figure 3. Djeqq contains a roughly balanced subset of Cpeqq and a
small roughly balanced subset of Ciqii. Diqir contains a roughly
balanced subset of C;44; and a small balanced subset of Cpeqd-

of exemplars per category to achieve this purpose. Knowl-
edge distillation first proposed by Hinton et al. [8], where
the knowledge of predicted distribution from the teacher
model is distilled into the student model. Apart from the
final prediction, other types of knowledge, like intermediate
representations [26], can also be used to guide the learning
of the student model.

Our proposed step-wise learning framework unifies fine-
tuning and knowledge transfer techniques for the first time
to alleviate the long-tailed distribution problem for object de-
tection task, which can remain powerful on the head classes
and better adapt to the tail classes.

3. Our Methodology
3.1. Dataset Pre-processing

As shown in Figure 3, given a long-tailed dataset D;
with C; categories, we divide the entire set of categories
into: the head classes Cpqq With each category containing
> M images, and the tail classes Cy4; With each category
containing < M images. Furthermore, Cpeqq U Ciqir =
C; and Cheqq N Cigiy = 0. We then form Dj,e.q which is
dominant with a roughly balanced subset of the head classes
Cheaq and minored with a roughly balanced subset of the tail
classes Cyqq. Similarly, we form Dyg;; which is dominant
with a roughly balanced subset of the tail classes C;4;; and
minored with a balanced subset of the head classes Cjeqq.

Smooth-tail Data. We propose a confidence-guided exem-
plar replay scheme for the selection of representative and
diverse exemplars in Dpeqq and Dygyy;. The number of ex-
emplars is set to be significantly smaller than the original
dataset. We propose to use the model pre-trained with the
whole long-tailed data (c.f. next subsection) for the selection
of the exemplars to ensure that the model trained on the few
samples can also minimize the loss on the original dataset.
Specifically, we save all instances and corresponding classi-
fication scores {I;, S;} predicted by the pre-trained model
for each category. We then sort the instances by the value
of corresponding classification scores in a descending order.
Finally, we select the top-scoring instances as representa-
tive exemplars for replay. Notably, only the annotations
belonging to the selected instances are considered valid in
the training process. Furthermore, the images in original
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Figure 4. Overview of our step-wise learning framework. We first pre-train on the whole long-tailed training data D;, and then the
class-specific modules are fine-tuned on Dj,cqq. Finally, we train the model on D;,,; while concurrently preserves knowledge from Djeqq.-

dataset are diverse in color, texture and size of region. The
diversity of the exemplars ensures the same robustness and
discrimination of the model as trained on original dataset,
thus instances with classification scores greater than thresh-
old 0.5 and are not in the same image are given the priority
to be chosen as exemplars.

3.2. Step-wise Learning

We use the state-of-the-art Deformable DETR [39] as our
backbone object detector. Given a long-tailed dataset D; with
C; categories, we pre-train a model on all categories using the
same loss functions as Deformable DETR. This pre-trained
model serves to: 1) provide output classification confidences
as instance selection cues for building the smooth-tail data;
2) learn discriminative representation and provide separation
capability of all categories for subsequent fine-tuning on
Dheaq and knowledge transfer on Dyyj;.

As shown in Figure 4, we learn a head class expert model
with fine-tuning, and adopt knowledge transfer from the head
class expert model and the final model to unify the capability
of detecting head and tail classes. As the learning proceeds,
the model gradually approaches an optimal performance of
all categories.

Fine-tuning on Dj,,q. We propose to only update the
class-specific projection layer ®, and classification head
® ;s with Dj,¢qq While keeping the class-agnostic modules
frozen. This is to impose a strong constraint on the previous
representation and thus the discrimination representation
does not shift severely in subsequent process. The model
is fine-tuned with the standard Deformable DETR loss [39].
Note that Djqq is dominant with a roughly balanced subset
of Cpeaq to alleviate class imbalance in the head classes, and
minored with a roughly balanced subset of C;,;; to make
sure the decision boundary in the feature space has smaller
gap compared to the final unified model in subsequent step.

Let the detection targets in Dp.q,q be denoted as y =
{yi ¥, = {(ci, b))}, where ¢; and b; are the object cat-
egory and bounding box. Assume the N predictions for
target category made by the model are § = {g;}Y, =

{(p(c:),b)}N.,, where p(c;) is probability of category ¢;
and b, is the predicted bounding box. Following Deformable
DETR, we compute the same match cost between the pre-
diction g5 ;) and the ground truth y; using Hungarian algo-
rithm [13], where 6 () is the index computed by the optimal
bipartite matching. The Hungarian loss for all matched pairs
is thus defined as:

N
Lng(y,9) = Z[‘Ccls(chﬁ&(i) (i) + Lie, 20y Loox (bis ba(sy)],

i=1
9]
where L is the sigmoid focal loss [18]. Ly is a linear
combination of ¢; loss and generalized IoU loss [25] with
the same weight hyperparameters as Deformable DETR.

Knowledge Transfer on D;,;;. As shown in Figure 5, we
keep the model fine-tuned on Dy, fixed as the head class
expert model. We also keep a unified model initialized with
the parameters from the head class expert model, which we
train on Dy,;; while preserving the knowledge from Dy,cqq.
Similar to the fine-tuning step, we also update only the class-
specific projection layer ®,, and classification head ®;, of
the unified model while keeping the class-agnostic modules
frozen. However, a naive constant updates of the projection
layer and classification head on the tail classes can aggravate
catastrophic forgetting of the head classes. We thus propose
the use of exemplar replay and knowledge distillation to
mitigate the catastrophic forgetting of the head classes.

As mentioned earlier, we keep a small but balanced replay
exemplars of the head classes in Dy,;;. The head class expert
model is employed as an extra supervision signal to prevent
the projection layer output features of the unified model from
deviating too much from the output features of the head class
expert model. On the other hand, we do not want the head
class expert model to limit the learning process of the unified
model on the tail classes. To this end, we introduce a head
class focused binary mask mask™ based on the ground-
truth bounding boxes of the head classes to prevent negative
influence on the tail class learning. Specifically, we set the
value of the pixel on the feature map within the ground truth
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Figure 5. Overview of our proposed knowledge transfer. The framework consists of the fixed head class expert model (top branch) obtained
from fine-tuning on Dp,cqq for knowledge transfer to the unified model (bottom branch) during training on D;q;;.

bounding boxes of head classes as 1, and the value of the
pixel outside the ground truth bounding boxes as 0. The
distillation loss on the features with the mask is written as:

h ¢
1 - head || punify head 2
Lipin_gis = 3 Nhead Z Z Z maski; \\fije — fie || » ()
i=1 j=1 k=1
h .
where Ne«d = 37 S0 mask?j»“‘l. fhead and funify de-

note the features of the head class expert model and the
unified model, respectively. w, h and c are the width, height
and channels of the features.

Deformable DETR is built upon the transformer encoder-
decoder architecture combined with a set-based Hungarian
loss that forces unique predictions for each object via bi-
partite matching. Object queries extract features from the
feature maps. Deformable DETR learns different spatial
specialization for each object query, which indicates that
different object queries focus on different position areas and
box sizes. Since there is a mismatch in the object query
features input into the classification head of the head class
expert model and the unified model, the predicted classifi-
cation outputs between the two models can be inevitably
mismatched. To prevent the mismatch during knowledge dis-
tillation on the classification head, we first share the object
query features ¢"°?? from the decoder output of the head
class expert model to align the classification probability to
the unified model. The classification outputs of the head
class expert model and the unified model are compared in
the distillation loss function given by:

Leis dis = Lig_aiv(log (ﬁ?;ﬁed (ci)),7"(cs)), 3)

where we follow [8] in the definition of the KL-divergence

loss Ly 4y between the category probabilities of the head
class expert model and the unified model. P (c;) de-
notes the probability of category c¢; with the shared object
queries predicted by the unified model. p"*(c;) denotes the
probability of category c; predicted by the head class expert
model.

A Hungarian loss Ly, is also applied to the ground truth
set y and the predictions ¢ of the data of tail class dominant
subset D,,;;. The overall loss L, is given by:

Etozal = th (y, @) + )‘ﬁn‘cﬁn_dis + /\clsﬁcls_dis- (4)

A and Ay are hyperparameters to balance the loss terms.

4. Experiments
4.1. Experimental Settings

Datasets. To evaluate the performance of our proposed
method, we conduct extensive experiments on the challeng-
ing LVIS v0.5 and LVIS v1.0 datasets. LVIS [6] is a large
vocabulary dataset for long-tailed visual recognition. LVIS
v0.5 contains 1230 categories, where 57k images in the
train set are used for training, and 5k images in the val set
are used for validation. The latest version LVIS v1.0 con-
tains 1203 categories, where 100k images with about 1.3M
instances in the train set are used for training, and 19.8k im-
ages in the val set are used for validation. All the categories
are divided into three groups based on the number of images
of each category that appear in the train set: frequent (more
than 100 images), common (10 to 100 images), and rare (less
than 10 images). We report our results on the widely-used
object detection metric AP? across IoU threshold from 0.5



Method Backbone Dataset APP AP, AP, APy
LST[10] 22.6 - - -
DropLoss [9] 25.1 - - -
]i%LRVf[[ ]] ResNet-50 LVIS v0.5 g:g ] ] ]
Our baseline 27.0 15.5 26.9 31.6
Ours 30.3 24.9 31.5 30.9
LST [10] 26.3 - - -
DropLoss [9] 26.8 - - -
i%lgf[[ ]] ResNet-101 LVIS v0.5 ;g; ] ] ]
Our baseline 27.0 14.6 27.3 31.7
Ours 30.7 26.8 31.7 31.1
BAGS [16] 26.0 17.2 24.9 31.1
EQLv2 [28]f 25.5 16.4 23.9 31.2
Seesaw loss [30]" 26.4 17.5 253 31.5
AHRL [14] ResNet-50 LVIS v1.0 26.4 - - -
EFL [15] 27.5 20.2 26.1 32.4
Our baseline 25.1 11.9 23.1 33.2
Ours 28.7 21.8 28.4 32.0
BAGS [16]T 27.6 18.7 26.5 32.6
EQLv2 [28]f 26.9 18.2 254 32.4
Seesaw loss [30]f 27.8 18.7 27.0 32.8
AHRL [14] ResNet-101 LVIS v1.0 28.7 - - -
EFL [15]" 29.2 23.5 27.4 33.8
Our baseline 26.3 14.4 24.8 33.2
Ours 29.5 23.6 29.0 32.6

Table 1. Comparisons with the state-of-the-art methods on LVIS v0.5 and LVIS v1.0 datasets. ResNet-50 and ResNet-101 are adopted as the

backbones, respectively. | indicates results copied from [15].

Method Framework Backbone Dataset AP® AP, AP, APy
AHRL’s baseline [14] Mask R-CNN 26.7 - - -
AHRL [14] Mask R-CNN 27.4 - - -

Our baseline Deformable DETR ResNet-30 LVIS v0.5 27.0 15.5 26.9 316

Ours Deformable DETR 30.3 24.9 31.5 30.9

EFL’s baseline [15] RetinaNet 25.7 14.3 23.8 32.7

EFL [15] RetinaNet 27.5 20.2 26.1 324

Our baseline Deformable DETR ResNet-50 LVIS v1.0 25.1 11.9 23.1 33.2

Ours Deformable DETR 28.7 21.8 28.4 32.0

Table 2. Comparisons with the state-of-the-art methods and corresponding baselines.

to 0.95. Additionally, the boxes AP for frequent (APy),
common (AP,), and rare (AP,) categories are also reported,
respectively.

Implementation Details. We implement our method on
Deformable DETR [39]. The ImageNet [3] pre-trained
ResNet-50 and ResNet-101 [7] are adopted as the back-
bone. The training is carried out on 8§ RTX 3090 GPUs with
a batch size of 2 per GPU. We train our model using the
AdamW [12, 21] optimizer with a weight decay of 1 x 10~%.
In the model pre-training step (step O of our framework), we
train our model for 50 epochs with an initial learning rate
of 2 x 10~* and the learning rate is decayed at 40" epoch

by a factor of 0.1. In the model fine-tuning step (step 1 of
our framework), the model is initialized from the pre-trained
model. The parameters of the projection layer and classi-
fication head are updated while keeping the parameters of
other modules frozen. We fine-tune the model for 1 epoch
with a learning rate of 2 x 10~°. In the knowledge transfer
step (step 2 of our framework), the model is initialized from
the fine-tuned model. The parameters of the projection layer
and classification head are updated while keeping the other
modules frozen. We train the model for 2 epochs with an
initial learning rate of 2 x 10~* and the learning rate is de-
cayed at 1t epoch by a factor of 0.1. s, and Ay are set to



0.1 and 1, respectively. The hyperparameter M is set to 30.

4.2. Comparisons with the State-of-the-art Methods

To validate the effectiveness of our approach, we compare
with state-of-the-art methods for long-tailed object detection
on benchmark datasets LVIS v0.5 and LVIS v1.0. Our base-
line is Deformable DETR [39] trained on long-tailed dataset
D; with the same loss functions as [39]. As shown in Table 1,
our method achieves the best performance compared to all
other existing methods. Specifically, our proposed method
achieves 30.3% AP on LVIS v0.5 with ResNet-50 backbone.
It improves the baseline by 3.3% AP, and even achieves
9.4% AP improvement on the rare categories. Our proposed
method also outperforms the state-of-the-art AHRL [14] by
2.9% AP. With ResNet-101 as backbone, our approach still
performs well on the baseline (+3.7% AP). Furthermore, our
method outperforms the baseline by 3.6% AP with ResNet-
50 backbone and 3.2% AP with ResNet-101 backbone on
LVIS v1.0. The above results demonstrate that our method
which unifies fine-tuning and knowledge transfer can effec-
tively solve the severe class imbalance problem.

To eliminate the doubt that whether the gain is brought by
different baselines, we present a more detailed comparison
with the state-of-the-art methods on both the baselines and
the final models. The results are present in Table 2. On LVIS
v0.5, our method suppresses AHRL [14] by 2.9% AP with
a slight advantage on baseline (AHRL’s baseline: 26.7%
AP vs Our baseline: 27.0% AP). On LVIS v1.0, while the
performance of the baseline of EFL [15] is better than our
baseline (EFL’s baseline: 25.7% AP vs Our baseline: 25.1%
AP), our method still outperforms EFL [15] by 1.2% AP and
outperforms our baseline by 3.6% AP. Consequently, we can
conclude that the improvements brought by our method ben-
efit from our novel design instead of the different baseline.

4.3. Ablation Studies

FT_ | KT | AP® AP, AP, AP
270 155 269 316

v 297 194 314 316
v 294 232 298 313

v v 303 249 315 309

Table 3. Ablation study of each component in our step-wise learning
framework on the smooth-tail data. FT, KT indicate the fine-tuning
and knowledge transfer, respectively.

Effectiveness of Each Component. There are two steps
in our proposed step-wise learning framework, i.e., fine-
tuning on the head class dominant data and knowledge trans-
fer on the tail class dominant data. We perform ablation
study to demonstrate the effectiveness of each of them. As
shown in Table 3, both the fine-tuning step and knowledge
transfer step on the matched smooth-tail data play significant
roles in step-wise learning framework.

For fine-tuning the model on the head class dominant data,
it improves the performance of our baseline from 27.0% AP
to 29.7% AP, while the performance improvement on rare
categories is still limited (19.4% AP). We then examine the
effectiveness of knowledge transfer. In this setting, we di-
rectly leverage the baseline as the extra supervision in knowl-
edge transfer step instead of using the fine-tuned head class
expert model as the extra supervision. Our method outper-
forms the baseline by 2.4% AP with significant improvement
of the performance on the rare and common categories. How-
ever, the performance of the frequent categories experiences
a slight drop.

Fine-tuning and knowledge transfer work collaboratively
to achieve an improvement from 27.0% AP to 30.3% AP.
Particularly, it achieves 24.9% AP for the rare categories,
which outperforms the baseline by 9.4% AP and outper-
forms the fine-tuned head class expert by 5.5% AP. This
indicates our proposed step-wise learning framework can
sufficiently eliminate the class imbalance problem. However,
our method experiences a further drop in the performance
of the frequent categories after fine-tuning and knowledge
transfer compared to using them separately (FT: 31.6% vs
KT:31.3% vs FT&KT: 30.9% AP). We postulate that the
drop in performance on the frequent categories might be due
to insufficient representation of the frequent categories in our
tail class dominant replay data during knowledge transfer.
Similarly, the selection of a roughly balanced head classes
for the head class dominant replay data might also result
in under representation of the frequent categories. Conse-
quently, catastrophic forgetting has a more detrimental effect
on the frequent categories.

SOQ‘ Lfm_dis ‘ £ztls_dis' ‘ APb AP7 APL APf

v v 294 249 30.6 29.8
v v 29.7 25.0 30.8 30.3

v v 244 243 26.3 22.0
v v v 30.3 249 31.5 30.9

Table 4. Ablation study of each component in our knowledge trans-
fer. SOQ indicates the shared object queries.

Effectiveness of Each Component of Knowledge Trans-
fer. We also demonstrate the effectiveness of each com-
ponent of knowledge transfer. The results in Row 1 and
Row 2 of Table 4 show that both knowledge distillation on
features and knowledge distillation on classification output
predictions play significant roles in knowledge transfer. It
is worth noting that the performance decreases drastically
when we do not share the object query features (from 30.3%
AP to 24.4% AP), which can be attributed to the mismatch
between the classification outputs of the head class expert
model and the unified model.

Analysis of Divisions. The type of divisions on the long-
tailed data plays an important role in our approach. We
conduct extensive experiments to study the influence of



Division AP? AP, AP, APy

[17 10)U [10, -) 30.1 24.7 31.1 30.8

[1,30) U [30, —) (Ours) 30.3 249 315 30.9

[17 50) U [50, -) 30.2 24.1 31.6 31.0

[1,100) U [100, —) 30.1 23.9 313 312

[1, 10)U [10, 100) U [100, —) 29.8 23.7 31.0 30.7
[1,10) U [10,30) U [30, 100) U [100, —) 293 24.8 304 29.8

Table 5. Ablation study of different type of divisions.

New Of Chead | New of Cas | AP® AP, AP, APy Method | AP AP, AP, APy
100 30 30.1 25.0 31.3 30.6 Ours w/o step-wise RFS 29.6 19.0 31.6 31.2
200 30 30.3 24.9 315 309 Ours 30.3 249 315 30.9
300 30 30.0 24.6 310 310 Table 8. Ablation study of step-wise RFS.
200 10 30.2 24.7 31.3 30.9
200 30 30.3 24.9 31.5 30.9 . . .. .
200 50 302 250 313 308 instances per category of Cyqg; in Dpeqq. Similarly, in Dy,
200 100 30.2 25.1 31.5 30.8 we store 50 instances per category of Cpqq and introduce

Table 6. Ablation study of exemplar memory size of Dpeqd-

Nea of Chead | AP AP, AP, APy
10 296 244 308 302
30 300 248 312 306
50 303 249 315 309
100 300 232 314 313

Table 7. Ablation study of exemplar memory size of Dyqi;.

different type of divisions of the long-tailed dataset. As
shown in Table 5, we can see that training the model with
division [1,30) U [30, —) achieves the best performance.
All two-step divisions can outperform the performance of
three-step or four-step divisions. We attribute this good
performance to the fewer divisions, and the lower perfor-
mance by the divisions [1,10) U [10,100) U [100, —) and
[1,10)U[10,30)U[30,100) U[100, —) are caused by severe
catastrophic forgetting from the increase in divisions. The
performance of our two-step division [1,30) U [30, —) also
surpasses the other three two-step divisions, which clearly
demonstrate the superiority of the division [1,30) U [30, —)
in adapting to the tail classes while maintaining the perfor-
mance of the head classes.

Analysis of Exemplar Memory Size. We form Dy qq
which is dominant with a roughly balanced subset of the
head classes Cpeqq and minored with a roughly balanced
subset of the tail classes Ciq;;. Similarly, we form D
which is dominant with a roughly balanced subset of the
tail classes C;,;; and minored with a balanced subset of the
head classes Cpeqq. We denote N, as the number of in-
stances per category. For Dy,cqq and Dyq;1, we vary N, of
the head classes Cpeqq and the tail classes Cyqi; and report
the results in Tables 6 and 7, respectively. We find that in-
creasing N, of Cjeqq helps maintain the performance of
head classes. However, we also observe that increasing N,
of Cpeqq impedes the learning of tail classes and hurts the
performance of tail classes. In addition, increasing N, of
Ctqi1 to large values does not significantly help the learn-
ing of the tail classes and slightly shows adverse affects
on the performance of the head classes. By validation, we
therefore store 200 instances per category of Cpeqq and 30

all instances of Cy;;. This can eliminate the class imbalance
between Cpeqq and Cyq;; inside the exemplar sets and achieve
a trade-off of the performance of all categories.

Analysis of Step-wise RFS. Class imbalance still exists
in the exemplar replay data for the head and tail classes
due to the severe imbalance between categories of the long-
tailed dataset, and thus hinders the learning of categories
having fewer data. To narrow the imbalance in the exemplar
replay data, we propose to adopt the repeat factor sampling
(RFS) to over-sample the data from categories having fewer
data. In our proposed step-wise learning framework, RFS is
used in different ways in different steps and thus we terms
it as step-wise RFS. In the fine-tuning step, for the head
class dominant replay data, we over-sample the categories
having fewer data among the dominant head classes. In the
knowledge transfer step, we also over-sample the categories
having few data among the dominant tail classes for the
tail class dominant replay data. As shown in Table 8, the
comparisons between our method using and without using
step-wise RFS indicate that applying step-wise RFS does
help alleviate the imbalance inside the subsets.

5. Conclusion

In this work, we propose a simple yet effective method
that leverages incremental learning on the long-tailed dis-
tribution problem for the object detection task. We identify
that a pre-trained model on the whole long-tailed dataset
can achieve high discriminability in all categories for sub-
sequent training steps. We propose to build the smooth-tail
distributed data for calibrating the class imbalance in long-
tailed datasets, and maintaining representative and diverse
head and tail class exemplar replay data. We propose a
novel step-wise learning framework that first fine-tune the
pre-trained model on the head class dominant replay data to
get the head class expert model. Subsequently, knowledge
is transferred from the head class expert model to a unified
model trained on the tail class dominant replay data. Our
method brings large improvements with notable boost on the
tail classes on different backbones and various long-tailed



datasets. Furthermore, our method achieves state-of-the-art
performance on the challenging LVIS benchmarks for object
detection task.
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