
Unsupervised Domain Adaptive Detection with Network Stability Analysis

Wenzhang Zhou1,3∗, Heng Fan2,∗, Tiejian Luo1,3, Libo Zhang1,3,†

1Institute of Software, Chinese Academy of Sciences, Beijing, China
2Department of Computer Science and Engineering, University of North Texas, Denton, USA

3University of Chinese Academy of Sciences, Beijing, China

Abstract

Domain adaptive detection aims to improve the general-
ity of a detector, learned from the labeled source domain, on
the unlabeled target domain. In this work, drawing inspi-
ration from the concept of stability from the control theory
that a robust system requires to remain consistent both ex-
ternally and internally regardless of disturbances, we pro-
pose a novel framework that achieves unsupervised domain
adaptive detection through stability analysis. In specific, we
treat discrepancies between images and regions from differ-
ent domains as disturbances, and introduce a novel simple
but effective Network Stability Analysis (NSA) framework
that considers various disturbances for domain adaptation.
Particularly, we explore three types of perturbations includ-
ing heavy and light image-level disturbances and instance-
level disturbance. For each type, NSA performs external
consistency analysis on the outputs from raw and perturbed
images and/or internal consistency analysis on their fea-
tures, using teacher-student models. By integrating NSA
into Faster R-CNN, we immediately achieve state-of-the-art
results. In particular, we set a new record of 52.7% mAP
on Cityscapes-to-FoggyCityscapes, showing the potential of
NSA for domain adaptive detection. It is worth noticing,
our NSA is designed for general purpose, and thus applica-
ble to one-stage detection model (e.g., FCOS) besides the
adopted one, as shown by experiments. Code is released at
https://github.com/tiankongzhang/NSA.

1. Introduction

Benefited by deep neural networks [27, 49, 13], ob-
ject detection has witnessed considerable progress in recent
years [28, 33, 43, 51, 62, 10]. Modern detectors are usually
trained and tested on large-scale annotated datasets [8, 34].
Despite excellence, they easily degenerate when applied to

∗The two authors make equal contributions and are co-first authors.
†Corresponding author: Libo Zhang (libo@iscas.ac.cn).

LID

HID

InsD

…

…

…
Original Image

NSAHID

NSALID

NSAInsD

light

distu
rbance

heavy
disturbance

instancedisturbance

Figure 1. Illustration of the proposed NSA framework that applies
the specially designed NSAHID, NSALID and NSAInsD for differ-
ent disturbances including HID, LID and InsD, respectively.

images from a new target domain, which heavily limits their
practical applications. To mitigate this, a naive solution is
to collect a dataset for the new target domain to re-train a
detector. Nevertheless, dataset creation is a nontrivial task
that needs a large amount of labor. Besides, a new target
domain could be arbitrary and it is impossible to collect
datasets for all new target domains. To deal with this, re-
searchers explore unsupervised domain adaptation (UDA)
detection, aiming to transfer knowledge learned from an an-
notated source domain to an unlabeled target domain.

Existing UDA detection can be generally classified into
three families. The first branch focuses on aligning feature
distributions of different domains to reduce their gap using,
e.g., adversarial learning [5, 46, 64] and maximum mean
discrepancy [35, 36, 37]. Despite effectiveness, these ap-
proaches may suffer from three limitations. First, they usu-
ally require both source and target datasets for training, re-
straining their usage. Besides, they are problematic with lo-
cal misalignment, principally because of unknown internal
distribution of feature space distribution due to the lack of
target domain annotations. Finally, a large amount of useful
information among samples for different domain datasets

ar
X

iv
:2

30
8.

08
18

2v
1

 [
cs

.C
V

]
 1

6
A

ug
 2

02
3

https://github.com/tiankongzhang/NSA

is ignored, resulting in inferior performance. Another line
leverages self-training for UDA detection [45, 24, 25]. The
core idea is to generate high-quality pseudo labels on the
target domain and apply them for detector training. Al-
though this strategy improves detection on the target do-
main, it heavily relies on initial detection results, making
them unstable. The third direction is to exploit the teacher-
student model [2, 7]. Using consistency constraints of de-
tector predictions regardless of external disturbance on in-
put, these approaches exhibit robust domain adaptive de-
tection. Despite this, they ignore the consistency for inter-
nal features and external predictions under different distur-
bances, resulting in degradation on the new target domain.

Contributions. Different than the above methods, we study
UDA detection from a new perspective. Particularly, we ob-
serve that the changes of attributes (e.g., scale, view, transla-
tion, color) for object and styles for instances are the major
causes for domain differences. For a desired stable detector,
both feature representations and prediction results should be
consistent under these changes. Drawing inspiration from
stability concept in control theory [1] where the good system
needs to perform consistently in both external predictions
and internal status in presence of disturbances, we propose
a novel framework for UDA detection via Network Stabil-
ity Analysis (NSA). The key idea is that, we regard discrep-
ancy caused by distribution changes between two domains
as data disturbance, and analyze influence of various distur-
bances on internal features and external predictions.

More specifically, in this paper we consider three types
of disturbances, Heavy and Light Image-level Disturbances
(HID and LID) and Instance-level Disturbance (InsD), that
involve general perturbations of color, view, texture, scale,
translation and instance style in the images. The reason for
disturbance division is that variations in images are signifi-
cantly different and it is difficulty to use a single disturbance
for analysis. For each type of disturbance, NSA performs
external consistency analysis (ECA) on outputs of the orig-
inal and the disturbed images and/or internal consistency
analysis (ICA) on their features, both with teacher-student
models. Considering each disturbance focuses on different
aspects, the NSA is different, accordingly. Concretely, HID
majorly focuses on large object or region variations in scales
and views. Since the internal features greatly vary while the
external detection results are coincident, we only perform
ECA in NSAHID (i.e., NSA for HID). Different from HID,
LID mainly contains slight scale and view changes in ob-
jects and small pixel displacements, and the local seman-
tics in the internal feature maps are highly similar. Thus,
we perform both ECA and ICA in NSALID (i.e. NSA for
LID). InsD describes differences in instances belonging to
the same category. Intuitively, objects of the same class may
have adjacent spatial distributions. Inspired by this, we per-
form ICA in NSAInsD (i.e., NSA for InsD). Specifically,

with real and pseudo labels, we build an undirected graph
based on pixel or instance features and further acquire the
feature centers of all classes, which exist in an image batch,
and select negative samples for each node in the undirected
graph from the background region. Finally, the stable fea-
ture distribution for all classes is learned with a contrastive
loss function. Fig. 1 illustrates our idea.

By integrating our NSA of different disturbances into the
popular Faster R-CNN [43], we immediately achieve state-
of-the-art results on multiple benchmarks (i.e, Cityscapes
[6], FoggyCityscapes [47], RainCityscapes [19], KITTI [9],
Sim10k [23] and BDD100k [57]), revealing the great poten-
tial of NSA for domain adaptive detection. Note that, NSA
is designed for general purpose. We show this by plugging
NSA into the one-stage detector (e.g., FCOS [51]), and re-
sults demonstrate promising performance.

In summary, our contributions are as follows: (i) we
propose a novel unified Network Stability Analysis (NSA)
framework for domain adaptive detection; (ii) we introduce
the external consistency analysis (ECA) and internal con-
sistency analysis (ICA) for NSA; and (iii) we integrate our
NSA for different disturbances into existing detectors and
consistently achieve state-of-the-art results.

2. Related Work
Object Detection. Deep object detection has been greatly
advanced [27, 49, 13] in recent years. Currently, the mod-
ern detectors can be generally categorized into two- or one-
stage architectures. The two-stage detectors (e.g., R-CNN
[11] and Fast/Faster R-CNN [10, 43]) first extract propos-
als from an image and then perform classification and re-
gression on these proposals to achieve detection. Because
of the excellent results, two-stage framework has been ex-
tensively studied with many extensions [3, 38]. Different
from the two-stage framework, one-stage detectors (e.g.,
YOLO [42], CornerNet [28] and FCOS [51]) remove the
proposal stage and directly output object category and loca-
tion. In this work, we apply Faster R-CNN [43] as our base
detector for its outstanding performance, but show general-
ity of our NSA for one-stage detection frameworks.
UDA Detection. UDA detection aims at improving perfor-
mance of a detector, trained on the labeled source domain,
on the new target domain. Due to its importance, numerous
approaches have been proposed. One trend is to align the
feature distribution with adversarial learning. The main idea
is to design an effective discriminator on various feature
spaces, including image-level [29], pixel-level [26, 18, 17],
instance-level [5, 50, 12] and category-level [55, 52, 58], for
detection. Recently, some works [22, 61] explore the align-
ment of fine-grained feature distribution based on combina-
tion of multi-levels and effectively reduce the distribution
differences between source and target domains. Despite im-
provements, they ignore the possible misalignment caused

Backbone

HID

RPN RPN

RoIAlign

pr
op

os
al

s RoIAlign

pr
op

os
al

s

RCNN RCNN

Backbone

ECAHID

NSAHID

Backbone

LID

RoIAlign

pr
op

os
al

s RoIAlign

pr
op

os
al

s

NSALID

ECALID

RPN RPN

Backbone

RCNN RCNN

Backbone

InsD

RoIAlign

pr
op

os
al

s RoIAlign

pr
op

os
al

s

NSAInsD

ICAInsD

RPN RPN

Backbone

RCNN RCNN

N
 im

ag
es

N
 im

ag
es

Source Target TargetSource
Source Target

Teacher StudentTeacher Student Teacher Student

ICALID

person personcar

person
person

bicycle
car

car

car

car

person car

car

Figure 2. Network Stability Analysis (NSA) on different disturbances for UDA detection. Left: We perform NSAHID to ensure consistency
of detections in images from different domains for HID. Middle: We perform NSALID to analyze consistencies of inside features and
outside predictions for different images with LID. Right: We perform NSAInsD by using proximity principle to model feature distribution
of instances of the same category or similar regions in InsD. The dashed rectangles in images (bottom) represent objects under disturbances.

by noise pixels or instances, especially in the background
region, or noisy pseudo labels. Besides, another popular
line is to adopt self-training to generate pseudo labels on
target domain for retraining detector [56, 45, 24, 25, 63, 7].
However, these methods heavily depend on initial detection
results. In this work, we study UAD by analyzing network
stability, which significantly differs from above methods.

Consistency Learning for UDA detection. Consistency-
based learning aims to handle the consistent problem under
different perturbations. The methods of [39, 20] apply con-
sistency learning on network external predictions. The work
of [54] explores pixel-level consistency for internal feature
representation learning. Inspired by this, researchers intro-
duce consistency learning into UDA detection by consider-
ing it as a consistency problem of two domains. These ap-
proaches are called teacher-student models. The approach
of [7] leverages the unbiased mean teacher model to re-
duce the discrepancies in different domains for detection.
The method of [41] introduces a simple data augmentation
technique named DomainMix with teacher-student model
to learn domain-invariant representations and shows excel-
lent results. AT [32] uses domain adversarial learning and
weak-strong data augmentation to reduce domain gap. PT
[4] presents a probabilistic teacher to obtain uncertainty of
unlabeled target data with an evolving teacher, and trains
the student network in a mutually beneficial manner.

Differences from other works. In this work, we propose
NSA for UDA detection. Our method is related to but differ-
ent from the above consistency learning or teacher-student
methods for UDA detection. First, we consider consistency

constraints in both external outputs and internal feature rep-
resentations while others mainly focus on constraints in one
of external model predictions and internal feature. Second,
we explore effective network stability analysis method un-
der various and general disturbances while existing methods
only study one kind and their performance may degener-
ate in complex scenarios. In general, our NSA method is a
unified solution on what and how to apply consistency on
various disturbances for UDA detection.

3. NSA-based UDA (NSA-UDA) Detection
3.1. Overall NSA-UDA Framework

Fig. 2 shows the overall framework of NSA-UDA. As in
Fig. 2, given an image x, we first apply three disturbances,
i.e., HID, LID and InsD (as described later), on x to obtain
perturbed images {xk}k∈D, where D = {HID,LID, InsD}.
Afterward, we perform NSA for each case. Mathematically,
we describe all disturbances with a unified model,

LNSA-UDA = Ldet +
∑
k∈D

γkLNSAk
(x, xk) (1)

where Ldet denotes the loss of the base student detector as
explained later, and LNSAk

the loss of NSAk. γk is a weight
to balance the loss. For NSAk, it contains ECA and/or ICA.
Without losing generality, LNSAk

can be written as follows,

LNSAk
(x, xk) = LECA

NSAk
(x, xk) + LICA

NSAk
(x, xk) (2)

where LECA
NSAk

and LICA
NSAk

denote the losses for ECA and ICA
under disturbance k ∈ D.

Base Detection Architecture. In this work, teacher or stu-
dent detector is defined as the base detection. As in Eq. (1),
Ldet is base student detection loss. In this work, we lever-
age the two-stage Faster R-CNN [43] as our base detector
for identifying object category and regressing its box. How-
ever, it is worth noticing that, the one-stage detector such as
FOCS [51] could also be used as the base detector, as shown
in our experiments. In general, the detection loss Ldet can
be expressed as follows,

Ldet(x, ŷ) = Lcls
det(x, ŷ) + Lreg

det(x, ŷ) (3)

where Lcls
det and Lreg

det are the classification and regression loss
functions, respectively. ŷ represents the labels of the source
domain or pseudo-labels of the target domain.

3.2. NSA with Disturbance

In this work, we regard the discrepancies of domain distri-
butions as input disturbances, and analyze the stability of
networks under different disturbances using teacher-student
model, aiming at decreasing the impact of disturbances for
achieving UDA detection. In specific, given an image x,
teacher detector parameterized with θt (i.e., Faster R-CNN)
and student detector parameterized with θs that has identical
architecture of teacher detector, we conduct stability anal-
ysis NSAHID, NSALID and NSAInsD, externally and inter-
nally, for disturbances HID, LID and InsD, respectively.

3.2.1 NSAHID for Heavy Image-level Disturbance

Heavy Image-level Disturbance (or HID). HID represents
large object changes in view and scale with random texture
and color variations. To obtain these changes in heavy dis-
turbance, we employ a few common transformation strate-
gies such as random resize, random horizontal flip, cen-
ter crop, color and texture enhancement to simulate them,
where the scale changes randomly in the range [1, SHID]
(SHID is empirically set to 3.5) and two states of the view
change are provided, i.e., VHID = 1 and VHID = 0, which
indicate the image with and without random horizontal flip,
respectively. An example of the image with HID can be
seen in Fig. 2 (bottom left). Please refer to more examples
and pseudo code of HID in supplementary material.

NSAHID. NSAHID aims to ensure externally consistent and
stable predictions for the detector under heavy image-level
disturbances in object scales and views. We formulate the
ECA of NSAHID as follows,

LECA
NSAHID

(x, xHID) = Ldet(xHID, ŷ, θs) (4)

where θs denotes the parameters of the student detector, and
ŷ is the source domain labels or target domain pseudo-labels
obtained by the teacher detector.

Since for HID, it is difficult to internally analyze the con-
sistency on feature maps due to large displacement of pixel-
level features, we do not perform the ICA in NSAHID. Thus,
we can obtain LICA

NSAHID
(x, xHID) = 0.

By plugging LECA
NSAHID

and LICA
NSAHID

into Eq. (2), we can
compute LNSAHID(x, xHID). Fig. 2 (left) illustrates NSAHID.

3.2.2 NSALID for Light Image-level Disturbance

Light Image-level Disturbance (or LID). LID represents
object variations in small scale and translation with random
texture and color variations, which are simulated by some
data transformation strategies in the experiment. Specifi-
cally, the scale changes randomly in [1, SLID] (SLID is em-
pirically set to 1.5). For translation, we utilize deviation
degree, defined by ratio of offset distance and stride of fea-
ture block, for measurement and randomly set its value from
[0, DLID] (DLID is empirically set to 0.25). An example of
image with LID is shown in Fig. 2 (bottom middle), and
please refer to more examples in supplementary material.
NSALID. NSALID aims to explore both external and internal
consistency regulations with ECA and ICA, respectively.

The ECA is used for consistency analysis on prediction
results, and mathematically formulated as follows,

LECA
NSALID

(x, xLID)=

Lep,Cep∑
l,k

||Apix
l (O

pix
l,k(x, θt)−O

pix
l,k(xLID, θs))||2

||Apix
l ||1

+ ϱ

Lei,Cei∑
l=0,k

||Ains
l (Oins

l,k(x, θt)−Oins
l,k(xLID, θs))||2

||Ains
l ||1

(5)

where Opix
l (·) and Oins

l (·) are prediction results gener-
ated from teacher or student detectors at pixel and instance
levels, respectively. Lep and Lei are the numbers of external
prediction layers Opix and Oins, respectively. Cep and Cei re-
spectively indicate the set of external prediction categories
at pixel- and instance-levels, i.e., {‘class’, ‘box’} in Faster-
RCNN or {‘class’, ‘box’ and ‘centerness’} in FCOS. The
indicator ϱ is binary: 1 for the adoption of an instance-level
prediction head in the detector (i.e., Faster R-CNN); 0 oth-
erwise (i.e., FCOS). Apix

l represents the weight coefficient
of each pixel in prediction maps from the lth layer, and Ains

l

is the weight vector of instances. For the foreground pixels
and instances, their weights are 1, otherwise 0. Thus, Apix

l

and Ains
l are obtained as follow,

Apix
l =

{
1.0,M pix

l > 0

0.0, otherwise
Ains

l =

{
1.0,M ins

l > 0

0.0, otherwise
(6)

where M pix
l and M ins

l are respectively class matrix for pixels
and vector for instances from labels and pseudo-labels. For
each pixel in Mpix

l (or each instance in M ins
l), it is assigned

with the class label if belonging to foreground object based
on the label (i.e., ‘> 0’), otherwise 0.

Figure 3. Visualization of Ap
l , W t

l and Bp
l on unlabeled tar-

get domain using Faster R-CNN detector under Cityscapes-to-
FoggyCityscapes adaptation. The first and second rows show the
attention areas of weights for Wt = 1.0 and Wt = 0.1 using fea-
ture maps after the 3th (i.e., l = 3) block in backbone. From left
to right, they are the original image and heat maps of Ap

3 , W t
3 and

Bp
3 . We can observe that Ap

3 mainly focuses on the foreground
objects, W t

3 on the local textures and Bp
3 on the sampling points

of objects, as expected.

Different from ECA, ICA is applied for the consistency
analysis on feature maps, and expressed as follows,

LICA
NSALID

(x, xLID) =

Lip∑
l=0

||Bpix
l (F

pix
l (x, θt)− F

pix
l (xLID, θs))||2

||Bpix
l ||1

+

ϱ

Lii∑
l=0

||Bins
l (F ins

l (x, θt)− F ins
l (xLID, θs))||2

||Bins
l ||1

(7)

where Lip and Lii denote the numbers of pixel-level internal
feature layers F pix

l and instance-level internal feature layers
F ins
l . F pix

l (·) and F ins
l (·) are feature maps and vectors gen-

erated from teacher or student detectors. Bpix
l is the weight

coefficient of each pixel in feature maps, and Bins
l denotes

the weight vector of instances.
For Bpix

l , we aim to increase the weights of edges or local
contour areas, especially for foreground objects, and mean-
while reduce the interference of abundant smooth patches.
To such end, we first estimate the smoothness of local tex-
ture as follows,

Si,j = ||Fi,j(θt)−Hi,j(F (θt), r)||1 (8)

S = R(S) (9)

where Hij(F (θt), r) represents the average value of a r ×
r window centered at (i, j) on feature F obtained from
teacher detector. R(·) denotes the normalization operation
using maximum and minimum values. Next, the local tex-
ture is divided into the three categories according to the
smoothness, and we assign the different weights to the three
types of local texture. After this, we divide the local texture
into three kinds according to the smoothness, and assign
different weights to each type as follows,

Wt =

1.0, S ∈ (η2s,∞]

0.1, S ∈ (η1s, η2s]

0.0, S ∈ [0, η1s]

(10)

Here η1 and η2 are constant coefficients, and s is the average
value of S. Finally, Bpix

l can be obtained by merging Wt and

Apix
l and sampling center points of local areas using by Ψ ,

Bpix
l = Ψ(Wt ·Apix

l , Sl) (11)

Here Ψ(·, ·) represents the operation where center points
of local areas are sampled using consistent constraints be-
tween the value of center point and the maximum value in
a sliding window with stride 1 on Sl map. As displayed in
Fig. 3, we visualize Apix

l , Wt and Bpix
l on unlabeled target

domain using Faster R-CNN detector under Cityscapes-to-
FoggyCityscapes adaptation.

In Bins
l , for the foreground instances, the weights are set

to 1, otherwise 0. Thus, Bins
l is obtained by a formula simi-

lar to the Eq.6.
By plugging Eq. (5) and (7) into Eq. (2), we can compute

LNSALID(x, xLID). Fig. 2 (middle) illustrates NSALID.

3.2.3 NSAInsD for Instance-level Disturbance

Instance-level Disturbance (or InsD). InsD is an important
disturbance in the detection task. It represents variations of
objects of the same class in style, scale and view.
Instance Graph. To learn a stable UDA detector, in InsD
we explore the relation among different instances on feature
maps. Specifically, we first extract the instance-level fea-
tures of objects and background region features to build an
instance graph G(V,E,D) on each of feature layers, where
V ∈ RNg , E ∈ RNg×Ng , and D ∈ RNg×(C+Nb) represent
the nodes, edges and distances from those nodes to the cen-
ter of each category and each of Nb samples of background
areas in the feature space. Ng is the number of nodes, and
C+Nb includes C classes of the foreground objects and Nb

background samples that are similar to foreground objects.
For the pixel-level feature maps, we use the sliding window
strategy and the conditions of areas of objects within a cer-
tain range and Wt = 1 to obtain instance-level features of
objects and background region features as nodes.

Assume that Fi and Fj denote instance-level feature vec-
tors of nodes Vi and Vj in G, the edge Ei,j is computed as

Ei,j = 1− ⟨ Fi(θs)

||Fi(θs)||2
,

Fj(θt)

||Fj(θt)||2
⟩ (12)

where ⟨·, ·⟩ denotes the dot product function. Then, the Nb

background samples can be obtained by sorting the values
of edges. Subsequently, we further acquire the feature cen-
ters of C classes by the following formula,

Fk,ct(θt) =

∑Ng

i I(k = ci) · Fi(θt)∑Ng

i I(k = ci)
(13)

where Fk,ct is the feature center of kth class, and ci indi-
cates the class number of ith node. Based on the above fea-
ture centers of C classes and Nb background samples, the

distance set of D is easy to obtain as follows,

Dct
i,k = ⟨ Fi(θs)

||Fi(θs)||2
,

Fk,ct(θt)

||Fk,ct(θt)||2
⟩ (14)

Dbg
i,j = ⟨ Fi(θs)

||Fi(θs)||2
,

Fj,bg(θt)

||Fj,bg(θt)||2
⟩ (15)

where Dct
i,k and Dbg

i,k represent the distances from ith node
in G to feature center of kth class and the node of jth of Nb

background samples.
With the instance graph G illustrated in supplementary

material due to limited space, we perform stability analysis
for InsD as follows.
NSAInsD. NSAInsD focuses on the internal consistency on
different instances under InsD. The ICA of NSAInsD is mod-
eled using the contrastive loss as follows,

LICA
NSAInsD

(x, xInsD) = −
Lins∑
m=0

∑Ng

i=0 W
m
InsD(i) · log(pmi)∑Ng

i=0 W
m
InsD(i)

(16)

pmi =

∑C
k=0 I(c

m
i = k) · exp(Dct,m

i,k)∑C
k=0 exp(Dct,m

i,k) +
∑Nb

j=0 exp(Dbg,m
i,j)

(17)

where I(cmi = k) = 1 if cmi = k, otherwise 0. Wm
InsD is the

weights of nodes in Gm, and Wm
InsD(i) = 1 if the ith node

belongs to the foreground object, otherwise 0. Lins denotes
the number of internal feature layers.

In InsD, since the prediction results of object categories
and bounding boxes are pre-determined, the ECA is not
necessary. Therefore, we can obtain LECA

NSAInsD
= 0.

By plugging LICA
NSAInsD

and LECA
NSAInsD

into Eq. (2), we can
compute LNSAInsD . Fig. 2 (right) illustrates NSAInsD.

3.3. Optimization

The training process of our NSA-UDA has three stages.
In Stage 1 (S1), the teacher network is trained on only the
source domain with Eq. (3) with common data augmenta-
tions as in [7, 32]. Then, in Stage 2 (S2), we further train
the student network by Eq. (2) and update the teacher net-
work by exponential moving average (EMA) on only source
domain after initializing θs with the trained θt as follows,

θt = δ · θt + (1− δ) · θs (18)

where θt and θs represent the parameters of the teacher and
student networks. δ is the EMA rate. In the final Stage (S3),
the student and teacher networks are optimized by Eq. (2)
and (18) on source and target domain datasets.

4. Experiments
Implementation. Our proposed NSA-UDA is implemented
in PyTorch [40]. We use Faster R-CNN [43] with VGG16

[49] pre-trained on ImageNet [21] as the teacher detector
to develop our NSA-UDA. Note that, our method is gen-
eral and we show this by integrating it into another popular
one-stage detection framework FCOS [51] with promising
results. The optimizer for training our network employs the
SGD approach with a momentum of 0.9 and weight decay
of 1e-4. The learning rate is set to 3e-4. The η1 and η2 in
Eq. (10) are respectively 1.3 and 1.6, and γHID, γLID and
γInsD in Eq. (1) are empirically set to 1.0, 0.006 and 0.001.
The EMA rate δ in Eq. (18) is 0.97.

4.1. Experimental Settings and Datasets

We conduct extensive experiments under four settings.
Weather adaptation. For weather adaptation, we use three
datasets with various weathers including Cityscapes [6] (C),
FoggyCityscapes [47] (F), and RainCityscapes [19] (R).
Cityscapes is a popular scene understanding benchmark
with 2,975 images for training and 500 images for valida-
tion. FoggyCityscapes and RainCityscapes are synthesized
with fog and rain based on Cityscapes. Among them, Fog-
gyCityscapes has the same number of images in training
and validation sets as Cityscapes, but RainCityscapes has
9,432 and 1,188 images for training and validation, respec-
tively. In weather adaptation, we perform two groups of
experiments by using Cityscapes as the source domain and
FoggyCityscapes or RainCityscapes as the target domain,
i.e., C→F and C→R.
Small-to-Large adaptation. For small-to-large adaptation,
we use Cityscapes [6] as source domain and BDD100k [57]
(B) as target domain, i.e., C→B. In specific, we use a subset
of BDD100k, which consists of 36,728 training and 5,258
validation images from 8 classes, for the experiment.
Cross-Camera adaptation. For the cross-camera adapta-
tion, we leverage KITTI [9] (K), Cityscapes and FoggyCi-
tyscapes for our experiments. Similar to Cityscapes, KITTI
is a traffic scene dataset containing 7,481 training images.
In the experiment, we utilize KITTI as the source domain
and Cityscapes or FoggyCityscapes as the target domain,
i.e., K→C and K→F, and only consider the category of car
for evaluation as in [29, 61].
Synthetic-to-Real adaptation. For synthetic-to-real adap-
tation, we use SIM10k [23] (M), Cityscapes and FoggyC-
ityscapes for experiments. SIM10k contains 10k images
and 8,550 images are used for training and the rest for val-
idation. In this setting, SIM10k is the source domain and
Cityscapes or FoggyCityscapes is the target domain, i.e.,
M→C and M→F. Similar to [29], we conduct the evalua-
tion on the car class.

4.2. State-of-the-art Comparison

In this section, we report the experimental evaluation re-
sults and comparisons. Note, for fair comparisons, all com-
pared methods adopt [43] as baseline for implementation.

Table 1. Experiments from C→F using average precision (AP, in
%). Note that, the best two results are highlighted in red and blue
fonts, respectively, for all state-of-the-art comparison tables.

Method Backbone mAP
Baseline VGG-16 18.8

GPA [56] [CVPR’2020] ResNet-50 39.5
CFFA [59] [CVPR’2020] VGG-16 38.6

DSS [53] [CVPR’2020] ResNet-50 40.9
D-adapt [22] [ICLR’2022] VGG-16 41.3

UMT [7] [CVPR’2021] VGG-16 41.7
MeGA-CDA [52] [CVPR’2021] VGG-16 41.8

TIA [58] [CVPR’2022] VGG-16 42.3
SDA [60] [arXiv’2021] VGG-16 45.2

TDD [14] [CVPR’2022] VGG-16 43.1
SIGMA [31] [CVPR’2022] VGG-16 43.5

Baseline w. Data Aug. (Ours) VGG-16 34.2
NSA-UDA (Ours) VGG-16 52.7

Oracle (S1) VGG-16 46.7
Oracle (S2) VGG-16 53.0

Table 2. Experiments from C→R using AP (%).

Method Backbone mAP
DA-Faster [5] [CVPR’2018] VGG-16 32.8

SCL [48] [arXiv’2019] VGG-16 37.3
SDA [60] [arXiv’2021] VGG-16 41.5

Baseline w. Data Aug. (Ours) VGG-16 48.5
NSA-UDA (Ours) VGG-16 58.7

Oracle (S1) VGG-16 41.4
Oracle (S2) VGG-16 44.4

Evaluation on Weather adaptation. Tab. 1 exhibits the re-
sults from C→F. As shown in Tab. 1, NSA-UDA achieves
the best mAP of 52.7% and outperforms the second best
SDA with 45.2% mAP by 7.5%. Compared with UMT that
leverages teacher-student learning for domain adaptive de-
tection with 41.7% mAP, our method shows clear improve-
ment with 11.0% gains even using a weaker backbone. In
addition, compared to our baseline with 34.2% mAP, we
obtain 18.5% mAP gains, evidencing the effectiveness of
NSA. Tab. 2 lists the results from C → R. As shown, our
NSA-UDA obtains the best result with 58.7% mAP, outper-
forming the second best SDA with 41.5% mAP by 17.2%.
Evaluation on Small-to-Large adaptation. We display
the results from C→B in Tab. 3. As shown in Tab. 3, our
NSA-UDA obtains the best mAP of 35.5%, outperforming
the second best PT with 34.9% mAP. Compared with our
baseline of 28.5% mAP, we achieve a gain of 7.0%, show-
ing the effectiveness of our NSA model.
Evaluation on Cross-Camera adaptation. Tab. 4 exhibits
the results and comparison from K→C. As shown in Tab. 4,
the proposed NSA-UDA achieves the second performance
with 55.6% APcar. PT performs the best with 60.2% mAP
score. However, it is worth noting that PT requires pseudo
labels on target domain for self-training, while our NSA can
improve generality with only labeled source domain. Com-
pared with our baseline of 46.6%, we show a gain of 9.0%,
verifying the effectiveness of our method.

Table 3. Experiments from C→B using AP (%).

Method Backbone mAP
Baseline VGG-16 23.4

DA-Faster [5] [CVPR’2018] VGG-16 24.0
SW-Faster [60] [arXiv’2021] VGG-16 25.3

SW-Faster-ICR-CCR [60] [arXiv’2021] VGG-16 26.9
TDD [14] [CVPR’2022] VGG-16 33.6

PT [4] [ICML’2022] VGG-16 34.9
Baseline w. Data Aug. (Ours) VGG-16 28.5

NSA-UDA (Ours) VGG-16 35.5
Oracle (S1) VGG-16 48.2
Oracle (S2) VGG-16 49.1

Table 4. Experiments from K/M→C using APcar (%).

Method Backbone APcar

Baseline VGG-16 30.2/30.1
DA-Faster [5] [CVPR’2018] VGG-16 38.5/39.0

MAF [15] [ICCV’2019] VGG-16 41.0/41.1
ATF [16] [ECCV’2020] VGG-16 42.1/42.8

SC-DA [64] [CVPR’2019] VGG-16 42.5/43.0
SAPNet [29] [ECCV’2020] VGG-16 43.4/44.9

TIA [58] [CVPR’2022] VGG-16 44.0/ –
DSS [53] [CVPR’2021] ResNet-50 42.7/44.5
SSD [44] [ICCV’2021] ResNet-50 47.6/49.3

SIGMA [31] [CVPR’2022] VGG-16 45.8/53.7
TDD [14] [CVPR’2022] VGG-16 47.4/53.4

PT [4] [ICML’2022] VGG-16 60.2/55.1
Baseline w. Data Aug. (Ours) VGG-16 46.6/44.2

NSA-UDA (Ours) VGG-16 55.6/56.3
Oracle (S1) VGG-16 64.9
Oracle (S2) VGG-16 67.7

Evaluation on Synthetic-to-Real adaptation. In Tab. 4,
we report the results from M→C. Our NSA-UDA obtains
the best result with 56.3% APcar. Compare with the second
best PT [4] with 55.1% APcar, we show 1.2% performance
gains. Besides, our method significantly improves the base-
line from 44.2% to 56.3%, showing its advantages.

Please refer to supplementary material for more results.

4.3. Ablation Study

NSA-UDA with Different Disturbances. To analyze dif-
ferent disturbances, we experiment our NSA-UDA on C→F
with different disturbances in S2, as shown in Tab. 5. From
Tab. 5, we observe that NSA-UDA with HID significantly
improves the baseline from 34.2% mAP to 44.2% mAP.
When designing NSA-UDA with all three disturbances, we
achieve the best performance with 49.6% mAP. In addi-
tion, when applying our three disturbances to another sota
method PT [4] without our NSA strategy, the result of PT
is improved to 44.9% mAP compared to the original pertur-
bation with 42.7% mAP, which however is still much lower
than our result with 52.7% mAP in S3, fairly evidencing the
effectiveness of our NSA.
NSA-UDA with Different Detectors. We show the gener-
ality of NSA by applying it to FCOS [34] and Deformable
DETR [65]. As shown in Tab. 6, our NSA-UDA respec-
tively achieves 44.2% mAP on FCOS and 40.9% mAP on

Table 5. NSA-UDA with different disturbances on C→F.
Method TDA(Ours) NSAHID NSALID NSAInsD mAP (%)

NSA-UDA

✓ 34.2
✓ ✓ 44.2
✓ ✓ ✓ 48.9
✓ ✓ ✓ 45.9
✓ ✓ ✓ ✓ 49.6

PT [4] 42.7
✓ 44.9

Table 6. NSA-UDA with different detectors on C→F. The back-
bones for Faster R-CNN/FCOS and Deformable DETR are VGG-
16 and ResNet-50.

Method Detector mAP (%)
Baseline w. Data Aug. (Ours) Faster R-CNN 34.2

NSA-UDA (Ours) Faster R-CNN 52.7
CFA [17] [ECCV’2020] FCOS 36.0

SCAN [30] [AAAI’2022] FCOS 42.1
MGADA [61] [CVPR’2022] FCOS 43.6

Baseline w. Data Aug. (Ours) FCOS 21.0
NSA-UDA (Ours) FCOS 44.2

Baseline w. Data Aug. (Ours) Deformable DETR 28.5
NSA-UDA (Ours) Deformable DETR 40.9

Table 7. Effect of training stages on different adaption settings.

S1 S2 S3

C
→

F

C
→

R

C
→

B

K
→

C

K
→

F

M
→

C

M
→

F

✓ 34.2 48.5 28.5 46.6 22.6 44.2 26.6
✓ ✓ 49.6 55.1 33.7 52.9 41.9 52.2 40.4
✓ ✓ ✓ 52.7 58.7 35.5 55.6 50.0 56.3 46.0

Table 8. Weight analysis of
γLID in NSALID .

γLID 6e-4 6e-3 6e-2 6e-1
mAP (%) 48.3 49.6 49.2 48.7

Table 9. Weight analysis of
γInsD in NSAInsD .

γLID 1e-4 1e-3 1e-2 1e-1
mAP (%) 49.1 49.6 48.3 48.2

Deformable DETR, significantly outperforming the base-
lines and other methods [17, 30, 61] on FCOS.
NSA-UDA with Different Training Stages. To verify the
effect of different training stages, we conduct extensive ex-
periments on seven adaptions as displayed in Tab. 7. From
Tab. 7, compared with S1 (i.e., baseline with data augmen-
tation), S2 (i.e., our NSA) can significantly improve perfor-
mance using only source domain data in all settings, show-
ing the generality of our analysis. When employing target
domain pseudo labels, S3 further boosts the performance.
NSA-UDA with Different Disturbing Degrees. To study
the impact of disturbances, we conduct comparisons with
different hyper-parameters in NSAHID and NSALID. As in
Fig. 4, HID with relatively large scale variation and flip
can improve our performance. In particular, SHID = 3.5
with random flip (i.e., VHID = 1) achieves the best mAP
score of 49.6%. For LID, adding small disturbances in scale
and displacement can boost the detector, and the best 49.6%
mAP score is obtained with DLID = 0.25 and SLID = 1.5.
NSA-UDA with Local-Texture Division. To study differ-
ent division and weight assignment for local texture in Eq.

(a) Hyper-parameter analysis for HID (b) Hyper-parameter analysis for LID

Figure 4. Hyper-parameter analysis in disturbance for NSA-UDA.

Table 10. Weight analysis of different types of local texture.

W1
t 1.0 1.0 1.0 1.0

W2
t 0.1 1.0 0.1 1.0

W3
t 0.0 0.0 1.0 1.0

mAP (%) 49.6 48.6 48.8 48.1

Table 11. Analysis of ECA
and ICA in NSALID.

NSAECA
LID NSAICA

LID mAP (%)
45.9

✓ 47.2
✓ 48.7

✓ ✓ 49.6

Table 12. Number of local
textures in NSALID.

Num. of Types mAP (%)
1 48.0
2 48.5
3 49.6
4 49.0

(10), we conduct ablations on number of types for local tex-
ture in Tab. 12 and different weights in Tab. 10. As shown
in Tab. 12, when number of local textures is three, our NSA
achieves the best mAP score of 49.6%, demonstrating the
necessity and rationality of division of local texture. Mean-
while, Tab. 10 shows 1/0.1/0.0 achieves satisfying results.
ECA and ICA of LID. To investigate ECA and ICA in
NSALID, we conduct ablations in S2 from C→F on ECA
and ICA in NSALID in Tab. 11. From Tab .11, We see ob-
vious gains by ECA and ICA, showing their effectiveness.

NSA-UDA with Different Disturbance Weights. To
probe the effect of weights γ in Eq.(1) in paper, we conduct
ablations in S2 from C→F for LID in Tab. 8 and for InsD
in Tab. 9. As shown in Tab .8, γLID = 0.006 achieves the
best mAP score of 49.6%. Larger or smaller value of γLID

can reduce the performance of our NSALID. Meanwhile,
in Tab .9, γInsD = 0.001 achieves the best mAP of 49.6%.

5. Conclusion

In this paper, we explore UDA detection from a different
perspective. In particular, we regard discrepancies between
different domains as disturbances and propose a network
stability analysis (NSA) framework for domain adaptive de-
tection under different disturbances. By utilizing NSA on
Faster R-CNN, our UDA detector, NSA-UDA, shows state-
of-the-art performance on multiple benchmarks. In addi-
tion, our NSA is general and applicable to different detec-
tion frameworks.

Acknowledgement. Libo Zhang was supported by Youth
Innovation Promotion Association, CAS (2020111). Heng
Fan and his employer received no financial support for this
work.

References
[1] Andrea Bacciotti andLionel Rosier. Liapunov functions and

stability in control theory, 2005.
[2] Qi Cai, Yingwei Pan, Chong-Wah Ngo, Xinmei Tian, Lingyu

Duan, and Ting Yao. Exploring object relation in mean
teacher for cross-domain detection. In CVPR, 2019.

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving
into high quality object detection. In CVPR, 2018.

[4] Meilin Chen, Weijie Chen, Shicai Yang, Jie Song, Xin-
chao Wang, Lei Zhang, Yunfeng Yan, Donglian Qi, Yueting
Zhuang, Di Xie, et al. Learning domain adaptive object de-
tection with probabilistic teacher. In ICML, 2022.

[5] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and
Luc Van Gool. Domain adaptive faster R-CNN for object
detection in the wild. In CVPR, 2018.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016.

[7] Jinhong Deng, Wen Li, Yuhua Chen, and Lixin Duan. Un-
biased mean teacher for cross-domain object detection. In
CVPR, 2021.

[8] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 88(2):303–338, 2010.

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the KITTI vision benchmark
suite. In CVPR, 2012.

[10] Ross Girshick. Fast r-cnn. In ICCV, 2015.
[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR, 2014.

[12] Dayan Guan, Jiaxing Huang, Aoran Xiao, Shijian Lu, and
Yanpeng Cao. Uncertainty-aware unsupervised domain
adaptation in object detection. TMM, 24:2502–2514, 2021.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[14] Mengzhe He, Yali Wang, Jiaxi Wu, Yiru Wang, Hanqing Li,
Bo Li, Weihao Gan, Wei Wu, and Yu Qiao. Cross domain
object detection by target-perceived dual branch distillation.
In CVPR, 2022.

[15] Zhenwei He and Lei Zhang. Multi-adversarial faster-rcnn for
unrestricted object detection. In ICCV, 2019.

[16] Zhenwei He and Lei Zhang. Domain adaptive object detec-
tion via asymmetric tri-way faster-rcnn. In ECCV, 2020.

[17] Cheng-Chun Hsu, Yi-Hsuan Tsai, Yen-Yu Lin, and Ming-
Hsuan Yang. Every pixel matters: Center-aware feature
alignment for domain adaptive object detector. In ECCV,
2020.

[18] Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih
Hung, Hung-Yu Tseng, Maneesh Singh, and Ming-Hsuan
Yang. Progressive domain adaptation for object detection.
In WACV, 2020.

[19] Xiaowei Hu, Chi-Wing Fu, Lei Zhu, and Pheng-Ann Heng.
Depth-attentional features for single-image rain removal. In
CVPR, 2019.

[20] Jisoo Jeong, Seungeui Lee, Jeesoo Kim, and Nojun Kwak.
Consistency-based semi-supervised learning for object de-
tection. In Advances in Neural Information Processing Sys-
tems, volume 32, 2019.

[21] Deng Jia, Dong Wei, Socher Richard, Li Li-Jia, Li Kai,
and Fei-Fei Li. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

[22] Junguang Jiang, Baixu Chen, Jianmin Wang, and Mingsheng
Long. Decoupled adaptation for cross-domain object detec-
tion. In ICLR, 2022.

[23] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta,
Sharath Nittur Sridhar, Karl Rosaen, and Ram Vasudevan.
Driving in the matrix: Can virtual worlds replace human-
generated annotations for real world tasks? In ICRA, 2017.

[24] Mehran Khodabandeh, Arash Vahdat, Mani Ranjbar, and
William G. Macready. A robust learning approach to domain
adaptive object detection. In ICCV, 2019.

[25] Seunghyeon Kim, Jaehoon Choi, Taekyung Kim, and Chang-
ick Kim. Self-training and adversarial background regular-
ization for unsupervised domain adaptive one-stage object
detection. In ICCV, 2019.

[26] Taekyung Kim, Minki Jeong, Seunghyeon Kim, Seokeon
Choi, and Changick Kim. Diversify and match: A domain
adaptive representation learning paradigm for object detec-
tion. In CVPR, 2019.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 2012.

[28] Hei Law and Jia Deng. Cornernet: Detecting objects as
paired keypoints. In ECCV, 2018.

[29] Congcong Li, Dawei Du, Libo Zhang, Longyin Wen, Tiejian
Luo, Yanjun Wu, and Pengfei Zhu. Spatial attention pyra-
mid network for unsupervised domain adaptation. In ECCV,
2020.

[30] Wuyang Li, Xinyu Liu, Xiwen Yao, and Yixuan Yuan. Scan:
Cross domain object detection with semantic conditioned
adaptation. AAAI, 36(2), 2022.

[31] Wuyang Li, Xinyu Liu, and Yixuan Yuan. Sigma: Semantic-
complete graph matching for domain adaptive object detec-
tion. In CVPR, 2022.

[32] Yu-Jhe Li, Xiaoliang Dai, Chih-Yao Ma, Yen-Cheng Liu,
Kan Chen, Bichen Wu, Zijian He, Kris Kitani, and Peter Va-
jda. Cross-domain adaptive teacher for object detection. In
CVPR, 2022.

[33] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollar. Focal loss for dense object detection. In ICCV,
2017.

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014.

[35] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-
dan. Learning transferable features with deep adaptation net-
works. In ICML, 2015.

[36] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I
Jordan. Unsupervised domain adaptation with residual trans-
fer networks. In NIPS, 2016.

[37] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I.
Jordan. Deep transfer learning with joint adaptation net-
works. In ICML, 2017.

[38] Xin Lu, Buyu Li, Yuxin Yue, Quanquan Li, and Junjie Yan.
Grid r-cnn. In CVPR, 2019.

[39] Luke Melas-Kyriazi and Arjun K. Manrai. Pixmatch: Unsu-
pervised domain adaptation via pixelwise consistency train-
ing. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 12430–12440, 2021.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library.
NeurIPS, 2019.

[41] Rindra Ramamonjison, Amin Banitalebi-Dehkordi, Xinyu
Kang, Xiaolong Bai, and Yong Zhang. Simrod: A sim-
ple adaptation method for robust object detection. In ICCV,
2021.

[42] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In CVPR, 2016.

[43] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with re-
gion proposal networks. TPAMI, 39(6):1137–1149, 2017.

[44] Farzaneh Rezaeianaran, Rakshith Shetty, Rahaf Aljundi,
Daniel Olmeda Reino, Shanshan Zhang, and Bernt Schiele.
Seeking similarities over differences: Similarity-based do-
main alignment for adaptive object detection. In ICCV, 2021.

[45] Aruni RoyChowdhury, Prithvijit Chakrabarty, Ashish Singh,
SouYoung Jin, Huaizu Jiang, Liangliang Cao, and Erik
Learned-Miller. Automatic adaptation of object detectors to
new domains using self-training. In CVPR, 2019.

[46] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate
Saenko. Strong-weak distribution alignment for adaptive ob-
ject detection. In CVPR, 2019.

[47] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Se-
mantic foggy scene understanding with synthetic data. IJCV,
126(9):973–992, 2018.

[48] Zhiqiang Shen, Harsh Maheshwari, Weichen Yao, and Mar-
ios Savvides. SCL: towards accurate domain adaptive object
detection via gradient detach based stacked complementary
losses. arXiv, 2019.

[49] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015.

[50] Peng Su, Kun Wang, Xingyu Zeng, Shixiang Tang, Dapeng
Chen, Di Qiu, and Xiaogang Wang. Adapting object detec-
tors with conditional domain normalization. In ECCV, 2020.

[51] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:
fully convolutional one-stage object detection. In ICCV,
2019.

[52] Vibashan VS, Vikram Gupta, Poojan Oza, Vishwanath A.
Sindagi, and Vishal M. Patel. Mega-cda: Memory guided
attention for category-aware unsupervised domain adaptive
object detection. In CVPR, 2021.

[53] Yu Wang, Rui Zhang, Shuo Zhang, Miao Li, Yangyang Xia,
Xishan Zhang, and Shaoli Liu. Domain-specific suppression
for adaptive object detection. In CVPR, 2021.

[54] Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen
Lin, and Han Hu. Propagate yourself: Exploring pixel-level
consistency for unsupervised visual representation learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 16684–
16693, June 2021.

[55] Chang-Dong Xu, Xing-Ran Zhao, Xin Jin, and Xiu-Shen
Wei. Exploring categorical regularization for domain adap-
tive object detection. In CVPR, 2020.

[56] Minghao Xu, Hang Wang, Bingbing Ni, Qi Tian, and Wenjun
Zhang. Cross-domain detection via graph-induced prototype
alignment. In CVPR, 2020.

[57] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, 2020.

[58] Liang Zhao and Limin Wang. Task-specific inconsistency
alignment for domain adaptive object detection. In CVPR,
2022.

[59] Yangtao Zheng, Di Huang, Songtao Liu, and Yunhong Wang.
Cross-domain object detection through coarse-to-fine feature
adaptation. In CVPR, 2020.

[60] Qianyu Zhou, Qiqi Gu, Jiangmiao Pang, Zhengyang Feng,
Guangliang Cheng, Xuequan Lu, Jianping Shi, and Lizhuang
Ma. Self-adversarial disentangling for specific domain adap-
tation. arXiv, 2021.

[61] Wenzhang Zhou, Dawei Du, Libo Zhang, Tiejian Luo, and
Yanjun Wu. Multi-granularity alignment domain adaptation
for object detection. In CVPR, 2022.

[62] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
jects as points. arXiv, 2019.

[63] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, 2017.

[64] Xinge Zhu, Jiangmiao Pang, Ceyuan Yang, Jianping Shi, and
Dahua Lin. Adapting object detectors via selective cross-
domain alignment. In CVPR, 2019.

[65] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In ICLR, 2021.

