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BallGAN: 3D-aware Image Synthesis with a Spherical Background
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Figure 1: (a) 3D space (top) and an image rendered from the white camera (bottom). We are inspired by a 3D graphics
technique in which the foreground is represented as a 3D model and the background is approximated as a 2D surface, yet
resulting in a realistic appearance on the rendered image. (b) Our method produces high-quality 3D shapes, images, and
foreground alpha masks without extra supervision. (c) Realistic novel view rendering on arbitrary backgrounds, even on real

image inversion.

Abstract

3D-aware GANs aim to synthesize realistic 3D scenes
that can be rendered in arbitrary camera viewpoints, gen-
erating high-quality images with well-defined geometry. As
3D content creation becomes more popular, the ability
to generate foreground objects separately from the back-
ground has become a crucial property. Existing methods
have been developed regarding overall image quality, but
they can not generate foreground objects only and often
show degraded 3D geometry. In this work, we propose to
represent the background as a spherical surface for mul-
tiple reasons inspired by computer graphics. Our method
naturally provides foreground-only 3D synthesis facilitat-
ing easier 3D content creation. Furthermore, it improves
the foreground geometry of 3D-aware GANs and the train-
ing stability on datasets with complex backgrounds. Project
page: https://minjung-s.github.io/ballgan/
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1. Introduction

Traditional generative adversarial networks (GANs) syn-
thesize realistic images. Although they provide some con-
trol over the camera poses [30, 37, 15, 38], they lack explicit
3D understanding of the scenes. Recently, 3D-aware GANs
[27, 6,35, 53] reformulate the generative procedure as mod-
eling the potential 3D scenes and rendering them to images.
The state-of-the-art 3D-aware GANSs [5, 14, 47] rely on neu-
ral radiance fields or their variants to represent 3D scenes.
Note that they can generate 3D scenes even without 3D su-
pervision or multi-view supervision, rendering realistic im-
ages across different viewpoints. Although the quality of
images generated by 3D-aware GANSs continues to improve,
their practical usage has been less explored.

Solely generating foreground objects is an important el-
ement for the practical use of generative models, especially
for content creation. In this context, the diffusion-based
methods have grown popular for 3D object synthesis de-
spite their lack of realism [18, 32, 24, 39, 44]. Some 2D
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GANs model their output images as a combination of fore-
ground and background, replacing the need for laborious
post-processing [1, 4, 54]. On the other hand, few 3D-
aware GANs inadequately separate the background and suf-
fer from broken 3D shapes [47] or training instability [14].
Objects generated by EG3D [5] are connected to unrealistic
walls as shown in Figure 2.

Learning to synthesize 3D foreground objects using a
single-view dataset is challenging because it lacks both
depth and separation supervision.

To solve this problem, we are inspired by a popular ap-
proach for video games or movies in the graphics commu-
nity: representing salient objects with detailed 3D mod-
els and approximating peripheral scenery with simple sur-
faces (Figure la) to reduce the overall complexity. De-
spite approximating the 3D space to 2D, the rendered image
achieves a realistic appearance. We expect the 3D-aware
generators with a similar approach to achieve both separa-
tion and physically reasonable foreground geometry.

Accordingly, we propose our novel 3D-aware GAN
framework, named BallGAN. It approximates the back-
ground as a 2D opaque surface of a sphere and employs
conventional 3D features as the foreground. It accompa-
nies a modified volume rendering equation for the opaque
background. In addition, we introduce regularizers for clear
foreground geometry and separation.

We demonstrate the strength of our work as follows.
By design, BallGAN provides clear foreground-background
separation without extra supervision (Figure 1b). For con-
tent creation, it enables inserting generated 3D foregrounds
in arbitrary viewpoints without post-processing (Figure 1c).
Our background representation as a spherical surface is
generally applicable to any generator architectures or fore-
ground representations. BallGAN allows StyleNeRF [14]
to be trained on a higher resolution of CompCars[48]' and
achieve a large FID boost, which is notable as the dataset
is challenging due to its complex backgrounds. More im-
portantly, BallGAN not only enhances multi-view consis-
tency, pose accuracy, and depth reconstruction compared to
EG3D, but it also faithfully captures fine details in 3D space
that are easy to represent in 2D images but challenging to
model in 3D.

2. Related work

Representations for 3D-aware GANs Generators in 3D-
aware GANSs involve representing 3D scenes somehow and
rendering them to 2D images so that the generator is aware
of the 3D scene given only a collection of unstructured 2D
images. HoloGAN [27] represents a scene with a 3D grid
of voxels containing feature vectors, i.e., 4D tensor. How-
ever, as the 3D grid of voxels is limited by computational

I'StyleNeRF diverges on CompCars while growing from 1282 to 2562.
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Figure 2: Comparison of the 3D geometry extracted by
marching cubes. (a) GIRAFFE-HD exhibits broken 3D
shapes, (b) StyleNeRF has jaggy surfaces, and (c) EG3D
has hair sticking to the wall. Unlike other models, (d) our
model produces high-quality foreground geometry that is
separated from the background.

complexity, its maximum resolution is 1282,

Recent 3D-aware GANss integrate neural radiance fields
(NeRFs) [26]. NeRF represents a 3D scene using a
coordinate-based function that produces RGB color and
density at that coordinates. This 3D scene can be projected
onto a 2D image from arbitrary camera poses via volume
rendering integral. GRAF [35] introduces a patch-based
discriminator, which dramatically reduces memory usage
in high-resolution 3D-aware image synthesis. Its succes-
sors improve image quality and 3D awareness by 1) en-
hancing the function for NeRF [0, 14], 2) volume render-
ing feature field followed by neural rendering with upsam-
pling blocks [14, 29, 45, 5, 47], or 3) designing voxel-
based [43, 12, 16, 28, 45]or hybrid [5] representations. Go-
ing further, our method introduces a separate NeRF for
modeling spherical background, which encloses the fore-
ground of EG3D [5] or StyleNeRF [14].

Scene decomposition Some methods decompose the 3D
scenes into multiple components. GIRAFFE and its variant
[29, 47] separate scenes into objects and the background,
enabling them to control objects independently with the
background fixed. However, their background represen-
tation lives in the same ray points with the foregrounds,
and the 3D geometry does not benefit from the separa-
tion. StyleNeRF [14] and EpiGRAF [40] separate the back-
ground outside a sphere following NeRF++ [50] where the
background region goes through the same volume render-
ing with multiple ray points at variable depth. On the con-
trary, we remove the depth ambiguity of the background by
modeling it with an opaque representation on a 2D spherical
surface enclosing the foreground.

Reducing dimensions has been a viable option for reduc-
ing space and time complexity. TensoRF [7] uses a sum of
vector-matrix outer products to represent a 3D feature field.
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Figure 3: Overview of the BallGAN generator and definition of ray points. We bound the 3D space with an opaque
background on a spherical surface. (i) EG3D does not separate the background. (ii)) GIRAFFE-HD samples the background
points within the same range of the foreground. (iii) StyleNeRF samples multiple background points outside the boundary.
(iv) We sample a single background point on the sphere. It drastically reduces the depth ambiguity in the background.

EG3D [5] represents a 3D feature field with three 2D planes
to adopt StyleGAN architecture. K-Planes [! 1] represents
a d-dimensional scene using (g) planes. While these meth-
ods decompose 3D feature fields into low-dimensional fea-
ture representations to reduce the memory usage of NeRFs,
BallGAN squeezes the background space into a surface to
provide an easier task for 3D-aware GANS.

3. BallGAN

In this section, we provide an overview of our framework
and describe its key components and intuitions.

Overview We suppose that generating unbounded 3D
scenes is too complex to learn relying on a limited guide for
producing realistic 2D images. To resolve this challenge,
BallGAN bounds the scene in a ball and approximates the
background as an opaque spherical surface. We expect it
to alleviate the burden of producing correct shapes of the
backgrounds because the shape is fixed on a ball.

As shown in Figure 3, our generator consists of two
backbone networks for foreground and background (§3.1).
Representations from these networks are rendered by our
modified volume rendering equation to synthesize images
(§3.2) and trained with GAN objectives and auxiliary regu-
larizations (§3.3).

3.1. Bounding the 3D space

While traditional 2D GANSs learn to produce arrays of
RGB pixels in fixed dimensions, 3D-aware GANs aim to
produce realistic images by synthesizing 3D scenes and ren-
dering them into 2D images. In contrast to training NeRFs
with multi-view observations of a single scene, the only ob-
jective for the 3D-aware GANSs is producing realistic 2D

images. In other words, the datasets and the objective func-
tions do not provide any clues for the 3D geometry. To
reformulate 3D-aware generation as an easier constrained
problem, we approximate the backgrounds on an opaque
spherical surface.

Background model We model the background as a neural
feature field defined on a sphere with a fixed radius. Given
aray r = o + td (¢ is the distance from the camera center
o), we find the 3D background point on the sphere with
radius Ry, by simply computing the ray’s intersection on
the sphere surface:
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Since the background points are on a sphere surface of
fixed radius Rpg, we further reparameterize the 3D coordi-
nates x as 2D spherical coordinates s = (6, ¢) to further
reduce the complexity.
Then we represent the feature field Fpg using a

StyleGAN2-like architecture :

Fig (S, Zng) = gy © .81 © ((8), 2)

where w = f(zy,) is the style vector produced by a map-
ping network f given a noise vector zy,, and ( is the posi-
tional encoding [42] of s, and g, denotes 1 x 1 convolutions
whose weights are modulated by w. Note that there is no
mapping for density from the background feature field be-
cause our background is an opaque surface.

Our background representation drastically reduces the
number of points to be fed to the model, i.e., only one inter-
section of our sphere background and the ray r. Therefore,
we do not use hierarchical sampling for the background.



Figure 3b visualizes the difference in space for each

method with ray points. GIRAFFE-HD does not sepa-
rate the background coordinate space from the foreground,
StyleNeRF keeps multiple point candidates for the un-
bounded continuous depth. On the other hand, our method
separates the foreground and background and bounds the
background to lie on the surface. This effectively constrains
the solution space and improves training stability and output
quality.
Design choice for background One may wonder why
we chose the sphere among many alternatives. First, the
background should enclose the scene entirely to cover all
viewing directions. Thus, an open plane is not available in
wide-angle scenes. Second, the background should be iden-
tical when observed from all directions to make it easier for
the generator to perform consistently well. Therefore, the
spherical surface is the only reasonable choice. Appendix
A provides empirical comparison.

Foreground model We adopt StyleNeRF [14] or
EG3D [5] for foreground modeling, where a random fore-
ground code zg, is fed to StyleGAN2 [22] network to pro-
duce implicit or hybrid representation, respectively. For-
mally:

(B, 0) = Fro(x, Zy). (3)

Note that our simple and effective background model-
ing is applicable to arbitrary 3D scene representations other
than StyleNeRF and EG3D.

3.2. Volume rendering

Volume rendering aggregates the neural feature field
along the rays through individual pixels to produce fea-
ture maps for a given camera pose. The conventional
volume rendering computes the contribution of all points
{x;} sampled on a ray using the same equation 7'(x;)(1 —
exp(—o(x;)d(x;))), where T denotes transmittance, o de-
notes density.

We modify the volume rendering equation to reflect our
background design, a single point with full density:

Ni
$(r) =Y Ti(1—exp(—0:0;)) B + T2, (4)
=1

where ¢(r) is an aggregated pixel feature along the ray r,
T, = exp(zz;ll —0;9;)) denotes accumulated transmit-
tance at ¢-th point x;, ®; and o; are the feature and the
density at x;, and d; = ¢;41 — t; denotes the distance be-
tween adjacent points. Since the background point is con-
sidered opaque and proceeded by all foreground points, we
define its contribution using only the transmittance 7% =
exp(Z;\I:rg1 —0;90;)). It is equivalent to placing an opaque
background behind the scene in computer graphics tech-
niques.

To synthesize high-resolution images, we employ a 2D-
CNN-based super-resolution module to upsample and refine
the feature maps to an RGB image as commonly done in
recent methods [29, 47, 14, 5].

3.3. Training objectives

We use the non-saturating GAN loss L., [13] and R1
regularization Lgr, [25]. Additionally, we use two regular-
izations.

Background transmittance loss To ensure clear separa-
tion between foreground and background, we introduce new
regularization on 7?9, The ray through the foreground re-
gion in the image should have a high foreground density
that makes 79 close to 0, and thus the background feature
should not affect the aggregated pixel. In contrast, fore-
ground density should be small enough to make 79 close
to 1 when the ray corresponds to the background, so the ag-
gregated pixel feature should be the same as the background
feature. Therefore, we induce the transmittance of the back-
ground to be binarized:

Log = Z min (7,1 — 7). 5)

Foreground density loss To encourage clear shape, we
use foreground regularization to prevent foreground den-
sity from diffusing. Similar to Mip-NeRF 360[3], our
foreground loss penalizes the entropy of the aggregation
weights on the ray to locate foreground points in the area
where the actual geometry is located:

Lo =3 | Swiwii -+ 5 Swi | ©
r ,J i

where ¢ and j are the indices of the weight, r is the index
of the ray, §; = t;41 — t; is the distance between adja-
cent points and w is the aggregation weights after sigmoid
function. This regularization is the integral of the weighted
distance between all pairs of points on each ray.

The total loss function is then

Lol = Ladv + A, LR, + Mg Ltg 4+ Avg Lo, @)

where AR, , Afg and Ay, are hyperparameters.

4. Experiments

In this section, we evaluate the effectiveness of Ball-
GAN compared to the baselines regarding the faithfulness
of foreground-background separation in §4.1, effectiveness
on complex backgrounds in §4.2, the faithfulness of under-
lying 3D geometry in §4.3, and image quality in §4.4. Im-
plementation details are in Appendix D.
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Figure 4: Separate renderings of the foreground and
background. For easy comparison, we also show cropped
foreground images.

Datasets We validate our method on two front-facing
datasets, FFHQ [21] and AFHQv2-Cats [8, 20], and one
360° dataset, CompCars [48]. FFHQ has 70K images of
real human faces, and AFHQv2-Cats contains 5,558 images
of cat faces. We resize the resolutions of these datasets to
5122, CompCars contains 136K images of cars with vari-
ous resolutions and aspect ratios. In CompCars, we use a
center cropping for each image and resize it to 2562,

Competitors For our main comparisons we use EG3D [5],
StyleNeRF [14] and GIRAFFE-HD [47]. We include Epi-
GRAFF [40]', MVCGAN [52], VolumeGAN [46] and
StyleSDF [30] for quantitative comparisons.

By incorporating NeRF++’s inverse sphere parameterization, Epi-
GRAF can separate foreground and background, same as StyleNeRF.
However, the reported performance in the paper is based on a setting
without the utilization of background representation. The official repos-
itory indicates a performance drop of approximately 10% to 15% when
background representation is employed. Therefore, we employ the official
version of EpiGRAF that doesn’t use the background representation as a
competitor. Refer to the Appendix G for a detailed ablation study using
EpiGRAF, which adopts NeRF++ as the background representation.

(c) Novel view synthesis
with different background

(b) Foreground
reconstruction

(a) Real Image

Figure 5: Compositing foreground in different view-
points on arbitrary backgrounds. (a) is a target im-
age, and (b) is a reconstructed foreground of ours using
PTI) [33]. (c) is a result of novel views on arbitrary back-
grounds. By changing the camera pose and FOV, we show
that our model can generate attributes of unobserved regions
well.

4.1. Foreground separation

To achieve reasonable 3D perception and applicability,
accurately separating foreground and background is an im-
portant evaluation factor. As the background on a spher-
ical surface is one of the key components of our method,
we evaluate the separability and geometry of foregrounds
against GIRAFFE-HD and StyleNeRF. EG3D is excluded
because it does not provide separation.

Comparison Figure 4 shows rendered images of fore-
ground and background, respectively. GIRAFFE-HD uses
an alpha mask for detailed foreground separation, but it re-
lies on 2D feature maps instead of understanding the 3D
scene. Therefore, the foreground partly includes the back-
ground. StyleNeRF shows some ability to separate the fore-
ground on FFHQ, but fails to do so for all cases of AFHQ-
cats, which contain a significant amount of fine-grained
details. By contrast, our results demonstrate fine-grained
foreground separation, including intricate details like cat
whiskers. Please refer to Appendix E for quantitative eval-
uation (User study).

Content creation Figure 5 demonstrates the content cre-
ation capabilities achievable with BallGAN. Given a real
image, its inversion on BallGAN provides 3D foreground
that can be rendered in novel views and combined with dif-
ferent backgrounds. The alpha channel for the background
is computed from the background transmittance in the vol-
ume rendering step, i.e., the last term in (4). Even the facial
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Figure 6: CLIP guided editing results. Given text prompt
is blue.

regions that are not seen in the original images are realistic
in the rendered images, such as parts of hair or chin. Note
that Figure 5 has a wider field-of-view than the standard to
produce more diverse results.

Figure 6 demonstrates the potential of BallGAN to 3D
content creation. We can synthesize novel views of the
edited foregrounds by inverting images to the latent space
and using text-guided latent editing [31]. Note that the
3D shapes are properly changed by the editing, e.g., hair.
Therefore, BallGAN is useful for 3D content creation
thanks to its foreground-background separation.

4.2. Effectiveness on complex backgrounds

Here, we demonstrate the effectiveness of our idea on
complex backgrounds and wide camera angles, i.e. Com-
pCars dataset. To use CompCars dataset where EG3D is
not applicable due to the absence of a camera pose estima-
tor, we apply a sphere background to StyleNeRF, namely
BallGAN-S.

Training stability Figure 7 compares image quality of
BallGAN-S and StyleNeRF using Fréchet Inception Dis-
tance (FID) [17] over iterations. While StyleNeRF di-
verges as the image resolution grows from 1282 to 25622,
BallGAN-S smoothly converges below the reported FID of
StyleNeRF. It implies that our method is generally benefi-
cial to different foreground backbones and greatly improves
training stability.

Comparisons In Figure 8, we present qualitative results of
BallGAN-S, which showcase the robustness of our design
on CompCars. Figure 8a shows that both GIRAFFE-HD
and StyleNeRF exhibit a deficiency in fidelity in their mod-
eled 3D compared to the quality of the generated images.
On the other hand, ours maintains a high level of fidelity for
both images and 3D models. In Figure 8b, we demonstrate

2This phenomenon is also reported in the official repository.

—— BallGAN-S (ours)
—— StyleNeRF reproduced (official)
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Figure 7: FID over iterations on CompCars 2562, The
FID score of StyleNeRF increases at 2562 and becomes
constant around 12K steps. In contrast, BallGAN-S exhibits
stable training and achieves notably low FID score.
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(a) Qualitative comparison of generated images and their corre-
sponding 3D geometry.
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Figure 8: Results of BallGAN-S on CompCars 2562,

that our simple yet effective idea ensures successful separa-
tion of foreground and background, even for datasets with
complex backgrounds and wide camera angles. Quantita-
tive comparisons will be addressed in §4.4

4.3. Faithfulness of the underlying 3D geometry

It is essential for 3D-aware GANs to model the correct
3D geometry of the scenes so that their rendered images on
arbitrary camera poses are convincing views of the real 3D
scenes. Quantitative comparisons are followed by qualita-
tive comparisons.

Quantitative results We quantitatively compare the un-
derlying 3D model following the protocols in EG3D [5].
In Table 1, ID measures multi-view facial identity consis-
tency’, Depth indicates MSE of the expected depth maps
from density against estimated depth-maps” in frontal view,
and Pose implies controllability by MSE between the esti-
mated pose of synthesized image and the input (target) pose.
Appendix F describes further details of the protocol. Ball-
GAN outperforms the baselines in all metrics evaluating 3D
geometry.

3The mean Arcface [9] cosine similarity
“4Estimations for Depth and Pose are from [10]



FFHQ 5122

ID 1t Pose | Depth |
MVCGAN 0.58 0.014 0.123
VolumeGAN 0.63 0.025 0.020
StyleSDF 0.50 0.010 0.016
EpiGRAF 0.71 0.013 0.143
EG3D 0.71 0.007 0.011
GIRAFFE-HD 0.69 0.064 0.058
StyleNeRF 0.64 0.018 0.013
Ours 0.75 0.005 0.008

Table 1: Quantitative evaluation on 3D geometry. We report
identity consistency (ID), pose accuracy, and depth errors
for FFHQ. Our method outperforms baselines in all metrics
of 3D-awareness.

GIRAFFE-HD  StyleNeRF

}

AP 4 o
Method GIRAFFE-HD  StyleNeRF EG3D Ours
#ofrec. (10Y) 17423  53+£84 78455 79450

Table 2: COLMAP point cloud reconstruction is per-
formed using 128 views in [—7 /2, 7r/2] from the generated
scene for each model. A higher number of reconstructed
points indicates better multi-view consistency.

We further push the evaluation: the number of recon-
structed points from 128 views by COLMAP [34] in five
inverted samples of FFHQ training set. Table 2 provides
the numbers and example point clouds of the methods.
Since COLMAP reconstructs the points with high photo-
metric consistency, the larger number of points indicates
higher multi-view consistency. BallGAN demonstrates su-
perior performance in terms of multi-view consistency, es-
pecially in the face and hair region where the number of
reconstructed points is substantially higher than other meth-
ods. While EG3D also achieves a similar number of recon-
structed points as BallGAN, a large portion of these points
lies on the background walls rather than the face. As the
comparison results show, our sphere background induces
the synthesis of accurate foreground geometry, thereby im-
proving multi-view consistency.

Qualitative comparison: generated scenes Figure 9
compares how each method renders generated scenes on
different perspectives, expecting the images to have multi-
view consistency and realism. The leftmost column pro-
vides meshes of the scene for reference. We notice severe
distortions in GIRAFFE-HD and StyleNeRF when the cam-
era rotates more than +60° implying their spurious 3D ge-

GIRAFFE-HD
@ Y BT = Al il N
52 .;} - ’ ; ™

StyleNeRF

EG3D

Ours

Figure 9: Images rendered on various camera poses.
GIRAFFE-HD and StyleNeRF show distortions, especially
on extreme camera poses (red boxes). The rendered images
of EG3D are distorted by concave walls on extreme camera
poses (blue boxes). In contrast, BallGAN synthesizes real-
istic and multi-view consistent images.

ometry (red box in Figure 9). This problem is evident in
the marching cube results of GIRAFFE-HD, which sepa-
rately models foreground and background but without their
separate ranges. StyleNeRF produces rough geometry and
camouflages detailed shapes with color. Discussion on the
missing backgrounds is deferred to Appendix G.

Similarly, the rendered images of EG3D show distortions
from +60° angles, e.g., the ears are truncated first and then
the cheeks at 90° angles (blue box in Figure 9). The mesh
explains that the faces are engraved to a concave wall ex-
panding from the ridge of the faces. Furthermore, although
the meshes show greater detail compared to StyleNeRF,
there are areas of disagreement between the underlying ge-
ometry and its rendered images, e.g., the boundary between
hair and forehead is fuzzy in the geometry, whereas it be-
comes clear after color rendering.

On the other hand, BallGAN synthesizes realistic images
that maintain consistency across multiple views, even when
rendered in extreme side views. It implies that the sepa-
rate background on a sphere removes the depth ambiguity
and does not interfere with the foreground object. Notably,
we observe a significant enhancement in fine details, such
as hair and whiskers. For a more detailed multi-view com-
parison with all baseline models, please refer to Appendix
L.
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Qualitative comparison: inversion of real images Fig-
ure 10 compares renderings and meshes of the same scenes
through pivotal tuning inversion (PTI) [33] of real images
from the training set. Although the image reconstructions
of all methods are similar in target pose, the differences
become more visible in different viewpoints and in their
underlying 3D geometries. GIRAFFE-HD apparently pro-
duces geometry that least fits the rendered image and thus
renders inconsistent images in different views. StyleNeRF
captures only rough outlines and placements in the geome-
try so that color makes the rendered scene realistic. Espe-
cially, the mesh does not reveal the beard and the boundary
between hair and forehead. While EG3D can recover real-
istic geometry that mostly fits the given image, it has lim-
itations such as faces being stuck to a wall. Moreover, it
fails to accurately represent details such as eyebrows or ac-
cessories, which are evident in the input image. In contrast,
BallGAN excels at accurately modeling the foreground in
3D space, and even faithfully represents the details shown
in the images, such as wavy hair, earrings, and eyebrows.

4.4. Image quality

We evaluate generated image quality on the FFHQ 5122,
AFHQV2-Cats 5122, CompCars 2562 datasets. Images for
FFHQ 5122, AFHQv2-Cats 5122 are generated by Ball-
GAN and images for CompCars 256> are generated by
BallGAN-S.

Reconstructed -30°

Image
Figure 10: Renderings and marching cubes of the same samples. Given real image omitted as all models faithfully
reconstruct it. Although all methods render the target image close by inversion, the underlying 3D geometries of previous
methods are all different. We adjusted the threshold for each mesh at the line where the pupils do not break.

Sep. FFHQ AFHQv2-Cats CompCars
FG/BG 5122 5122 2562
MVCGAN 13.41 26.57% -
% VolumeGAN 15.74 44.55 12.91
StyleSDF 19.56 19.44 -
EpiGRAF 9.92f 6.46 -
EG3D 4.7t 277t N/A
GIRAFFE-HD 6.47 733 7.1
v StyleNeRF 10.51% 21.56 8T (284+96)
Ours 5.67 4.72 4.26

Table 3: Quantatitive comparison using FID [17] on three
datasets. T denotes the reported FID, and { denotes the FID
calculated by the official checkpoint. In other cases, we
train each baseline using their official codes. In the case of
StyleNeRF on CompCars, we report FID of diverged mod-
els over 3 experiments in the parenthesis. N/A denotes the
model can not be trained. Bold and underline indicate the
best and second-best performance. Our method shows the
best score in CompCars and comparable scores with EG3D.

Quantitative results Table 3 compares image quality
in FID. For FFHQ, AFHQv2-Cats, BallGAN outperforms
all the baselines except EG3D. Although EG3D achieves
the best FID, it does not support foreground-background
separation and suffers in generating 3D geometry (§4.3).
Furthermore, EG3D requires camera poses of real images,
which are not always available, e.g., CompCars. On the



Figure 11: Set of images generated by BallGAN. We sam-
ple images of 5122 resolution from BallGAN on FFHQ
5122 and AFHQV2-Cats 5122, as well as 2562 resolution
images from BallGAN-S on CompCars 2562. Each image
is rendered with randomly sampled camera pose.

other hand, we achieve the state-of-the-art FID on Comp-
Cars with BallGAN-S and the second-best FID on FFHQ
and AFHQv2-Cats closely following EG3D. We note that
CompCars has more complex backgrounds and 360° cam-
era poses.

Qualitative results Figure 11 provides example images
generated by BallGAN and BallGAN-S. Our models faith-
fully generate diverse samples in multiple views. More ex-
amples can be found in Appendix J.

4.5. Ablation of the losses

We conduct ablation studies to evaluate the effect of the
regularizers. Figure 12 shows the effects of our foreground
and background regularization. Without Lt,, BallGAN on
FFHQ occasionally generates small floating objects behind
faces. L, mitigates scene diffusion, thus inhibiting the for-
mation of subtle shape artifacts such as floating objects be-
hind the object. Additionally, using the background regu-
larization Lye, we get clearer foreground-background sep-
aration. Figure 12b shows that removing Ly, allows the
background to participate in synthesizing the foreground.
For the result without Ly, the beard is not entirely black,
indicating partial influence from the background (red box
in Figure 12b). In other words, the foreground is not fully

Without Ly,

With £y,

i
£ y

(a) Visual comparison on the effect of foreground density reg-
ularization. Removing Ly, introduces occasional floating objects
behind the neck (red box).

Background occluded
Total FG

by the foreground

Without Ly

With L,

(b) Visual comparison on the effect of background transmit-
tance regularization. The use of Ly, results in a completely
opaque foreground, rendering the background occluded by the
foreground as entirely black.

Figure 12: Ablations for two regularizations.

opaque. This is because the background transmittance loss
Lypg encourages the foreground density to either completely
block or leave the space empty before the rays hit the back-
ground.

5. Conclusion

We propose a 3D-aware GAN framework named Ball-

GAN, which represents a scene as a 3D volume within a
spherical surface, enabling the background representation
to lie on a 2D coordinate system. This approach resolves the
challenges of training a generator to learn a 3D scene from
only 2D images. Our proposed framework successfully sep-
arates the foreground in a 3D-aware manner, which enables
useful applications such as rendering foregrounds from ar-
bitrary viewpoints on top of given backgrounds. BallGAN
also achieves superior performance in 3D awareness, in-
cluding multi-view consistency, pose accuracy, and depth
reconstruction. Additionally, our approach shows signif-
icant improvement in capturing fine image details in 3D
space, compared to existing methods.
Acknowledgements This work was supported by the National
Research Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. 2022R1F1A1076241). The part of ex-
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A. Background design choice

This section explains the rationale why our background
has a spherical shape rather than anything else. Notably, our
goal is not to accurately model the geometry of the back-
ground, but rather to ensure that the integrity of the fore-
ground of interest is not compromised. To ensure that the
background is taken into consideration from all possible an-
gles, it is imperative that the background encompasses the
camera sphere. For instance, a planar background fails to
cover the background when the camera rotates beyond 90°
from its normal vector.

Even if the view frustum can account for the entire back-
ground, any abrupt changes in gradient or inconsistencies in
distances from the camera can engender unstable learning.

Initial Trained | ™\, —* Initial Trained
o i
o (-
view @ﬁ view @ view @
Cube Background Sphere Background

Figure S1: Background should be modeled spherical
rather than cubic. While the edges of the cube are re-
flected in the rendered images (Initial), the sphere has no
such artifacts in the rendered images. While the cubic
background fails to produce plausible images, our spheri-
cal background produces sensible backgrounds (7rained).
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(c) FG depth map

Figure S2: Effectiveness of our spherical background
on single scene overfitting scenario. The sole foreground
rendering and depth map demonstrates our spherical back-
ground is beneficial for capturing foreground geometry

To analyze the background effect, we trained BallGAN-S
on the CompCars dataset with various complex background
representations that occupy a significant portion of the im-
age, using only different representations of the background
such as sphere and cube, in Figure S1. The cube back-
ground does not converge. Therefore, the sphere back-
ground is the only reasonable choice for background rep-
resentation.

B. Effectiveness of background representation

In this section, we demonstrate the effect of our spheri-
cal background representation, which enhances the focus on
the foreground. We verify the efficacy of our background
representation through a single-scene overfitting (SSO) ex-
periment, in which we overfit a 3D model to a single scene
captured by multi-view images, namely If-basket [49]. We
use the vanilla NeRF [26] for the foreground, and keep
the spherical background representation. In other words,
NeRF++ and Ours differ only in the background represen-
tation.

As shown in Figure S2, NeRF++ does not clearly dis-
tinguish between foreground and background, and the esti-
mated depth is erroneous, e.g., the table has a lower depth



configuration
Ltg Lpg FID
- - 7.87
- 6.82
v 7.88
v v 6.13

stage 1

Table S1: Ablation study on regularization. This ablation
study is conducted with batch size 16 due to the resource
shortage. FIDs do not match the main results.

at the deepest end. In contrast, our approach clearly sepa-
rates foreground and background and better estimates fore-
ground depth. Thus, our design demonstrates effectiveness
in focusing resources on learning foreground 3D geometry.

C. Ablation of the losses

We conduct ablation studies to evaluate the impact of
each regularization on image quality. Table S1 shows the ef-
fects of our foreground and background regularization. Ap-
plying the foreground density loss L¢, improves FID. The
background transmittance regularization Ly, not only fa-
cilitates a clearer separation between foreground and back-
ground but also enhances FID score.

D. Implementation details

BallGAN Our implementation mostly follows the official
implementation of EG3D! including training hyperparam-
eters, dual discrimination, pose-conditioning on discrimi-
nator, two-stage training, equalized learning rates [19], a
mini-batch standard deviation layer at the end of the dis-
criminator [ 9], exponential moving average of the genera-
tor weights, a non-saturating logistic loss [13], and R1 reg-
ularization [25] with v = 1. We also use the same camera
intrinsic parameters and FFHQ preprocessing from EG3D.

The weights of the foreground density output layer are
initialized to zero to guarantee the contribution of the back-
ground at the beginning of the training. Figure S3 illustrates
the architecture for the background representation. A five-
layer 1 x 1 convolutional network maps the positional en-
coding ¢ of a background point to a feature vector. The style
code from an eight-layer MLP, i.e., the mapping network,
modulates the weights of the convolutions gy, . The back-
ground representation mapping network shares the same de-
sign as the mapping network in StyleGAN2 [22]. The num-
ber of channels of the intermediate features are in Table S2.
The last layer has a sigmoid clamping from MipNeRF [2]
as in the foreground neural render of EG3D. We use the po-
sitional encoding of L = 10 on the background’s 2D spher-
ical coordinates. View direction is not considered for our

Uhttps://github.com/NVlabs/eg3d

background representation.

I o |Bwes|—> H@bg
Positional

encoding Feature vector

Mapping
Zbg Network Whg

Back
latent code

Figure S3: Background architecture

input channel  output channel

PE 2 40
givbg 40 64
g%vbg 64 64
g‘?,’ng 64 64
gévbg 64 64
By 64 32

Table S2: Detail of background network. PE means posi-
tional encoding ¢, not a layer.

On FFHQ, we schedule the coefficient of the foreground
density loss Ag, to exponentially grow from 0 to 0.25 and the
coefficient of the background transmittance regularization
Abg to exponentially grow from O to 1 in the first stage. We
set the coefficients A\j; = 1 and Ay, = 0.5 in the second
stage.

For AFHQv2-Cats, we start from the weights pretrained
on FFHQ for the first step and fine-tune them on AFHQv2-
Cats as done in EG3D. We set A\;, = A\pg = 0 to let the
foreground better capture the fine details such as whiskers.

BallGAN-S BallGAN-S is a variant using StyleNeRF as
a baseline instead of EG3D. We add the same background
network on top of the official StyleNeRF implementation’.
We set A\, = 0.25 and Ay, = 0.

Competitors In the comparison experiments, we reported
the best FIDs among the available sources: reported, offi-
cial checkpoints, and official training code. We used the
official training codes as-is to reproduce FIDs if the official
repository does not provide the checkpoints®*°°,
StyleNeRF, StyleSDF, EpiGRAF, and VolumeGAN do
not provide training guidelines for AFHQv2-cats [8]. For

Zhttps://github.com/facebookresearch/StyleNeRF
3https://github.com/genforce/volumegan
“https://github.com/universome/epigraf
Shttps://github.com/royorel/StyleSDF
Shttps://github.com/AustinX Y/GIRAFFEHD



FFHQ 5122 FFHQ other res.
reported reproduced official ckpt. reported

GRAM - - - (2562) 29.8
MVCGAN 134 - 21.3
VolumeGAN - 15.7 - (2562) 9.1
StyleSDF - 19.5 - (256%) 11.5
EpiGRAF 9.9 - - (2562) 9.7
EG3D 4.7 4.7 -
GIRAFFE-HD - 6.4 - (10242) 10.13
StyleNeRF 13.2 - 10.5
Ours 5.64

Table S3: FIDs of competitors from various sources. We
report the best FID among the reported, reproduced and of-
ficial checkpoint for each model with 5122 resolutions in
Table 3.

Foreground Separation

14.9 StyleNeRF
FFHQ 26 GIRAFFE-HD
59.1 Ours (BallGAN)

8.6
AFHQ-Cats - 28.9
62.5

Foreground Consistency

18.6

FFHQ 1

AFHQ-Cats 1

16.8

7.4

23.5

64.

6

69.1

Figure S4: User study.

StyleNeRF and StyleSDF, we adopted the same training set-
tings as used for AFHQV2 training, given that AFHQv2-cats
constitutes a subset of AFHQv2. For VolumeGAN, we fol-
lowed the same settings as Cats [51] in pi-gan, including
FOV, ray’s near/far distances, and camera pose sampling
distribution. For EpiGRAF, we employed the landmark de-
tector’ used in EG3D to label camera poses, while follow-
ing the guidelines from the EpiGRAF’s official repository
for other training settings. The FOV and ray’s near/far dis-
tances used in EpiGRAF are almost identical to those in
pi-gan.

For GIRAFFE-HD on CompCars, we applied transfer-
learning from the official checkpoint for 2562 resolution
to 5122 resolution following the authors’ guidelines. We
trained the model until it achieved the FID reported in the
original paper. Table S3 provides the FIDs we obtained
from various sources.

E. User study

We asked 57 participants to choose the best model in
terms of foreground separation and consistency. We pre-

https://github.com/kairess/cat_hipsterizer

pared the following questionnaire for our user study in Fig-
ure S4. We randomly sampled ten scenes from each method
and rendered foregrounds in seven different viewing direc-
tions; the entire samples are shown in §F. Then we asked 57
participants to answer two questions: (1:Foreground Sep-
aration) Which set of foreground fully includes the whole
person (or cat) and excludes the background? (2 : Fore-
ground Consistency) Which set of foregrounds is consistent
across different views?

Figure S4 shows that ours outperforms competitors by a
large margin with respect to both criteria. See §F for how
we prepared images for the user study.

F. Evaluation protocols

We mostly follow the evaluation protocols of EG3D[5].
Below enumerates the protocols.

Real image inversion We use the same configuration of
EG3D for pivotal tuning inversion [33].

ID ID measures the cosine similarity of the ArcFace em-
bedding [9] between different views of the same scene. For
each method, we generate 1000 random scenes in pairs of
random poses from the training dataset pose distribution.
Then we compute the average.

Pose Pose computes the difference between the intended
(input) pose and the synthesized pose, implying how accu-
rately the input poses are reflected in the rendered poses.
We sample 1000 latent codes and render them in varying
yaws and estimate the resulting yaws with a pre-trained face
reconstruction model [10]. Instead of random yaws, we re-
move the stochasticity of the evaluation by specifying nine
yaw angles evenly separated in [-0.9rad, 0.9rad]. +0.9rad
covers the [0.3, 99.7] percentile of the training dataset’s yaw
distribution. We report a mean absolute error (L1) instead
of L2 distance to equally capture the error near zero.

Depth Depth measures the difference between the under-
lying 3D geometry (volume-rendered depth) and the ren-
dered image. We consider depth maps of rendered images in
frontal views of 1000 samples estimated by a pre-trained 3D
face reconstruction model [10] as pseudo ground truth. The
depth maps are normalized to compute their mean squared
error.

Foreground separation We describe the procedure to
obtain the foreground image used in §4.1. Although our
goal is to compare the separation of foreground and back-
ground in the 3D space, it is prohibitive to visualize the
separation in 3D space on paper or screen. Therefore, we
visualize by separately synthesizing the foreground scene
for each method. Note that GIRAFFE-HD produces extra
alpha masks in 2D space. We visualize their foreground
part with their alpha masks to demonstrate their best perfor-
mance. Their foreground densities are only in the central
region of the image canvas, and their aggregated densities
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Figure S5: Foreground separation examples. The densi-
ties along a ray do not sum to one in GIRAFFE-HD and
StyleNeRF. Hence, we apply postprocessing to compare
their full potential for separation. Ours does not require
such postprocessing. The rightmost column shows zoomed-
in images of red box regions for detailed comparison.

do not match the shape of the salient object. For StyleN-
eRF, the foreground densities along the ray do not sum to
one, i.e., the foreground is semi-transparent. Therefore, we
manually searched for a density threshold that best divides
the foreground region for each image. Ours do not require
such workarounds as the foreground densities aggregate to
one along the rays well on the foreground regions. Figure
S5 provides examples.

G. Detailed qualitative comparison

We only visualize the foreground meshes in Figure 8§,
Figure 10, Figure S7, and Figure 6 for methods that sepa-
rately model on foreground and background. Figure 1, Fig-
ure 2 and Figure 9 show the full 3D scene, including both
foreground and background. As EG3D does not separate
foreground and background, the full 3D geometry is visual-
ized on all mesh figures.

However, we only visualize the foreground mesh of
StyleNeRF in Figure 9 as we discover that the background
densities of StyleNeRF are close to zero, thus negligible.
Yet, the background appears on rendered images of StyleN-
eRF as the last sample on the background ray is set to have
an alpha value of 1 before volume rendering, i.e., the alpha
value for the last sample is tweaked to 1 regardless of the
actual density produced by the background NeRF.

Despite the sole visualization of foreground mesh for
StyleNeRF in Figure 9, densities accountable for back-
ground is noticeable on StyleNeRF’s mesh for AFHQv2-
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Figure S6: Comparison of foreground and background
separation with EpiGRAF backbone NeRF++ BG strug-
gles on hair, shoulder, and cat. Our BG excels in all cases.

Cats. This shows the case of the background being erro-
neously modeled through the foreground.

EpiGRAF employs NeRF++’s inverse sphere parameter-
ization for the background, the same as StyleNeRF. Figure
S6 shows a comparison between our background represen-
tation and NeRF++ when using EpiGRAF as the backbone.
The term “with NeRF++" refers to the original EpiGRAF,
while ”with Ours” indicates the model where our sphere
background representation is applied to EpiGRAF’s fore-
ground representation. Except for the background repre-
sentation, all settings remain the same and adhere to the
guidelines provided in the official repository.

In FFHQ, EpiGRAF with Ours separates the FG cleaner.
On the Cats [51] dataset, which contains a significant
amount of fine-grained details, EpiGRAF with NeRF++
fails to separate the FG and BG, whereas EpiGRAF with
Ours shows clear separation.

H. More comparison with EG3D

EG3D does not separately model foreground and back-
ground. Figure S7 highlights the drawback of this represen-
tation for learning 3D scenes. The ears and hair in 3D space
are attached to the background. Some parts of the hair are
flat and lack curls. In contrast, ours separates the hair from
the background and correctly models the 3D geometry of
the hair that matches the 2D observation.

Figure S8 shows that foreground separation is not
straightforward in EG3D’s 3D space. Thresholding the den-
sity or carving the mesh from the back does not correctly
separate the foreground, and damages the facial/hair regions
first. This demonstrates that the foreground and background
must be perfectly separated at the representation level.



dd [ )
(b) Ours

Figure S7: 3D geometry comparison between EG3D and
BallGAN
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Figure S8: Difficulty of separating foreground in EG3D
(a) The background cannot be removed by thresholding
density, i.e., the foreground is cut off before the background
is fully removed. (b) As the background wall has a con-
cave shape and is not always behind the foreground, clip-
ping with depth tends to carve out the foreground before
full background removal.

I. Detailed multi-view comparison

Figure S9a and Figure S9b provide qualitative compar-
isons with varying camera poses. As FFHQ dataset mainly
consists of frontal views, the competitors produce artifacts
or show multi-view inconsistency. On the other hand, Ball-
GAN produces images that are multi-view consistent and
free from artifacts even in extreme camera poses.

J. Uncurated samples

Figure S10 provides uncurated samples of our method.
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(a) Multi-view comparison with varying pitches

MVCGAN  VolumeGAN

EpiGRAF

StyleSDF

StyleNeRF  GIRAFFE-HD

EG3D

Ours

I I I I
0.1% 4% 15% 50% 85% 99% 99.9% 0.1% 4% 15% 50% 85% 99% 99.9%

(b) Multi-view comparison with varying yaws

Figure S9: Multi-view comparison in various poses on FFHQ. Percentile for camera pitch and yaw in training distribution
are shown on the left side of a and below for b.



(b) Uncurated samples of AFHQv2-Cats.

(c) Uncurated samples of CompCars.

Figure S10: Uncurated samples on the FFHQ, AFHQv2-Cats, and CompCars. Camera poses are randomly chosen from
each training distribution. a and b show outputs of BallGAN. c is outputs from BallGAN-S.



