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Figure 1: Inbetweening on two source cartoon line drawings of Monkey D. Luffy extracted from ONE PIECE. We compare our
proposed AnimeInbet with state-of-the-art frame interpolation methods VFIformer [14], EISAI [5], FILM [23] and RIFE [6].

Abstract

We aim to address a significant but understudied problem
in the anime industry, namely the inbetweening of cartoon
line drawings. Inbetweening involves generating interme-
diate frames between two black-and-white line drawings
and is a time-consuming and expensive process that can
benefit from automation. However, existing frame interpo-
lation methods that rely on matching and warping whole
raster images are unsuitable for line inbetweening and of-
ten produce blurring artifacts that damage the intricate line
structures. To preserve the precision and detail of the line
drawings, we propose a new approach, AnimeInbet, which
geometrizes raster line drawings into graphs of endpoints
and reframes the inbetweening task as a graph fusion prob-
lem with vertex repositioning. Our method can effectively
capture the sparsity and unique structure of line drawings
while preserving the details during inbetweening. This is
made possible via our novel modules, i.e., vertex geomet-
ric embedding, a vertex correspondence Transformer, an
effective mechanism for vertex repositioning and a visibil-
ity predictor. To train our method, we introduce Mixamo-
Line240, a new dataset of line drawings with ground truth
vectorization and matching labels. Our experiments demon-
strate that AnimeInbet synthesizes high-quality, clean, and
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complete intermediate line drawings, outperforming existing
methods quantitatively and qualitatively, especially in cases
with large motions. Data and code are available at https:
//github.com/lisiyao21/AnimeInbet.

1. Introduction

Cartoon animation has undergone significant transfor-
mations since its inception in the early 1900s, when con-
secutive frames were manually drawn on paper. Although
automated techniques now exist to assist with some specific
procedures during animation production, such as coloriza-
tion [22, 32, 10, 39, 4] and special effects [38], the core
element – the line drawings of characters – still needs hand-
drawing each frame individually, making 2D animation a
labor-intensive industry. Developing an automated algorithm
that can produce intermediate line drawings from two input
key frames, commonly referred to as “inbetweening”, has
the potential to significantly improve productivity.

Line inbetweening is not a trivial subset of general frame
interpolation, as the structure of line drawings is extremely
sparse. Unlike full-textured images, line drawings contain
only around 3% black pixels, with the rest of the image being
white background. As illustrated in Figure 2, this poses two
significant challenges for existing raster-image-based frame
interpolation methods. 1) The lack of texture in line drawings
makes it challenging to compute pixel-wise correspondence
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Figure 2: Raster vs geometrized inbetweening. Top: search
space of a pixel (left) vs a vertex (right) in matching. Bottom: pixel
warping/sampling (left) vs vertex repositioning (right).

accurately in frame interpolation. One pixel can have many
similar matching candidates, leading to inaccurate motion
prediction. 2) The warping and blending used in frame
interpolation can blur the salient boundaries between the line
and the background, leading to a significant loss of detail.

To address the challenges posed by line inbetweening,
we propose a novel deep learning framework called Ani-
meInbet, which inbetweens line drawings in a geometrized
format instead of raster images. Specifically, the source im-
ages are transformed into vector graphs, and the goal is to
synthesize an intermediate graph. This reformulation can
overcome the challenges discussed earlier in this paper. As
illustrated in Figure 2, the matching process in the geometric
domain is conducted on concentrated geometric endpoint
vertices, rather than all pixels, reducing potential ambiguity
and leading to more accurate correspondence. Moreover, the
repositioning does not change the topology of the line draw-
ings, enabling preservation of the intricate and meticulous
line structures. Compared to existing methods, our proposed
AnimeInbet framework can generate clean and complete in-
termediate line drawings, as demonstrated in Figure 1.

The core idea of our proposed AnimeInbet framework is
to find matching vertices between two input line drawing
graphs and then reposition them to create a new intermediate
graph. To achieve this, we first design a vertex encoding strat-
egy that embeds the geometric features of the endpoints of
sparse line drawings, making them distinguishable from one
another. We then apply a vertex correspondence Transformer
to match the endpoints between the two input line drawings.
Next, we propagate the shift vectors of the matched ver-
tices to unmatched ones based on the similarities of their
aggregated features to realize repositioning for all endpoints.
Finally, we predict a visibility mask to erase the vertices and
edges occluded in the inbetweened frame, ensuring a clean
and complete intermediate frame.

To facilitate supervised training on vertex correspondence,
we introduce MixamoLine240, the first line art dataset with
ground truth geometrization and vertex matching labels. The

Anchor frame Distant frameAnchor 3D mesh

Figure 3: Geometrized line art in MixamoLine240. 2D end-
points and connected lines are projected from vertices and edges
of orinal 3D mesh. Endpoints indexed to unique 3D vertices are
matched (marked in the same colors).

2D line drawings in our dataset are selectively rendered from
specific edges of a 3D model, with the endpoints indexed
from the corresponding 3D vertices. By using 3D vertices as
reference points, we ensure that the vertex matching labels
in our dataset are accurate and consistent at the vertex level.

In a conclusion, our work contributes a new and challeng-
ing task of line inbetweening, which could facilitate one of
the most labor-intensive art production processes. We also
propose a new method that outperforms existing solutions,
and introduce a new dataset for comprehensive training.

2. Related Work
Frame Interpolation. Frame interpolation is a widely stud-
ied task in recent years, involving synthesizing intermediate
frames from existing ones. Many approaches have been
proposed [13, 19, 20, 7, 17, 34, 18, 21, 26, 6, 23, 5, 14, 11],
such as those that use optical flows or deep networks to
search for matching areas and warp them to proper interme-
diate locations. Among the most recent algorithms, RIFE
[6] directly predicts intermediate flows to warp the input
frames and blends the warped frames into intermediate ones
by a visible mask. VFIformer [14] adopts the same idea to
predict the intermediate flows but proposes a Transformer to
synthesize the intermediate from both warped images and
features. Reda et al. [23] design a scale-agnostic feature
pyramid to predict the intermediate flows and warp frames
in a hierarchical manner to handle extreme large motions.
Siyao and Zhao et al. [30] propose a frame interpolation
pipeline specific for 2D cartoon in the wild, while Chen and
Zwicker [5] improves the perceptual quality by embedding
an optical-flow based line aggregator. While these methods
achieve impressive performance on raster natural or cartoon
videos, their pixel-oriented nature are not suitable for inbe-
tweening concise and sparse line arts, which can yield severe
artifacts and are not feasible for real usage in anime creation.
Research on Anime. There has been increasing re-
search interest in techniques to facilitate 2D cartoon cre-
ation, including sketch simplification [28, 27], vectorization
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Figure 4: Data composition. Training and test sets are separately
composed by 10 characters × 10 actions. First & second rows are
training & test characters, respectively. Shaded are for validation.

[40, 36, 15, 12], colorization [22, 32, 10, 39, 4], shading
[38], head reenactment [8] and line-art-based cartoon gener-
ation [37]. While these studies may improve specific aspects
of animation creation, the core line arts still rely on manual
frame-by-frame drawing. Some sporadic rule-based methods
have been developed for stroke inbetweening under strict
conditions, but these methods lack the flexibility required for
wider applications [35, 3]. Our work is the first to propose a
deep learning-based method for inbetweening geometrized
line arts. Additionally, we introduce vertex-wise correspon-
dence datasets on line arts. It is noteworthy that existing
datasets are not sufficiently ‘clean’ for our task since cartoon
contour lines can cross the boundaries of motion, leading to
incorrect corresponding labels at the vertex level [25, 29].

3. Mixamo Line Art Dataset

To facilitate training and evaluation of geometrized line
inbetweening, we develop a large-scale dataset, named Mix-
amoLine240, which consists of 240 sequences of consecutive
line drawing frames, with 100 sequences for training and 140
for validation and testing. To obtain this vast amount of car-
toon line data, we utilize a “Cel-shading” technique, i.e., to
use computer graphics software (Blender in this work) to ren-
der 3D resources into an anime-style appearance that mimics
the hand-drawn artistry. Unlike previous works [25, 29] that
only provide raster images, MixamoLine240 also provides
ground-truth geometrization labels for each frame, which
include the coordinates of a group of vertices (V ) and the
connection topology (T ). Additionally, we assign an index
number (R[i]) to each 2D endpoint (V [i]) that refers to a
unique vertex in the 3D mesh of the character, as illustrated
in Figure 3, which can be further used to deduce the vertex-
level correspondence. Specifically, given two frames I0 and

Table 1: Difficulty statistics with various frame gaps.

Frame gap→ 0 (60 fps) 1 (30 fps) 5 (10 fps) 9 (6 fps)

Tr
ai

n Occlusion rate (%) 14.8 21.5 37.8 46.6
Avg. vtx shift 8.6 16.4 42.6 62.8
Avg. max vtx shift 26.0 48.9 129.7 192.3

Te
st

Occlusion rate (%) 18.4 26.5 44.2 53.5
Avg. vtx shift 7.8 14.9 38.9 57.0
Avg. max vtx shift 23.8 45.0 119.3 173.5

I1 in a sequence, the 3D reference IDs reveal the vertex
correspondence {(i, j)} for those vertices i in I0 and j in
I1 having R0[i] = R1[j], while the rest unmatched vertices
are marked as occluded. This strategy allows us to produce
correspondence pairs with arbitrary frame gaps to flexibly
adjust the input frame rate during training. Next, we discuss
the construction and challenges inherent in the data.
Data Construction. In Blender, the mesh structure of a
3D character remains stable, i.e., the number of 3D vertex
and the edge topology keep constant, when moving without
additional subdivision modifier. We employ this property
to achieve consistent line art rendering and accurate anno-
tations for geometrization and vertex matching. As shown
in Figure 3, the original 3D mesh contains all the necessary
line segments required to represent the character in line art.
During rendering, the visible outline from the camera’s per-
spective is selected based on the material boundary and the
object’s edge. This process ensures that every line segment
in the resulting raster image corresponds to an edge in the
original mesh. The 2D endpoints of each line segment are
simply the relevant 3D vertices projected onto the camera
plane, referenced by the unique and consistent index of the
corresponding 3D vertex. Meanwhile, since the 3D mesh
naturally defines the vertex connections, the topology of the
2D lines can be transferred from the selective edges used for
rendering. To prevent any topological ambiguity that may
be caused by overlapped vertices in 3D space, we merge the
endpoints that are within a Euclidean distance of 0.1 in the
projected 2D space. This enables us to obtain both the raster
line drawings and the accurate labels of each frame.

To create a diverse dataset, we used the open-source 3D
material library Mixamo [1] and selected 20 characters and
20 actions, as shown in Figure 4. Each action has an average
of 191 frames. We combined 10 characters and 10 actions
to render 100 sequences, with a total of 19,930 frames as
the training set. We then used the remaining 10 characters
and 10 actions to render an 18,230-frame test set, ensuring
that the training and testing partitions are exclusive. We
also created a 44-sequence validation set, consisting of 20
unseen characters, 20 unseen actions, and 4 with both unseen
character and action. To create this set, we combined the test
characters “Swat”and “Warrok” and actions “sword slash”
and “hip hop” with the training characters and actions. The
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Figure 5: Pipeline of proposed AnimeInbet. Our framework is composed of four main parts: the vertex geometric embedding, the vertex
correspondence Transformer, repositioning propagation and graph fusion. Given a pair of line images I0 and I1 and their vector graphs G0

and G1, our method generates the intermediate frame Gt in geometrized format.

validation set contains 11,102 frames and was also rendered
at 1080p resolution with a frame rate of 60 fps. To ensure
consistency across all frames, we cropped and resized each
frame to a unified 720× 720 character-centered image.
Challenges. Table 1 summarizes the statistics that reflect
the difficulty of the line inbetweening task under various
input frame rates. With an increase in frame gaps, the inbe-
tweening task becomes more challenging with larger motion
magnitudes and higher occlusion percentages. For instance,
when the frame gap is 9, the input frame rate becomes 6 fps,
and the average vertex shift is 62.8 pixels. The mean value of
the maximum vertex shift in a frame (“Avg. max vtx shift”)
reaches 192.3 pixels, which is 27% of the image width. Ad-
ditionally, nearly half of the vertices are unmatched in such
cases, making line inbetweening a tough problem. Further-
more, the image composition of the test set is more complex
than that of the training set. A training frame has an average
of 1,256 vertices and 1,753 edges, while a test frame has an
average of 1,512 vertices and 2,099 edges since the test set
has more complex characters such as “Maw”.

4. Our Approach
An overview of the proposed line inbetweening frame-

work, AnimeInbet, is depicted in Figure 5. Unlike exist-
ing frame interpolation methods that use raw raster images
I0 and I1, we process vector graphs G0 = {V0, T0} and
G1 = {V1, T1} instead. The vertex coordinates in the im-
ages are represented by V ∈ RK×2, and the binary adja-
cency matrix is denoted by T ∈ 0, 1K×K , where K denotes
the number of vertices. The goal is to generate the interme-
diate graph Gt at time t ∈ (0, 1). To this end, we first design
a CNN-based vertex geometric embedding to encode V0 and
V1 to features F0 and F1 , respectively, as detailed in Section
4.1. Along with the embeddings, a vertex correspondence
Transformer is proposed to aggregate the mutuality of vertex
features to F̂0 and F̂1 by alternating self- and cross-attention
layers (Section 4.2). The aggregated features are used to
compute the correlation matrix C ∈ RK0×K1 and to induce
the vertex matching by row-wise and column-wise argmax.
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Figure 6: Vertex Geometric Embedding. The goal is to obtain
discriminative and meaningful features to describe each vertex.

In cases where vertices are occluded during large motion,
we adopt a self-attention-based layer to propagate the vertex
shifts from matched vertices to the unmatched, and obtain
repositioning vectors r0 ∈ RK0×2 and r1 ∈ RK1×2 for
all vertices (Section 4.3). Finally, we superpose the two
input graphs based on the predicted correspondence, and
we further refine the output by predicting visibility maps
m0 ∈ {0, 1}K0 and m1 ∈ {0, 1}K1 to mask off those ver-
tices of V0 and V1 that disappear in the intermediate frame,
respectively, to obtain the final inbetweened line drawing Gt,
as explained in Section 4.5.

Geometrizing Line Drawings. The process of creating art-
work has become largely digital, allowing for direct export in
vectorized format. However, for line drawings that only ap-
pear in raster images, there are various commercial software
and open-source research projects available [40, 36, 15, 12]
that can be used to convert the raster images into the required
vectorized input format. We will ablate the performance of
line vectorization in our experiments.



SA

SA

CA

F1

F0 F
(i)
0

F
(i)
1

CA

F̂
(i)
1

CA(F
(i)
0 , F

(i)
1 )

CA(F
(i)
1 , F

(i)
0 )

⇥N

F̂
(i)
0

F̂0

F̂1

Figure 7: Vertex Correspondence Transformer. SA and CA
represent self-attention and cross-attention, respectively.

4.1. Vertex Geometric Embedding

Discriminative features for each vertex are desired to
achieve accurate graph matching. Line graphs are different
from general graphs as the spatial position of endpoint ver-
tices, in addition to the topology of connections, determines
the geometric shape of the line. The geometric graph embed-
ding for line art is hence designed to comprise three parts:
1) image contextual embedding, 2) positional embedding,
and 3) topological embedding, as shown in Figure 6.

For image contextual embedding, we use a 2D CNN EI to
extract deep contextual features within the same size of the
input raster image I . Then, for each vertex V0[i] := (x, y)
we index feature EI(I) [(x, y)] as the image embedding for
the i-th vertex. As to the positional embedding, we employ
a 1D CNN EP to map each vertex coordinate (x, y) to a
C-dimensional feature. To include the topological infor-
mation into a lower dimensional feature, we first conduct
spectral embedding [2] S on the binary adjacency matrix T ,
which involves an eigenvector decomposition on the Lapla-
cian matrix of the graph, then feed the spectral embedding
to a subsequent 1D CNN ET . The final geometric graph
embedding is formulated as

F0 = EI (I0) [V0] + EP (V0) + ET (S (T0)) . (1)

We obtain F1 in the same way.

4.2. Vertex Correspondence Transformer

We use geometric features F0 and F1 to establish a vertex-
wise correspondence between G0 and G1. Specifically, we
compute a correlation matrix between vertex features and
identify the matching pair as those with the highest value
across both the row and the column of the matrix. Prior to
this step, we apply a Transformer that aggregates the mutual
consistency both intra- and inter-graph.
Mutual Aggregation. Following [24, 31], we employ a cas-
cade of alternating self- and cross-attention layers to aggre-
gate the vertex feature. In a self-attention layer, all queries,
keys and values are derived from the single source feature,

SA(F0) = softmax
(Q(F0)KT (F0)√

C

)
V(F0), (2)

where Q, K and V represent MLPs for query, key and value,
respectively; while in the cross-attention layer, the keys and
values are computed from another feature:

CA(F0, F1) = softmax
(Q(F0)KT (F1)√

C

)
V(F1). (3)

After N layers of rotating self- and cross-attention layers as
shown in Figure 7, we obtain aggregated feature F̂0 and F̂1.
In the aggregation, each vertex is represented as an atten-
tional pooling of all other vertices within the same graph and
across the two graphs achieving a full fusion of information
with mutual dependencies.
Correlation Matrix and Vertex Matching. We compute
the correlation matrix P as P =

F̂0F̂
T
1√

C
. We further apply

a differentiable optimal transport (OT ) [24] to improve the
dual selection consistency and obtain P̂ = OT (P). Then,
we predict the one-way matching from G0 to G1 and vice
versa as argmax indices across rows and columns:{

M0→1 = {(i, j)|j = argmax P̂i,:, i = 0, ...,K0 − 1}
M1→0 = {(i, j)|i = argmax P̂:,j , j = 0, ...,K1 − 1}.

(4)
A vertex pair is selected into the final correspondence if it is
mutually consistent and its correlation value is larger than θ:

M̂ =
{
(i, j)|(i, j) ∈ M0→1 ∩M1→0, P̂i,j > θ

}
. (5)

Otherwise, vertices will be considered to be occluded.

4.3. Repositioning Propagation

Fused vertices (i, j) from vertex correspondence can be
linearly relocated to tV0[i] + (1 − t)V1[j] in intermediate
graph Gt based on time t. However, the positions of the
unmatched vertices in Gt are still unknown. To reposition
these vertices, we design an attention-based scheme similar
to Xu et al. [33] to predict bidirectional shift vectors r0→1

and r1→0 for V0 and V1, respectively. Formally, r0→1 = softmax
(

F̂0F̂
T
0√

C

)(
softmax(P̂)V1 − V0

)
r1→0 = softmax

(
F̂1F̂

T
1√

C

)(
softmax(P̂T )V0 − V1

)
.

(6)
We then compute the final repositioning vectors as follows:

r0[i] =

{
V1[j]− V0[i], if ∃ j s.t. (i, j) ∈ M̂,
r0→1[i], otherwise,

(7)

while r1 is computed in a similar way.
In this step, the motion vector r0→1 of an unmatched

vertex V0[i] is computed as a softmax average of shifts to
all vertices in G1, i.e., softmax(P̂i,:)V1 − V0. It is then
refined by attention pooling from matched vertices, based on
self-similarity given by F̂0F̂

T
0 /

√
C. Vertices are reasonably

repositioned in the new vector graph after this step.



Table 2: Quantitative evaluations of state-of-the-art frame interpolation methods using Chamfer Distance (reported in units of
×10−5, with lower values indicating better performance). The first place and runner-up are highlighted in bold and underlined, respectively.

Validation Set Test Set

Method gap = 1 gap = 5 gap = 9 Avg. gap = 1 gap = 5 gap = 9 Avg.

VFIformer [14] 7.82 26.04 50.71 28.19 7.62 27.55 50.68 28.62
RIFE [6] 5.02 27.79 49.81 27.54 5.85 28.91 51.08 28.61
EISAI [5] 5.66 27.64 49.43 27.57 6.02 29.14 52.36 29.17
FILM [23] 3.18 16.84 30.74 16.92 3.50 17.94 33.51 18.31

AnimeInbet (ours) 2.20 11.12 21.27 11.53 2.80 12.69 23.21 12.90
AnimeInbet-VS(ours) 2.62 11.43 22.36 12.14 3.44 13.41 23.67 13.51

4.4. Visibility Prediction and Graph Fusion

To handle occlusions in the source line arts, we use a
three-layer MLP to predict binary visibility maps m0 and
m1 for the input graphs, obtained as m0 = MLP(F̂0) and
m1 = MLP(F̂1). Then, we merge the vertices to Vt in the
two graphs according to the following rule:

Vt =
{
(1− t)V0[i] + tV1[j]

∣∣∣ (i, j) ∈ M̂
}

∪
{
V0[i] + t · r0[i]

∣∣∣ i /∈ M̂,m0[i] = 1
}

∪
{
V1[j] + (1− t)r1[j]

∣∣∣ j /∈ M̂,m1[j] = 1
}
,

(8)

where we implement the repositioning that is compatible
with arbitrary time t ∈ (0, 1). As to Tt, we union all origi-
nal connections if both endpoint vectors are both visible in
Gt. Or formally, Tt [̃i][̃j] = Tt [̃j][̃i] = 1 if T0[i][j] = 1 or
T1[i][j] = 1, where (i, j) and (̃i, j̃) are the vertex indices in
the original graph and the merged one.

4.5. Learning

The training objective of AnimeInbet composes of three
terms: L = Lc + Lr + Lm, where the Lc, Lr and Lm

are used to supervise the learning of vertex matching M̂,
repositioning vectors r0 and r1, and visibility masks m0 and
m1, respectively. Lc is to enlarge the correlation values of
ground truth pairs and is defined as:

Lc = − 1

|MGT |
∑

(i,j)∈MGT

log P̂i,j , (9)

where MGT is the ground truth matching labels. For Lr and
Lm, we regress r0→1, r1→0, m0, and m1 as follows:

Lr =
1

K0
∥r0→1 − rGT

0→1∥1 +
1

K1
∥r1→0 − rGT

1→0∥1

Lm = BCEw
(
σ(m0),m

GT
0

)
+ BCEw

(
σ(m1),m

GT
1

)
,

(10)
where σ represents the sigmoid function, and BCEw is the bi-
nary cross-entropy loss with bias weight w. However, since

the shift vectors of occluded vertices cannot be obtained
directly by subtracting the matched vertices, we conduct a
frame-by-frame backtrack to generate pseudo labels to sup-
port the point-wise supervision of the repositioning vector
and visibility maps.
Pseudo Labels of Repositioning and Visibility. Assume
G(0) and G(Z) are the 0-th and the Z-th frames in a training
sequence, which are used for two input line sources. Al-
though there can exist many unmatched vertices in the two
graphs when the gap Z is large, the matching rate between
adjacent frames (gap = 0) is relatively high according to
Table 1. Based on this, we iteratively backtrack a shift vector
r(z) from the G(Z) to G(0):

r(z)[i] =

{
V (z+1)[j]− V(z)[i] + r(z+1), if i, j is matched
1

|Ni|
∑

k∈Ni
r(z)[k], otherwise

(11)
where Ni regards to the neighbors of the i-th vertex in G(z)

and r(Z) is initialized to be 0. The termination r(0) of the
backtrack is regarded as the pseudo repositioning label rGT

0→1.
As to the visibility labels, we first deuce rGT

0→t as above and
compute mGT

0 as

mGT
0 [i] =

{
1, if V0[i] + rGT

0→t ∈ Ĩt,
0, otherwise,

(12)

where Ĩt is It dilated by a 3× 3 kernel. rGT
1→0 and mGT

1 are
computed in reversed order.

5. Experiments
Implementation Details. In the vertex geometric embed-
ding module, the image encoder EI is implemented as a
three-layer 2D CNN, while the positional encoder EP and
the topological encoder ET are 1D CNNs with a kernel size
of 1. Encoding feature C is 128 in our experiments. Before
feeding vertex coordinates V into EP , V are first normalized
to the scale between (−1, 1); the dimension of the spectral
embedding feature is 64. Threshold θ in Equation 5 is 0.2.
In both training and evaluation, intermediate time t is 0.5,
which regards the center frame between I0 and I1. The de-
tailed network structures are provided in the supplementary
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Figure 8: Inbetweening results on MixamoLine240 test set. Examples are arranged from small (top) to large (bottom) motion magnitudes.

file. We use Adam [9] optimizer with a learning rate of
1× 10−4 to train the AnimeInbet for 70 epochs, where we
first solely supervise the network using the correspondence
loss Lc for the 50 epochs, and then adopt the full loss L for
the rest 20 epochs. Bias weight w in Lm is 0.2. Since vertex
numbers differ in frames, we feed one pair of input frames
each time but adopt gradient accumulation for a mini-batch
size of 8. The model is trained with an NVIDIA Tesla V100
GPU for about five days. During the test, Gt is visualized as
a raster image by cv2.line function with a line width of
2 pixels. We evaluate our model on both ground truth vector-
ization labels (noted as “AnimeInbet”) and those vectorized
from VirtualSketcher [15] (noted as “AnimeInbet-VS”, to
simulate the cases when input anime drawing are vector and
raster, respectively.

Evaluation Metric. Following [16, 5], we adopt the cham-
fer distance (CD) as the evaluation metric, which has been
initially introduced to measure the similarity between two

point clouds. Formally, CD is computed as:

CD(It, I
GT
t ) =

1

HWd

∑
(ItDT(IGT

t ) + IGT
t DT(It)),

(13)
where It and IGT

t are predicted binary lines and ground
truth, while H , W and d are image height, width, and a
search diameter [5], respectively. DT denotes the Euclidean
distance transform. To transfer predicted raster images into
binary sketches, we threshold pixels smaller than 0.99 times
the maximum value to 0.

5.1. Comparison to Existing Methods

Since there is no existing geometrized line inbetweening
study that we can directly compare our proposed model with,
we set several state-of-the-art raster-image-based frame in-
terpolation methods as baselines, including VFIformer [14],
RIFE [6], EISAI [5], FILM [23]. Specifically, EISAI is
originally intended for 2D animation and embeds an opti-



Figure 9: Statistics of user study. In the boxplot, triangles and
colored lines represent mean and median values, respectively. Cir-
cles are outliers beyond 1.5× interquartile range (3σ in a normal
distribution).

cal flow-based contour aggregator. We test each model’s
performance on frame pairs within frame gaps of 1, 5 and
9, respectively. For fairness, we finetune each compared
method on the training set of MixiamoLine240 with relative
frame gaps using a learning rate of 1× 10−6 for five epochs.

As shown in Table 2, our AnimeInbet favorably outper-
forms all compared methods on both the validation set and
the test set of MixamoLine240. On the validation set, our ap-
proach achieves an average CD value of 11.53, representing
a significant improvement over the best-performing com-
pared method, FILM, with over 30% enhancement. Upon
closer inspection, the advantage of AnimeInbet becomes
more pronounced as the frame gap increases (0.98, 5.72 and
9.47 for gaps of 1, 5, and 9, respectively), indicating that
our method is more robust in handling larger motions. On
the test set, our method maintains its lead over the other
compared methods, with improvements of 0.70 (20%), 5.25
(29%), and 10.30 (31%) from the best-performing compared
method FILM for the frame gaps of 1, 5, and 9, respectively.
Given that both the characters and actions in the test set
are new, our method’s superiority on the test set provides
more convincing evidence of its advantages over the existing
frame interpolation methods.

To illustrate the advantages of our method, we present
several inbetweening results in Figure 8. We arranged these
examples in increasing levels of difficulty from top to bot-
tom. When the motion is simple, compared methods can
interpolate a relatively complete shape of the main body of
the drawing. However, they tend to produce strong blurring
(RIFE) or disappearance (VFIformer, EISAI, and FILM) of
noticeable moving compositions (indicated by red arrows).
In contrast, our method maintains a concise line structure in
these key areas. When the input frames involve the whole
body’s movement within large magnitudes, the intermediate
frames predicted by the compared methods become indistin-
guishable and patchy, rendering the results invalid for further

Table 3: Ablation study on vertex encoding.

EI EP ET Acc. (%) Valid Acc. (%) CD (↓)

✓ ✗ ✗ 51.66 31.01 12.30
✓ ✓ ✗ 61.87 55.62 11.55
✓ ✗ ✓ 59.28 45.45 11.86
✓ ✓ ✓ 65.51 61.28 11.12

Table 4: Ablation study on repositioning and visibility mask.

Method CD (↓)

w/o. repositioning propagation 23.62
w/o. visibility mask 12.81
full model 11.12

use. However, our AnimeInbet method can still preserve the
general shape in the correct positions, even with a partial
loss of details, which can be easily fixed with minor manual
effort.
User Study. To further evaluate the visual performance
of our methods, we conduct a user study among 36 partici-
pants. For each participant, we randomly show 60 pairs, each
composed of a result of AnimeInbet and that of a compared
method, and ask the participant to select the better. To allow
participants to take temporal consistency into the decision,
we display these results in GIF formats formed by triplets of
input frames and the inbetweened one. The winning rates of
our method are shown in Figure 9, where AnimeInbet wins
over 92% versus the compared methods. Notably, for “gap
= 5” and “gap = 9” slots, the winning rates of our methods
are close to 100% with smaller deviations than “gap = 1”,
suggesting the advantages of our method on cases within
large motions.

5.2. Ablation Study

Embedding Features. To investigate the effectiveness of
the three types of embeddings mentioned in Section 4.1,
we trained several variants by removing the corresponding
modules. As shown in Table 3, for each variant, we list the
matching accuracy for all vertices (“Acc.”), the accuracy for
non-occluded vertices (“Valid Acc.”) and the final CD values
of inbetweening on the validation set (gap = 5). If removing
the positional embedding EP , the “Valid Acc.” and the CD
value drop 15.83% and 0.74, respectively; while the lacking
of topological embedding ET lowers “Valid Acc.” by 5.66%
and worsens CD by 0.43, which reveals the importance of
these two components.
Repositioning Propagation and Visibility Mask. We
demonstrate the contribution of repositioning propagation
(prepos. prop.) and visibility mask (vis. mask) both quan-
titatively and qualitatively. As shown in Table 4, without
repositioning propagation, the CD value will be sharply wors-



AnimeInbet AnimeInbet-VSw/o. vis. maskw/o. repos. prop.predicted corr.I0, I1

Figure 10: Visualization of ablation study. In predicted correspondence, matched vertices are marked in the same colors, while unmatched
are black (please zoom in).

Table 5: Ablation study on data influence.

Validation data (gap = 5) Occ. (%) Shift CD (↓)

Unseen characters (2× 10) 34.30 44.59 14.70
Unseen actions (10× 2) 37.71 31.53 8.98
Unseen both (2× 2) 34.10 29.62 9.98

ened by 12.50 (112%), while the lacking of visibility mask
will also make a drop of 1.69 (15%). An example is shown
in Figure 10, where “w/o. repos. prop.” appears within many
messy lines due to undefined positions for those unmatched
vertices, while “w/o. vis. mask” shows some redundant
segments (red box) after repositioning; the complete Ani-
meInbet can resolve these issues and produce a clean yet
complete result.

Geometrizor. As shown in Table 2, the quantitative metrics
of AnimeInbet-VS are generally worse by around 0.6 com-
pared to AnimeInbet. This is because VirtualSketcher [15]
does not vectorize the line arts as precisely as the ground
truth labels (average vertex number 587 vs 1,351). As shown
in Figure 10, the curves in “AnimeInbet-VS” become sharper
and lose some details, which decreases the quality of the in-
betweened frame. Using a more accurate geometrizer would
lead to higher quality inbetweening results for raster image
inputs.

Data Influence. As mentioned in Section 3, we created a val-
idation set composed of 20 sequences of unseen characters
but seen actions, 20 of unseen actions but seen characters
and 4 of unseen both to explore the influence on data. Our
experiment finds that whether the characters or the actions
are seen does not fundamentally influence the inbetweening
quality, while the motion magnitude is the key factor. As
shown in Table 5, the CD value of unseen characters is 14.70,
which is over 47% worse than that of unseen both due to
larger vertex shifts (44.59 vs 29.62), while the difference
between the CD values of unseen actions and unseen both is
around 10% under similar occlusion rates and shifts.

6. Conclusion

In this study, we address the practical problem of car-
toon line inbetweening and propose a novel approach that
treats line arts as geometrized vector graphs. Unlike previ-
ous frame interpolation tasks on raster images, our approach
formulates the inbetweening task as a graph fusion problem
with vertex repositioning. We present a deep learning-based
framework called AnimeInbet, which shows significant gains
over existing methods in terms of both quantitative and qual-
itative evaluation. To facilitate training and evaluation on
cartoon line inbetweening, we also provide a large-scale ge-
ometrized line art dataset, MixamoLine240. Our proposed
framework and dataset facilitate a wide range of applications,
such as anime production and multimedia design, and have
significant practical implications.
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