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Abstract

Neural Radiance Fields (NeRF) has achieved impressive
results in single object scene reconstruction and novel view
synthesis, as demonstrated on many single modality and
single object focused indoor scene datasets like DTU [14],
BMVS [41], and NeRF Synthetic [24]. However, the study
of NeRF on large-scale outdoor scene reconstruction is still
limited, as there is no unified outdoor scene dataset for
large-scale NeRF evaluation due to expensive data acqui-
sition and calibration costs.

In this work, we propose a large-scale outdoor multi-
modal dataset, OMMO dataset, containing complex ob-
jects and scenes with calibrated images, point clouds and
prompt annotations. A new benchmark for several outdoor
NeRF-based tasks is established, such as novel view syn-
thesis, surface reconstruction, and multi-modal NeRF. To
create the dataset, we capture and collect a large number
of real fly-view videos and select high-quality and high-
resolution clips from them. Then we design a quality review
module to refine images, remove low-quality frames and
fail-to-calibrate scenes through a learning-based automatic
evaluation plus manual review. Finally, a number of vol-
unteers are employed to add the text descriptions for each
scene and keyframe.Compared with existing NeRF datasets,
our dataset contains abundant real-world urban and nat-
ural scenes with various scales, camera trajectories, and
lighting conditions. Experiments show that our dataset can
benchmark most state-of-the-art NeRF methods on different
tasks. We will release the dataset and model weights soon.

1. Introduction
Recent advances in implicit neural representations have

achieved remarkable results in photo-realistic novel view
synthesis and high-fidelity surface reconstruction [43, 42].
Unfortunately, most of the existing methods focus on a sin-
gle object or an indoor scene [43, 42, 9, 15, 5], and their
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Prompt annotation
Buildings at night in the background; two tall buildings in

the middle; roads among buildings; cars are passing on the road;
tall buildings decorated with blue and orange lights.
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Figure 1. A city scene example from our dataset captured with low
illuminance and circle-shaped camera trajectory. We show multi-
view calibrated images, the camera track, and text descriptions of
the scene. Some details in colored boxes are zoomed in to indicate
that our dataset can provide real-world high-fidelity texture details.

synthesis performance will decrease drastically if migrated
to outdoor scenes. Although some very recent methods
try to solve this problem and are well-designed for large
scenes [35, 39], their performance is difficult to compare
due to the lack of large-scale outdoor scene datasets and
uniform benchmarks.

At present, the existing outdoor scene datasets are either
collected with simple scenes containing very few objects,
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Table 1. Comparison with existing NeRF datasets, especially those
outdoor datasets (or outdoor parts) related to ours. The first group
is for single objects, the second group is for large scenes, and the
last row is our dataset. For each dataset, we show the number
of scenes and images, whether the scene types, camera trajecto-
ries, and lighting conditions are diverse, whether they are real-
world scenes (called Real), and whether they have multi-modal
data (called M-modal).

Datasets # Scenes # Images Types Camera Lighting Real M-modal

DTU [14] 124 4.2K No No Yes Yes No
NeRF [24] 18 3551 No Yes No Yes No
Scannet [7] 1.5K 2.5M No Yes No Yes No
T & T [18] 6 88k No No No Yes No
BlendedMVS [41] 28 5k Yes No No No No
UrbanScene3D [22] 16 10.4K Yes No No Part No
Quad 6k [6] 1 5.1K No Yes No Yes No
Mill 19 [35] 2 3.6K Yes No No Yes No

Ours 33 14.7K Yes Yes Yes Yes Yes

or rendered from virtual scenes, all at a small geographi-
cal scale. For example, Tanks and temples [18] provides a
benchmark of realistic outdoor scenes captured by a high-
precision industrial laser scanner, but its scene scale is still
too small (463m2 on average) and only focuses on a sin-
gle outdoor object or building. The BlendedMVS [41] and
UrbanScene3D [22] datasets contain scene images rendered
from reconstructed or virtual scenes, which deviate from the
real scene in both texture and appearance details. Collecting
images from the Internet can theoretically build very effec-
tive datasets [13, 1], like ImageNet [8] and COCO [21], but
these methods are not suitable for NeRF-based task eval-
uation due to the changes of objects and lighting condi-
tions in the scene at different times. Our dataset acquisi-
tion method is similar to Mega-NeRF [35], which captures
large real-world scenes by drones. But Mega-NeRF only
provides two monotonic scenes, which hinders it from be-
ing a widely used baseline. Therefore, to our knowledge,
no uniform and widely recognized large-scale scene dataset
is built for NeRF benchmarking, causing large-scale NeRF
research for outdoor far fall behind that for single objects or
indoor scenes [14, 41, 24, 7].

To address the lack of large-scale real-world outdoor
scene datasets, we introduce a well-selected fly-view multi-
modal dataset. The dataset contains totally 33 scenes with
prompt annotations, tags, and 14K calibrated images, as
shown in Figure 1. Different from the existing methods
mentioned above, the sources of our scenes are very ex-
tensive, including those collected on the Internet and cap-
tured by ourselves. Meanwhile, the collection indicators
are also comprehensive and representative, including vari-
ous scene types, scene scales, camera trajectories, lighting
conditions, and multi-modal data that are not available in
existing datasets (see Table 1. More importantly, we pro-
vide a generic pipeline to generate real-world NeRF-based

Ours Satellite-view

Figure 2. Visual comparison with existing large-scale satellite-
view outdoor datasets [39] acquired from Google Earth Studio.
The top row is from [39], and the bottom row is corresponding
scenes from our fly-view dataset, which is more realistic with clear
textures and rich details (zoom-in for the best of views).

data from drone videos on the Internet, which makes our
dataset easily to be extensible by the community.

Further, to evaluate the applicability and performance
of the built dataset for evaluating mainstream NeRF meth-
ods, we build all-around benchmarks including novel view
synthesis, scene representations, and multi-modal synthe-
sis based on the dataset. Moreover, we provide several
detailed sub-benchmarks for each above task, according to
different scene types, scene scales, camera trajectories and
lighting conditions, to give a fine-grained evaluation of each
method.

To summarize, our main contributions include:

• Aiming at advancing the large-scale NeRF research,
we introduce an outdoor scene dataset captured from
the real world with multi-modal data, which surpasses
all existing relative outdoor datasets in both quantity
and diversity, see Table 1 and Sec. 3.3.

• To form a uniform benchmarking standard for outdoor
NeRF methods, we create multiple benchmark tasks
for mainstream outdoor NeRF methods. Extensive ex-
periments show that our dataset can well support com-
mon NeRF-based tasks and provide prompt annota-
tions for future research, see Sec. 4.

• We provide a cost-effective pipeline for converting
videos that can be flexibly accessed from the Inter-
net to NeRF-purpose training data, which makes our
dataset easily scalable, see Sec. 3.1 and Sec. 3.2.
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Figure 3. The pipeline for our dataset generation. The original videos are collected from both YouTube and captured by us, and then
fed into the review and annotation module. The former mainly removes low-quality frames and failed scenes; the latter annotates text
descriptions for scenes and keyframes. Currently, we have generated 33 scenes with 14K images and text descriptions.

2. Related Work

2.1. Neural Scene Representation and Rendering

Neural Radiance Fields (NeRF) [24] propose an effec-
tive implicit neural scene representation method to synthe-
size novel views by the single scene optimization. Many
subsequent coordinate-based methods are inspired by it, and
we can classify them into neural surface fields [27, 42, 37]
and neural radiance fields [26, 16, 44] based on the shape
representation differences. However, both ways have poor
performance on large scenes due to the limited representa-
tion capability of MLP-based networks adopted in NeRF.
Even with prior information, it is difficult to directly ap-
ply small-scale scene-focused methods due to the increased
scene complexity [43, 19].

Fortunately, some very recent works have started to
study the neural representation for large-scale scenes.
Mega-NeRF [35] divides the large fly-view scene into mul-
tiple small blocks to train specialized NeRFs in parallel.
Block-NeRF [34] also adopts this simplified idea, divid-
ing the neighborhood into blocks, and then novel views are
sampled from overlapping blocks and combined according
to inverse distance weights. CityNerf (BungeeNeRF) [39]
introduces a progressive neural radiance field that starts
from fitting distant views with a shallow base block, and
appends new blocks to accommodate details. NeRF in the
Wild (NeRF-W) [23] introduces a series of extensions to
NeRF [24] to synthesize novel views of complex scenes,
using only unstructured collections of in-the-wild photos.
Recursive-NeRF [40] provides an efficient and adaptive ren-
dering and training approach for NeRF, that forwards high
uncertainties coordinates to a bigger network with more
powerful representational capability.

However, the aforementioned large-scale NeRF meth-
ods [35, 34, 39, 23, 40]use different outdoor datasets with
various capturing conditions and research focuses, causing
difficulty to fairly compare these NeRF methods’ perfor-
mance on common tasks based on a uniform benchmark.

2.2. NeRF-based Datasets and Benchmarks

There are widely used NeRF datasets and established
benchmarks for single objects [14, 24], unbounded ob-
jects [41], human faces [29], and indoor scenes [7], see the
first group in Table 1.

For large-scale outdoor scenes, some datasets provide
high-fidelity models from accurate radar scans, but this ex-
pensive data acquisition makes the scale and size of these
datasets still unsatisfactory [18]. Rendering images from
optimized models will result in higher cost and unreal-
istic scenes [41, 22]. Correspondingly, a low-cost and
easy-to-expand way is to collect images of the same scene
shot by different people and devices, at different times
from the Internet [13, 1]. However, these methods do not
meet the needs of common NeRF tasks due to the changes
in weather, lighting, and objects in the scene. Mega-
NeRF [35] builds two high-quality fly-view real scenes
and calibrated images, but has not become a widely used
benchmark due to its small size and single type. There
are also large-scale NeRF datasets and benchmarks for spe-
cific problems, such as neighborhoods [34] or remote sens-
ing [39], see the second group in Table 1.

In conclusion, for the reasons mentioned above, none
of the above datasets have formed a widely used uniform
benchmark. So a more comprehensive outdoor NeRF-based
dataset is required, to facilitate the research and exploita-
tion of larger-scale implicit scene representation. In con-



trast, the built dataset in this work provides 33 large-scale
scenes, more than 14K fly-view images with camera poses,
rich content, and text descriptions. Meanwhile, several new
large-scene fly-view-based benchmarks for novel view syn-
thesis, implicit scene representations, and multi-modal syn-
thesis tasks are also proposed.

3. Dataset Generation

Our dataset acquisition, calibration, and annotation
pipeline are shown in Figure 3. We first decompose and
enhance the original videos by time-sampling and color-
correcting, and review the quality of the frames and scene
calibrations by automated models followed by volunteers to
remove low-quality frames and fail-to-calibrate scenes, see
Sec. 3.1. Then volunteers provide prompt annotations for
each scene and keyframe, and the CLIP [28] model is ex-
ploited to cooperate with human experts, to supervise the
semantic consistency between labeled text and correspond-
ing images, see Sec. 3.2. Finally, we introduce the dataset
distribution from several aspects such as scene categories
and collection cost, see Sec.3.3 and Sec.3.4.

3.1. Acquisition and Calibration Method

Original Videos. Our outdoor fly-view dataset mainly
comes from two sources: captured by ourselves and col-
lected on YouTube. Among them, the YouTube videos are
from worldwide, including urban and natural scenes of var-
ious geographical scales, various camera moving trajecto-
ries and lighting conditions. However, these videos often
have limited resolution due to the compression when up-
loading, while our captured videos are all 4K HD and can
meet more high-fidelity NeRF needs. Benefiting from the
diversity of the videos, the proposed scenes in our dataset
include various elements, such as buildings, roads, trees,
islands, mountains, rivers, etc. In addition, compared to
synthetic data, our scenes’ space layout, surface reflection,
and lighting conditions are completely real, which supports
NeRF methods’ learning about real-world outdoor scenes.
To have different lighting conditions in the same scene like
DTU [14], we use drones to capture videos of the same
building at different times and weather conditions. To ex-
plore the impact of different camera trajectories, we scan
the same scene with different flight strategies. Overall, our
original videos come from 268 real scans from around the
world, covering a variety of scene types, camera trajecto-
ries, and lighting conditions.

Color Correction. We set different sampling intervals
according to the video length and frames per second, so that
the remaining frame number is between 800-1000 to meet
the needs of calibration, yielding a total of 240K frames.
For low-light or rainy scenes, we first use an image enhance-
ment model to recover the texture features [17].

Auto Assessment. Then NIMA [33] model is employed
to evaluate image quality and remove blur, ghosting, and
low-quality images. After this step, the 240K frames from
268 scenes in the above step are left with 152K frames.

Manual Quality Review. After the quality auto-
evaluation, there are still some frames with low quality i.e.
blurring, artifacts, or focusing outside the scene. So we em-
ploy three volunteers to manually discard frames that do
not meet requirements. Specifically, the three volunteers
consist of 2 professional data labelers and a domain expert.
For each frame, 2 professional data labelers judge whether
to keep it or not, and the decision is made if both labelers
agree, otherwise it is up to the domain expert for the deci-
sion. After this step, there are still 110K frames left.

Calibration. Large-scale scene calibration based on
highly dynamic images has always been a difficult prob-
lem, especially for outdoor scenes with no obvious local
detail differences [4, 20, 12]. As a common solution, we
use COLMAP [31, 32] to achieve multi-view 3D recon-
struction, image calibration and depth image rendering. It is
foreseeable that the reconstruction of some scenes with in-
sufficient overlap and textures, or forwardly moving camera
motion will fail. These fail-to-calibrate scenes cannot meet
the requirements of NeRF-based methods, which need to be
removed manually.

Manual Scene Review. We invite the above three
volunteers to review the calibration quality based on the
completeness of scene point clouds, following the same
decision-making process. A large number of scenes are
discarded at this step, and finally, 33 real-world scans with
nearly 14K calibrated images constitute our outdoor dataset,
which surpasses existing large-scale datasets in both quan-
tity and diversity.

3.2. Prompt Annotation Method

To provide prompt annotations for multi-modal NeRF,
we add text descriptions to each scene and keyframes. Note
that generating descriptions is a more subjective and time-
consuming task, so we employ more volunteers and apply
pre-trained CLIP [28] models.

Manual Label. Specifically, six trained volunteers par-
ticipate in this progress, who non-repeatedly extract and
record the corresponding descriptive texts from scenes and
keyframes, respectively. These volunteers include high-
year Ph.D. students and professors in computer vision and
natural language processing fields who can handle this job
well.

Auto Assessment. Each frame and annotated text is
fed into a CLIP [28] model pre-trained on large scene-text
datasets [30, 11] to compute their similarity scores. If the
similarity score is above the threshold, we accept this anno-
tation. Otherwise, we leave it to experts to double-check.

Expert Review. For annotations that the CLIP model
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Figure 4. Examples of different types from our dataset. We visualize some scenes and camera trajectories from our dataset, which contain
both urban and natural scenes with various scales, camera trajectories, and lighting conditions.

Table 2. Distribution of our dataset. We divide our dataset into
subsets based on scene type, camera trajectory, and lighting con-
dition and count the number of each subset.

Scene
Type # Scenes Camera

Trajectory # Scenes Lighting
Condition # Scenes

Building 8 Circle 15 Day 30
Small area 9 Line 10 Night 3

City 8 Irregular 8
Natural scene 8

cannot judge, experts will evaluate whether the text can de-
scribe the image comprehensively and objectively. If possi-
ble, we accept the label, otherwise, we hand it over to an-
other volunteer to label again. Fortunately, the frames and
scenes in our dataset are only re-annotated at most 2 times.

We have annotated 33 scans with corresponding descrip-
tions and tags, and part of keyframes, which can well meet
the training needs of multi-modal NeRF. We are still anno-
tating the remaining keyframes for more potentially com-
plex needs.

3.3. Distribution

According to different division methods, the distribution
of our dataset is shown in Table 2. However, some scene
types are relatively ambiguous. For example, when a build-
ing is surrounded by plenty of trees, warehouses, etc., it is
difficult to say whether such an image belongs to a building
type or not. To resolve the ambiguity, we design a ques-
tionnaire and invite 50 voters to determine the attributes of
the scenes. Invited volunteers range from 19 to 53 years
old, and we recommend a very typical reference for each
attribute.

Our dataset contains both natural and urban scenes,
which are further divided into buildings, small areas, and
whole cities. The performance on different subsets can ver-

ify the most suitable scene type and scale for each NeRF
method. Some methods only target scenes with camera tra-
jectories moving in a ring or matrix. For a fair baseline, we
divide the scene into circles, lines, and irregular, according
to the camera trajectories. In addition, few recent methods
focus on low-illuminance NeRF research, so we also pro-
vide scenes with different lighting conditions. In particu-
lar, we collect some scans of the same scene under differ-
ent lighting conditions, which can evaluate the ability of the
method against poor lighting.

We provide benchmarks for novel view synthesis, gen-
eralization, scene representations, and multi-modal synthe-
sis tasks. At the same time, according to the above scene
types, our dataset can also produce corresponding sub-
benchmarks to evaluate methods under different conditions
and settings, see Sec. 4.

3.4. Cost

Since our dataset requires volunteers to review images
and scenes’ quality and annotate the scenes and keyframes
with texts, it is unavoidably time-consuming and labor-
intensive.

Data collection which involves drone purchasing and
shooting, and computing introduced by pre-training scene-
text CLIP model, account for a large part of the total cost.
But once the drone and CLIP model is ready, we can just
use them to prepare more new scenes and add to the dataset,
without involving additional cost.

More importantly, with the increase of labeled data that
can help train a better model, we can replace part of volun-
teer review and annotation work with state-of-the-art trained
models to optimize our pipeline. Therefore, although our
method may be expensive in the early stage, it has good po-
tential to be automated and save future costs that may be
introduced when expanding the dataset.



Opera House

NeRF

NeRF++

Mip-NeRF

Mip-NeRF360

Mega-NeRF

Ref-NeRF

GT

Wind Mile Trade Center Trees La Night

Figure 5. Qualitative visualization results for novel view synthesis (zoom-in for the best of views) on our OMMO dataset.

4. Experiments

4.1. Setting

To verify the applicability and performance of the built
dataset for evaluating NeRF methods, and meanwhile pro-
vide a baseline for NeRF-based tasks, we train and evalu-
ate recent NeRF [24], NeRF++ [44], Mip-NeRF [2], Mip-
NeRF 360 [3], Mega-NeRF [35] and Ref-NeRF [36] on our
datasets.

NeRF [24] presents the first continuous MLP-based neu-
ral network to represent the scene, that is able to synthesize
semantic-consistent novel views by volume rendering.

NeRF++ [44] separately models the foreground and
background neural representations to address the challenge

of modeling large-scale unbounded scenes.
Mip-NeRF [2] reduces aliasing artifacts and improves

NeRF’s [24] ability to represent fine details, by rendering
anti-aliased conical frustums instead of rays.

Mip-NeRF 360 [3] uses a non-linear scene parameter-
ization, online distillation, and a distortion-based regular-
izer, to model and produce realistic synthesized views for
unbounded real-world scenes.

Mega-NeRF [35] proposes a framework for training
large-scale 3D scenes by introducing a sparse structure and
geometric clustering algorithm, to partition training pixels
into different parallel NeRF submodules.

Ref-NeRF [36] improves the quality of appearance and
normal in synthesized views of the scene, by a new param-



Table 3. Benchmark for novel view synthesis. We present the performance of six state-of-the-art and representative methods on our dataset.
↑ means the higher, the better.

Scene ID Scene Camera Lighting NeRF [24] NeRF++ [44] Mip-NeRF [2] Mip-NeRF 360 [3] Mega-NeRF [35] Ref-NeRF [39]
Types Tracks Conditions PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

1 Buildings Irregular Day 16.93 0.369 0.744 16.86 0.359 0.780 16.84 0.369 0.793 13.91 0.311 0.771 16.12 0.341 0.782 15.10 0.344 0.755
2 Small area Circles Day 15.31 0.442 0.694 14.89 0.471 0.653 15.16 0.396 0.731 15.06 0.438 0.646 15.64 0.467 0.679 15.90 0.490 0.632
3 Citys Lines Day 14.38 0.278 0.556 14.64 0.294 0.547 14.56 0.288 0.533 14.25 0.309 0.526 15.21 0.325 0.517 15.44 0.371 0.526
4 Buildings Circle Night 25.39 0.859 0.431 27.47 0.898 0.380 21.78 0.758 0.469 27.68 0.943 0.292 23.36 0.855 0.419 27.86 0.905 0.404
5 Small area Circles Day 22.26 0.670 0.531 24.32 0.729 0.450 14.98 0.544 0.633 25.76 0.801 0.317 25.78 0.763 0.436 23.54 0.706 0.491
6 Natural scenes Circles Day 24.09 0.679 0.504 25.59 0.749 0.396 23.18 0.658 0.529 28.86 0.896 0.211 24.92 0.772 0.393 26.07 0.716 0.459
7 Buildings Lines Day 5.36 0.166 0.747 21.93 0.707 0.542 15.57 0.643 0.624 23.05 0.734 0.523 22.33 0.691 0.552 25.79 0.731 0.511
8 Citys Circle Day 21.14 0.496 0.594 22.91 0.568 0.509 19.82 0.462 0.638 25.07 0.714 0.354 16.65 0.478 0.431 21.21 0.489 0.606
9 Citys Lines Day 14.92 0.344 0.744 14.57 0.341 0.732 14.58 0.338 0.746 15.40 0.303 0.706 17.32 0.491 0.673 20.34 0.432 0.649
10 Citys Irregular Day 22.26 0.550 0.626 24.37 0.599 0.578 19.80 0.528 0.643 26.68 0.719 0.420 21.78 0.615 0.558 24.23 0.578 0.597
11 Buildings Circles Night 22.36 0.816 0.420 24.61 0.852 0.342 22.81 0.822 0.423 27.06 0.931 0.217 24.37 0.844 0.392 23.81 0.843 0.355
12 Small area Circles Day 22.41 0.594 0.533 24.29 0.675 0.447 22.13 0.601 0.526 28.12 0.825 0.274 21.60 0.619 0.493 23.06 0.604 0.524
13 Buildings Lines Day 22.27 0.592 0.608 23.52 0.623 0.581 18.90 0.537 0.673 26.63 0.771 0.403 25.50 0.722 0.517 23.29 0.605 0.594
14 Small area Lines Day 19.85 0.554 0.569 23.89 0.737 0.417 17.06 0.481 0.655 28.06 0.894 0.224 24.42 0.746 0.411 21.76 0.625 0.508
15 Small area Circles Day 20.35 0.527 0.552 21.71 0.612 0.490 19.44 0.489 0.594 28.63 0.888 0.179 22.69 0.665 0.445 20.33 0.497 0.576
16 Natural scenes Circles Day 17.86 0.397 0.631 18.75 0.405 0.597 18.49 0.399 0.610 10.01 0.344 0.850 20.26 0.532 0.509 19.64 0.428 0.572
17 Natural scenes Circles Day 22.02 0.571 0.610 24.20 0.671 0.461 17.01 0.526 0.696 29.53 0.833 0.247 17.23 0.574 0.529 23.17 0.589 0.529
18 Small area Lines Day 26.06 0.754 0.428 25.57 0.730 0.461 24.61 0.732 0.469 28.55 0.855 0.265 24.76 0.733 0.448 22.79 0.674 0.569
19 Small area Circles Day 14.20 0.399 0.726 13.86 0.373 0.703 13.84 0.394 0.738 14.72 0.367 0.676 23.81 0.682 0.465 14.34 0.386 0.691
20 Citys Circles Day 22.84 0.613 0.499 23.28 0.642 0.475 22.41 0.603 0.519 28.33 0.862 0.228 21.11 0.633 0.490 21.54 0.553 0.574
21 Natural scenes Circles Day 22.59 0.514 0.532 21.84 0.473 0.593 22.31 0.513 0.537 25.64 0.747 0.344 21.92 0.506 0.578 21.07 0.436 0.672
22 Buildings Lines Day 16.53 0.466 0.733 20.66 0.558 0.575 13.37 0.420 0.776 24.79 0.766 0.362 20.84 0.597 0.527 20.31 0.530 0.615
23 Natural scenes Lines Day 18.99 0.405 0.669 19.51 0.417 0.597 18.09 0.389 0.671 21.25 0.514 0.539 20.13 0.438 0.585 19.94 0.409 0.622
24 Natural scenes Lines Day 19.32 0.386 0.696 23.14 0.522 0.535 16.89 0.374 0.715 25.86 0.707 0.373 23.87 0.563 0.518 22.17 0.452 0.616
25 Natural scenes Lines Day 24.72 0.550 0.528 22.42 0.509 0.613 24.24 0.541 0.542 28.91 0.789 0.306 25.98 0.629 0.457 23.62 0.502 0.598
26 Buildings Irregular Day 8.56 0.242 0.564 19.94 0.586 0.513 13.43 0.353 0.688 14.59 0.459 0.626 19.23 0.669 0.467 21.00 0.615 0.489
27 Citys Irregular Day 4.54 0.006 0.705 21.25 0.548 0.546 14.82 0.453 0.674 21.26 0.599 0.235 20.59 0.606 0.543 20.82 0.519 0.590
28 Small area Circles Day 24.48 0.660 0.479 23.28 0.642 0.475 24.76 0.659 0.406 29.62 0.874 0.240 25.87 0.723 0.442 22.17 0.452 0.616
29 Buildings Circle Day 22.98 0.608 0.540 23.17 0.617 0.529 23.01 0.609 0.539 25.51 0.740 0.400 21.57 0.611 0.557 21.11 0.543 0.631
30 Natural scenes Irregular Day 20.23 0.522 0.605 23.27 0.639 0.476 18.63 0.461 0.675 26.54 0.837 0.296 24.04 0.686 0.459 21.62 0.535 0.586
31 Citys Circles Night 18.97 0.365 0.645 19.05 0.371 0.643 18.91 0.358 0.659 13.08 0.234 0.708 20.93 0.596 0.545 19.18 0.372 0.645
32 Citys Irregular Day 17.99 0.582 0.621 18.99 0.605 0.540 11.28 0.424 0.687 17.16 0.566 0.601 21.29 0.702 0.475 18.98 0.595 0.565
33 Citys Irregular Day 5.79 0.007 0.745 20.19 0.497 0.597 14.31 0.42 0.755 22.76 0.629 0.457 22.89 0.635 0.478 21.23 0.522 0.578

Mean - - - 18.72 0.484 0.600 21.45 0.576 0.538 18.39 0.501 0.623 23.10 0.672 0.418 21.63 0.621 0.508 21.28 0.546 0.574

eterization and structuring of view-dependent outgoing ra-
diance, as well as a regularizer on normal vectors.

Implementations. Since there is no official PyTorch im-
plementation of NeRF [24], we use the widely recognized
third-party implementation [10]. But for other methods, we
use the official implementation from GitHub.

In our dataset, reviewed posed images are numbered
from 0 to #image − 1 under timing sequence, and test
views are evenly sampled according to the view ID. That
is we sample one from every eight for testing, and the rest
are used as training views (i.e., for testing: 0, 8, 16, 24, ...).

All training hyper-parameters follow the original paper’s
settings in our experiments. Each scene is trained on a sin-
gle Nvidia V100 GPU device for around 6-33 hours, de-
pending on the time complexity of each method, and about
32 V100 GPU devices are used in parallel.

Evaluation Metrics. To evaluate the performance of
each method, we use three common metrics: Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity (SSIM) [38],
and LPIPS [45] on novel view synthesis. Higher PSNR and
SSIM mean better performancence, while a lower LPIPS
means better.

4.2. Novel View Synthesis

Benchmark. To establish a benchmark for the large-
scale outdoor novel view synthesis, we comprehensively
evaluate and report quantitative performances of the above
six state-of-the-art methods in our dataset, see Table 3.

It can be seen that except for the failure of NeRF [24] in
4 scenes (7, 26, 27, and 33), other results show that NeRF

can synthesize reasonable novel views, which means that
OMMO dataset can support various NeRF-based methods.
NeRF++ [44], Mip-NeRF 360 [3], Mega-NeRF [35], and
Ref-NeRF [36] perform well on our dataset with an aver-
age PSNR of beyond 20, and can maintain the view consis-
tency of each scene, see Figure 5. Among them, Mip-NeRF
360 [3] can synthesize more realistic detailed texture fea-
tures for large-scale scenes and its quantitative evaluation
is more than 6 points higher than other methods on PSNR,
SSIM, LPIPS. Our benchmarks are open to all NeRF-based
methods, and we are also ready to evaluate newer large-
scale scene NeRF methods once they are proposed.

In particular, we notice that most of the scenes where
NeRF fails are based on irregular camera trajectories, which
suggests that NeRF may be more suitable for scenes cap-
tured with stronger trajectory consistency constraints and
more overlap (such as equidistant circular acquisitions). So
we divide OMMO dataset into subsets according to the data
types, and provide sub-benchmarks to study the most suit-
able setting for each method.

Sub-benchmark split by scene types. According to dif-
ferent scales of urban and natural scenes, we propose 4 sub-
benchmarks for buildings, small areas, cities and natural
scenes. It can be seen from Table 4 that all methods perform
worse in cities than in smaller-scale subsets, i.e. buildings
and small areas. These performance differences show that
the large-scale scene implicit representation is still not as
well resolved as for single objects or small scenes.

Sub-benchmark split by camera tracks. Circular cam-
era trajectories tend to present better experiment perfor-



Table 4. More sub-benchmarks for novel view synthesis. We divide our dataset into subsets based on different scene types, camera
trajectories, and lighting conditions, and provide sub-benchmarks under different settings. ↑ means the higher, the better.

Scene ID Sub-benchmark NeRF [24] NeRF++ [44] Mip-NeRF [2] Mip-NeRF 360 [3] Mega-NeRF [35] Ref-NeRF [39]
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

1,4,7,8,11,13,22,26 Buildings 17.32 0.501 0.605 22.24 0.644 0.528 17.82 0.546 0.636 22.85 0.704 0.444 21.05 0.650 0.511 22.30 0.633 0.541
2,5,12,14,15,18,19,28,29 Small areas 20.88 0.579 0.561 21.66 0.621 0.514 19.44 0.545 0.588 24.89 0.742 0.358 22.90 0.668 0.486 20.56 0.553 0.582
3,8,9,10,20,27,31,32,33 Cities 15.87 0.360 0.637 19.92 0.496 0.574 16.72 0.430 0.650 20.44 0.548 0.471 19.75 0.565 0.523 20.33 0.492 0.592
6,16,17,21,23,24,25,30 Natural scenes 21.23 0.503 0.597 22.34 0.548 0.534 19.86 0.483 0.622 24.58 0.708 0.396 22.29 0.588 0.504 22.16 0.508 0.582

2,4,5,6,8,11,12,15,16,17,19,20,21,28,31 Circles 21.08 0.573 0.559 22.00 0.609 0.508 19.80 0.545 0.581 23.81 0.713 0.386 21.74 0.647 0.483 21.53 0.564 0.556
3,7,9,13,14,18,22,23,24,25 Lines 18.24 0.450 0.628 20.99 0.544 0.560 17.79 0.474 0.640 23.68 0.664 0.423 22.04 0.594 0.521 21.55 0.533 0.581

1,10,26,27,29,30,32,33 Irregular 14.91 0.361 0.644 21.01 0.556 0.570 16.52 0.452 0.682 21.05 0.608 0.476 20.94 0.608 0.540 20.51 0.531 0.599

ALL-{4, 11,31} Day 18.37 0.465 0.610 21.23 0.563 0.547 18.12 0.487 0.634 23.15 0.670 0.420 21.51 0.607 0.514 21.05 0.531 0.585
4, 11,31 Night 22.24 0.680 0.499 23.71 0.707 0.455 21.17 0.646 0.517 22.61 0.703 0.406 22.89 0.765 0.452 23.62 0.707 0.468

Ground Truth Render Depth

Figure 6. Different scans of the same scene during day and night.
Both RGB and depth images are synthesized by Mega-NeRF [35].

PlenoctreeScene Dense points Mesh 

Figure 7. Examples of various scene representations from our
dataset through different methods.

mance than other types, especially irregular ones. This is
because 360-degree views contain richer texture features
from different angles, and the focus of views is overlapped
to maintain the view consistency.

Sub-benchmark split by lighting conditions. Intu-
itively, daytime scenes are richer in texture and easier to
learn their representation than dark ones. However, we
find that almost every method performs better on the low-
light subset than on the normal-light subset. We visualize
two different scans of the same scene generated by Mega-
NeRF [35] during day and night, as shown in Figure 6. It
is not difficult to see that in low light settings, the implicit
network uses black areas to erase details when generating
the RGB images, which reduces the synthesis difficulty and

tricks the evaluation metrics, while synthesised poor depth
map illustrates the network’s incapacity to understand and
represent the scene. So efficient low-light NeRF methods
are urged to solve this problem.

4.3. Scene Representation

To evaluate the performance of our dataset on surface
or scene reconstruction tasks, we reconstruct scenes with
different representations by using a variety of methods in-
cluding implicit networks. Specifically, plenoctree, mesh,
and dense points are provided by Mega-NeRF [35], Instant-
NGP [25], and Colmap [31, 32], respectively. It can be
seen from Figure 7 that neither the implicit network nor the
feature matching reconstruction method can reconstruct the
large scene finely. Theoretically, the advantage of implicit
scene representation is that, the scene can be reconstructed
with high resolution benefiting from the continuous repre-
sentation. So the scene representation benchmarks of large-
scale outdoor scenes based on NeRF are still to be build.
Please refer to the supplementary materials for more results.

5. Discussion
Conclusion. We introduce a well-selected large-scale

outdoor multi-modal fly-view dataset, OMMO, to address
the problem of no widely-used benchmark for outdoor
NeRF-based methods. The built OMMO surpasses the pre-
vious datasets in several key indicators such as quantity,
quality and variety, by providing 33 real-world scenes with
more than 14K posed images and text description. With the
help of our cost-effective data collection pipeline, it is easy
to expand our dataset by continuously converting new in-
ternet videos into NeRF-purpose training data. We provide
benchmarks on multiple tasks such as novel view synthesis,
implicit scene representations, and multi-modal synthesis
by evaluating existing methods. Experiments show that our
dataset can well support mainstream NeRF-based tasks.

Limitation. Scenes with low-illumination, rain and fog
are still few in the current dataset due to the limited cal-
ibration and reconstruction ability of COLMAP [31, 32].
We will try more reconstruction and calibration methods to
solve this problem. Meanwhile, we are continuing to ex-
pand our dataset thanks to our cost-effective pipeline.
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Appendix

In this supplementary material, we provide the appendix section and a supplemental video to better understand our
database and benchmarks. This appendix involves more qualitative or experimental results (Sec. B), details of our dataset
generation method (Sec. C), and dataset analysis (Sec. D). The supplemental video contains a brief introduction to our dataset,
some examples in detail, and more comprehensive synthesis results in surrounding views or progressive views.

A. More Qualitative Results
A.1. Novel View Synthesis

In our main manuscript, we can only provide the visualization results of five scenes due to the length limitation. In this
section, more qualitative results are presented to demonstrate the novel view synthesis ability of each method, see Fig.1.
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Figure 1. More qualitative visualization results for novel view synthesis (zoom-in for the best of views) on our OMMO dataset.
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Figure 1. More qualitative visualization results for novel view synthesis (zoom-in for the best of views) on our OMMO dataset.



A.2. Scene Representation

To further demonstrate that our OMMO dataset can well support surface or scene reconstruction tasks including NeRF-
based methods, we visualize more shape results by various representations in Fig. 2. Among them, plenoctree, mesh, and
dense points are provided by Mega-NeRF [35], InstantNGP [25], and Colmap [31, 32], respectively.

PlenoctreeScene Dense points Mesh PlenoctreeScene Dense points Mesh 

Figure 2. More qualitative visualization results for various scene representations (zoom-in for the best of views) through the state-of-the-art
methods on the OMMO dataset.



B. More Experiments
Multi-modal NeRF Synthesis. Since there is no available NeRF-based method for text-assisted fidelity novel view

synthesis, inspired by CoCo-INR [43], we replace its image-based pre-scene codebook with text-based codebook and apply
it in NeRF [24] and CoCo-INR [43] as our benchmark. Specifically, we apply a text-based attentional coordinate module in
front of the last MLP layer of volume rendering network, where the text-based codebook is encoded by our textual prompts
through the pre-trained CLIP [28] model, see Fig. 3.
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Figure 3. Structure of coordinate attentional blocks. The left sub-figure (a) is the CoCo-INR’s [43] codebook coordinate attentional block,
which extracts image features related to the current scene from the prior by codebook attention module to form a pre-scene codebook. The
right sub-figure (b) is our text-based coordinate attentional block, which obtains the scene-related text-based codebook by encoding textual
prompts of each scene. Both inject scene-related features into each coordinate through the coordinate attention module.

Table 1. Performance comparison of with or without textual prompts for novel view synthesis on our OMMO dataset. We report the results
of each method and the performance improvement after injecting textual prompts. ↑ means the higher, the better.

Mtehod Without Textual Prompts With Textual Prompts Improvement (%) ↑
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR SSIM LPIPS

NeRF [24] 18.72 0.484 0.600 19.01 0.500 0.591 1.5 3.2 1.5
CoCo-INR [43] 16.80 0.489 0.681 16.97 0.490 0.678 1.0 0.2 0.4

It can be seen from Table 1, even without a well-designed module for injecting text information, the performance of both
NeRF [24] and CoCo-INR [43] methods have improved. Since the textual prompts contain more global features about rich
geometry or appearance information, which are shared by different views in the scene to guarantee the network to generate
view-consistency results. We hope to inspire more image-text multi-modal NeRF methods to synthesize photo-realistic
rendering results and decent geometry by exploring effective ways to make full use of textual prompts. The benchmark on
each scene and the sub-benchmarks on different scene types are shown in Table 2 and Table 3.



Table 2. Benchmark for multi-modal NeRF synthesis. We present the performance of text-assisted novel view synthesis based on existing
methods on our OMMO dataset. ↑ means the higher, the better.

Scene ID Scene Camera Lighting NeRF [24] w/o Prompts NeRF [24] w/ Prompts CoCo-INR [43] w/o Prompts CoCo-INR [43] w/ Prompts
Types Tracks Conditions PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

1 Buildings Irregular Day 16.93 0.369 0.744 16.89 0.366 0.729 14.31 0.432 0.788 14.81 0.431 0.785
2 Small area Circles Day 15.31 0.442 0.694 15.61 0.465 0.711 16.04 0.597 0.632 16.25 0.597 0.626
3 Citys Lines Day 14.38 0.278 0.556 14.42 0.277 0.573 15.59 0.485 0.616 16.62 0.509 0.585
4 Buildings Circle Night 25.39 0.859 0.431 24.94 0.851 0.425 21.61 0.876 0.480 21.87 0.879 0.481
5 Small area Circles Day 22.26 0.670 0.531 21.31 0.652 0.564 18.16 0.657 0.597 20.08 0.675 0.573
6 Natural scenes Circles Day 24.09 0.679 0.504 23.78 0.655 0.535 19.65 0.630 0.576 19.39 0.627 0.578
7 Buildings Lines Day 5.36 0.166 0.747 6.25 0.183 0.697 16.53 0.628 0.679 15.38 0.567 0.654
8 Citys Circle Day 21.14 0.496 0.594 21.55 0.510 0.571 16.94 0.413 0.687 16.57 0.407 0.704
9 Citys Lines Day 14.92 0.344 0.744 15.02 0.345 0.749 13.70 0.340 0.773 13.68 0.340 0.765
10 Citys Irregular Day 22.26 0.550 0.626 22.44 0.551 0.624 18.81 0.536 0.694 18.62 0.535 0.693
11 Buildings Circles Night 22.36 0.816 0.420 22.58 0.820 0.412 17.08 0.746 0.494 17.35 0.747 0.491
12 Small area Circles Day 22.41 0.594 0.533 22.80 0.608 0.512 17.87 0.475 0.658 17.81 0.473 0.659
13 Buildings Lines Day 22.27 0.592 0.608 23.12 0.619 0.576 16.55 0.532 0.698 17.02 0.542 0.671
14 Small area Lines Day 19.85 0.554 0.569 20.73 0.591 0.534 15.44 0.485 0.663 15.19 0.482 0.665
15 Small area Circles Day 20.35 0.527 0.552 20.70 0.549 0.533 16.37 0.407 0.702 16.45 0.411 0.689
16 Natural scenes Circles Day 17.86 0.397 0.631 17.53 0.362 0.647 15.37 0.384 0.633 15.24 0.376 0.640
17 Natural scenes Circles Day 22.02 0.571 0.610 22.23 0.575 0.596 20.52 0.575 0.619 19.38 0.527 0.648
18 Small area Lines Day 26.06 0.754 0.428 26.48 0.770 0.402 17.31 0.527 0.658 17.35 0.532 0.664
19 Small area Circles Day 14.20 0.399 0.726 14.19 0.397 0.720 15.41 0.388 0.701 15.82 0.413 0.694
20 Citys Circles Day 22.84 0.613 0.499 23.30 0.636 0.465 18.28 0.434 0.676 18.09 0.431 0.685
21 Natural scenes Circles Day 22.59 0.514 0.532 22.99 0.541 0.508 17.08 0.358 0.744 17.28 0.359 0.720
22 Buildings Lines Day 16.53 0.466 0.733 20.404 0.539 0.598 14.86 0.408 0.759 14.73 0.406 0.772
23 Natural scenes Lines Day 18.99 0.405 0.669 19.09 0.405 0.671 17.57 0.335 0.673 17.43 0.332 0.701
24 Natural scenes Lines Day 19.32 0.386 0.696 18.52 0.379 0.708 18.63 0.347 0.765 18.27 0.341 0.814
25 Natural scenes Lines Day 24.72 0.550 0.528 25.24 0.576 0.496 20.15 0.434 0.717 20.29 0.434 0.711
26 Buildings Irregular Day 8.56 0.242 0.564 8.56 0.242 0.564 9.19 0.336 0.924 9.23 0.341 0.913
27 Citys Irregular Day 4.54 0.006 0.705 4.91 0.249 0.818 16.19 0.443 0.699 16.07 0.443 0.687
28 Small area Circles Day 24.48 0.660 0.479 24.32 0.630 0.493 20.12 0.536 0.643 21.13 0.595 0.621
29 Buildings Circle Day 22.98 0.608 0.540 23.58 0.631 0.516 16.57 0.439 0.733 17.93 0.453 0.716
30 Natural scenes Irregular Day 20.23 0.522 0.605 21.02 0.559 0.569 12.36 0.431 0.760 15.40 0.450 0.719
31 Citys Circles Night 18.97 0.365 0.645 19.09 0.371 0.634 17.88 0.465 0.685 17.57 0.459 0.704
32 Citys Irregular Day 17.99 0.582 0.621 18.00 0.582 0.628 17.01 0.623 0.588 16.94 0.622 0.590
33 Citys Irregular Day 5.79 0.007 0.745 5.79 0.007 0.744 15.20 0.436 0.761 14.68 0.431 0.770

Mean - - - 18.72 0.484 0.600 19.01 0.500 0.592 16.80 0.489 0.681 16.97 0.490 0.678

Table 3. More sub-benchmarks for multi-modal NeRF synthesis. We divide our dataset into subsets based on different scene types, camera
trajectories, and lighting conditions, and provide sub-benchmarks under different settings. ↑ means the higher, the better.

Scene ID Sub-benchmark NeRF [24] w/o Prompts NeRF [24] w/ Prompts CoCo-INR [43] w/o Prompts CoCo-INR [43] w/ Prompts
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

1,4,7,8,11,13,22,26 Buildings 17.32 0.501 0.605 18.04 0.516 0.572 15.88 0.546 0.689 15.87 0.540 0.684
2,5,12,14,15,18,19,28,29 Small areas 20.88 0.579 0.561 21.08 0.588 0.554 17.03 0.501 0.665 17.56 0.515 0.656
3,8,9,10,20,27,31,32,33 Cities 15.87 0.360 0.637 16.06 0.392 0.645 16.62 0.464 0.687 16.54 0.464 0.687
6,16,17,21,23,24,25,30 Natural scenes 21.23 0.503 0.597 21.30 0.507 0.591 17.67 0.437 0.686 17.84 0.431 0.691

2,4,5,6,8,11,12,15,16,17,19,20,21,28,31 Circles 21.08 0.573 0.559 21.13 0.575 0.555 17.89 0.529 0.635 18.02 0.532 0.634
3,7,9,13,14,18,22,23,24,25 Lines 18.24 0.450 0.628 18.93 0.468 0.600 16.63 0.452 0.700 16.60 0.449 0.700

1,10,26,27,29,30,32,33 Irregular 14.91 0.361 0.644 15.15 0.398 0.649 14.96 0.460 0.743 15.46 0.463 0.734

ALL-{4, 11,31} Day 18.37 0.465 0.610 18.69 0.482 0.602 16.59 0.468 0.694 16.77 0.469 0.690
4, 11,31 Night 22.24 0.680 0.499 22.20 0.681 0.490 18.86 0.696 0.553 18.93 0.695 0.559



C. Method Details
We show some dropped frames or scenes during dataset generation to better understand our selection and review standard

in Fig. 4. At auto assessment stage, the image quality assessment model [33] is employed to remove frames with blur, arti-
facts, ghosting and incorrect colors caused by overexposure or optical effects. In this way, about 64% of the frames remained,
but there are still some low-quality frames with blur, subtitles, abnormal brightness or transparency caused by fading in or
out at the beginning or end of the video. So during the manual quality review process, volunteers and experts will work
together to remove these frames. After scene calibration and reconstruction, some scenes will fail, such as with insufficient
overlap and textures, or forwardly moving camera motion. These fail-to-calibrate scenes cannot meet the requirements of
NeRF-based methods, which need to be removed at the manual scene review stage.

Auto Assessment                   268 scenes 240K images -> 268 scenes 152K images

Manual Quality Review 268 scenes 152K images -> 268 scenes 110K images

Manual Scene Review          268 scenes 110K images -> 33 scenes 14K images

  × × ×

  × × ×

 × ×

Accept!

Accept! Accept!

Accept! Accept!

Accept!

Incorrect colors Artifact Blur

Subtitled Abnormal brightness Blur

With insufficient overlap and textures Forwardly moving camera motion

Figure 4. Some examples of dropped frames or scenes at auto assessment, manual quality review, and manual scene review stages.
Meanwhile, we also show the number of images and scenes before and after the review at each stage.



D. Dataset Anaysis
D.1. Textual Prompts

We show an example of scene prompt annotations from our OMMO dataset in Fig. 5. Our prompts annotation compre-
hensively describes every detail of the scene center and its surrounding environment in many short sentences.

Views

Prompt annotation
• The white building is captured by a circular camera track.
• The building is located on a peninsula surrounded by water on three sides.
• The shape of the building is three shell-shaped sub-buildings, two of which are juxtaposed with larger shells and 

another one is smaller.
• The two larger sub-buildings are composed of four pointed shells in a cascade.
• The smaller sub-building consists of two back-to-back shells.
• The glass between each layer of shells is yellow or green.
• There are many people around the building.
• There is a white carport in front of the building, where some cars are parked;
• Behind the building is a round island with many trees planted on it.  
• There is a bridge across the river on one side of the building.
• There are dense buildings on both sides of the bridge.

Figure 5. Textual Prompt. An example of annotations. Several phrases and their corresponding patches are highlighted in the same color.

We report the word statistic for all scene prompts annotations (only including nouns that appear more than 4 times), as
shown in Fig. 6. It can be seen that our data distribution is comprehensive and reasonable, including building, buildings
(architectural complex), trees, roads, lawn and rivers, etc. Meanwhile, the number of keywords can roughly reflect the
distribution of different scenes, such as natural scene: urban scene (building, small area, city) is about 1:3.

Building 68

Buildings 32

Trees 26

Roads 26Lawn 17

Squares 16

Stone 13

River 13

Roof 12

Cars 10

Hall 9

Walls 9

Residentials 9

Mountain 9
Temple 8

Court 5
People 5

Columns 5
Museum 5 Lake 4

Figure 6. Word statistic. Only include nouns that appear more than 4 times in our OMMO dataset.



D.2. User Instrictions

Our OMMO dataset structure list is shown below. The first-level directory contains the scene list, the training and valida-
tion split file, and sub-folders for each scene. Each scene contains original video and sub-folders for images, camera matrices
and textual prompts.

DATA_ROOT

OMMO list.txt

train_val_split.toml

. . . 

Scan 0

video.mp4

images

00000.png

00001.png

. . . 

00000.txt

00001.txt

. . . 
text

Scan 1

. . . 

scene.txt

keyframes.txt

Scan 32


