
Efficient Region-Aware Neural Radiance Fields for High-Fidelity
Talking Portrait Synthesis

Jiahe Li1, Jiawei Zhang1, Xiao Bai1*, Jun Zhou2, Lin Gu3,4

1School of Computer Science and Engineering, State Key Laboratory of Software Development
Environment, Jiangxi Research Institute, Beihang University

2School of Information and Communication Technology, Griffith University
3RIKEN AIP 4The University of Tokyo

Abstract

This paper presents ER-NeRF, a novel conditional Neu-
ral Radiance Fields (NeRF) based architecture for talking
portrait synthesis that can concurrently achieve fast con-
vergence, real-time rendering, and state-of-the-art perfor-
mance with small model size. Our idea is to explicitly ex-
ploit the unequal contribution of spatial regions to guide
talking portrait modeling. Specifically, to improve the ac-
curacy of dynamic head reconstruction, a compact and ex-
pressive NeRF-based Tri-Plane Hash Representation is in-
troduced by pruning empty spatial regions with three pla-
nar hash encoders. For speech audio, we propose a Re-
gion Attention Module to generate region-aware condition
feature via an attention mechanism. Different from exist-
ing methods that utilize an MLP-based encoder to learn
the cross-modal relation implicitly, the attention mecha-
nism builds an explicit connection between audio features
and spatial regions to capture the priors of local motions.
Moreover, a direct and fast Adaptive Pose Encoding is in-
troduced to optimize the head-torso separation problem by
mapping the complex transformation of the head pose into
spatial coordinates. Extensive experiments demonstrate
that our method renders better high-fidelity and audio-lips
synchronized talking portrait videos, with realistic details
and high efficiency compared to previous methods. Code is
available at https://github.com/Fictionarry/
ER-NeRF.

1. Introduction
Audio-driven talking portrait synthesis is an important

and challenging issue with several applications such as dig-
ital humans, virtual avatars, film-making, and video con-
ferencing. Over the past few years, many researchers have
tackled the task with deep generative models [10, 32, 41, 58,
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Figure 1. Instead of learning the implicit audiovisual relation by
an MLP-based encoder, we explicitly attend to the cross-modal in-
teraction between speech audio and spatial regions. Region aware-
ness enables ER-NeRF to render more accurate facial motions.

57, 29, 50]. Recently, Neural Radiance Fields (NeRF) [30]
is introduced into audio-driven talking portrait synthesis. It
provides a new way to learn a direct mapping from the audio
feature to the corresponding visual appearance by a deep
multi-layer perceptron (MLP). Since then, several studies
condition NeRF on audio signals in an end-to-end way
[23, 28, 33, 47] or by some intermediate representations
[48, 7] to reconstruct a specific talking portrait. Though
these vanilla NeRF-based methods have shown great suc-
cess in the synthesis quality, the inference speed is far from
meeting real-time requirements, which seriously limits their
practical applications.

Several recent works on efficient neural representation
have demonstrated tremendous speedups over vanilla NeRF
by replacing part of the MLP network with sparse feature
grids [38, 31, 6, 8, 18, 5, 19]. Instant-NGP [31] introduces
a hash-encoded voxel grid for static scene modeling, al-
lowing fast speed and high-quality rendering with a com-
pact model. RAD-NeRF [40] first applies this technique to
talking portrait synthesis and builds a real-time framework
with state-of-the-art performance. However, this approach
requires a complex MLP-based grid encoder to learn the
regional audio-motion mapping implicitly, which limits its
convergence and reconstruction quality.
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This paper aims to explore a more effective solution for
efficient and high-fidelity talking portrait synthesis. Based
on previous studies, we notice that different spatial regions
contribute unequally to representing talking portraits: (1)
In volumetric rendering, since only the surface regions con-
tribute to representing the dynamic head, most other spatial
regions are empty and can be pruned with some efficient
NeRF techniques to reduce the training difficulty; (2) As the
fact that different facial areas have varying associations with
speech audio [28], different spatial regions are inherently
related to the audio signal in their own distinct manners
and lead to unique audio-driven local motions. Inspired by
these observations, we explicitly exploit the unequal contri-
bution of spatial regions to guide the talking portrait mod-
eling, and present a novel Efficient Region-aware talking
portrait NeRF (ER-NeRF) framework for realistic and effi-
cient talking portrait synthesis, which achieves high-quality
rendering, fast convergence, and real-time inference with
small model size.

Our first improvement focuses on the dynamic head
representation. Although RAD-NeRF [40] has leveraged
Instant-NGP to represent the talking portrait and achieves
a fast inference, its rendering quality and convergence are
hampered by hash collisions when modeling the 3D dy-
namic talking head. To address this problem, we introduce a
Tri-Plane Hash Representation that factorizes the 3D space
into three orthogonal planes via a NeRF-based tri-plane de-
composition [6]. During the factorization, all spatial regions
are squeezed onto 2D planes, with the corresponding fea-
ture grids pruned. Hence, hash collisions only occur in low-
dimensional subspaces and are reduced in number. With
fewer noises, the network can pay more attention to process-
ing audio features,leading to the capability of reconstructing
more accurate head structures and finer dynamic motions.

To capture the regional impact of audio signals, we fur-
ther explore the relevance between the audio feature and
position encoding of the proposed Tri-Plane Hash Repre-
sentation. Instead of concatenating the raw features and
learning the audiovisual correlation by a large MLP-based
encoder, we propose a Region Attention Module that ad-
justs the audio feature to best fit certain spatial regions via
a cross-modal attention mechanism. Hence, the dynamic
parts of the portrait can acquire more appropriate features
to model accurate facial movements, while other static por-
tions remain unaffected by the changing signals. By gaining
regional awareness, high-quality and efficient modeling for
local motions can be achieved.

Moreover, a simple but effective Adaptive Pose Encod-
ing is proposed in our framework to solve the head-torso
separation problem. It maps the complex pose transforma-
tion onto spatial coordinates and provides a clearer position
relation for torso-NeRF to learn its own pose implicitly.

The main contributions of our work are summarized as

follows:

• We introduce an efficient Tri-Plane Hash Representa-
tion to facilitate dynamic head reconstruction, which also
achieves high-quality rendering, real-time inference and
fast convergence with a compact model size.

• We propose a novel Region Attention Module to capture
the correlation between the audio condition and spatial
regions for accurate facial motion modeling.

• Extensive experiments show that the proposed ER-NeRF
renders realistic talking portraits with high efficiency and
visual quality, which outperforms state-of-the-art meth-
ods on both objective evaluation and human studies.

2. Related Work
2D-Based Talking Portrait Synthesis. Driving talking
portraits by arbitrary speech audio is an active research
topic in computer vision and computer graphics. This task
aims to reenact the specific person with high image quality
and audio-visual consistency. Conventional methods [4, 3]
define phoneme-mouth correspondence rules and stitch the
mouth shapes. Early deep learning-based methods focus
on synthesizing the audio-synchronized lip motions for a
given facial image [32, 17, 27, 10, 46]. Later, to enhance
controllability, intermediate representations like facial land-
marks and 3D facial models are utilized in several multi-
stage methods [41, 44, 50, 29]. However, extra errors and
information losses would occur in the estimation of these
intermediate representations. More recently, diffusion mod-
els have been used to improve lip-sync and image quality
[49, 34, 37], but they are slow in inference. Due to the lack
of an explicit 3D structure representation, 2D-based meth-
ods have drawbacks in the naturalness and consistency of
head pose control.
NeRF-based Talking Portrait Synthesis. 3D vision
techniques aim to learn the 3D structure from images and
videos relying on multi-view correspondence, and have
been widely developed in many areas [45, 53, 42, 52, 55].
Recently, Neural Radiance Fields (NeRF) [30] has been ap-
plied to tackle 3D head structure problems in audio-driven
talking portrait synthesis. Earlier works [23, 47, 33, 28] are
mainly built on a vanilla NeRF renderer, making them slow
and costly for memory. Among them, SSP-NeRF [28] is the
first to consider the different impacts of audio on facial areas
and adopts a semantic sampling strategy to encourage local
motion modeling. By applying Instant-NGP [31], RAD-
NeRF [40] has made huge improvements in visual quality
and efficiency. Nevertheless, it requires a complex mod-
ule to handle audio signals. These end-to-end methods take
the whole or part of a large MLP network as the encoder
to learn the connection between audio and regions, increas-
ing their complexity and training difficulty. Some multi-
stage methods [48, 7] pre-train a model to learn the audio-



Figure 2. Overview of ER-NeRF framework. The head part of the talking portrait is modeled by the Tri-Plane Hash Representation. A
tri-plane hash encoder H3 is used to encode the 3D coordinate x into its spatial geometry feature f . The input condition features of speech
audio a and eye blinking e are reweighted in channel-level with the Region Attention Module and converted to region-aware condition
features ar and er . Then the region-aware features combined with spatial geometry feature f and the view direction d are input into an
MLP decoder to predict the color c and density σ of the head. The torso part is rendered by another torso-NeRF with the Adaptive Pose
Encoding. The corresponding head pose P = (R, t) is applied to transform the trainable key points to get their normalized 2D coordinates
X̄keys, which conditions a certain 2D Neural Field to predict the torso image.

visual relation by intermediate representations, and utilize a
NeRF-based renderer for image generation. However, they
are inefficient due to the complex architecture. This paper
proposes an efficient NeRF-based method that significantly
improves visual quality and audio-lips synchronization.

Efficient Neural Representation. Many reported works
focus on the efficiency of NeRF. Recently, several hybrid
explicit-implicit representations [6, 8, 31, 38, 20] are pro-
posed for static scene reconstruction and strike a balance
between speed and memory cost. In these methods, a
high-dimensional scene would be separated and stored into
sparse feature grids. Plane-based approaches [6, 8] factorize
the space into multiple low-dimensional planes and vectors
to get a compact representation. Instant-NGP [31] employs
multiple hash tables to store the sparse details in multires-
olution, assuming most empty regions have been pruned,
which hugely improves memory utilization and rendering
quality as well. Although the size of each hash map is usu-
ally insufficient for representing all positions in the space,
the method does not handle the hash collision explicitly but
leaves it to the MLP decoder. These methods are mainly de-
signed for static scenes and are incapable of generating dy-
namic representation. In the field of dynamic NeRFs, cur-
rent efficient methods are either focused on how to rebuild
the scene along the timeline [5, 19, 36, 8, 18, 43] or can
only control some simple deformations [51], both of which
are unsuitable for modeling audio-driven talking portrait.
By leveraging the advantages of the hash and plan-based
methods, we introduce an efficient representation for high-
quality dynamic head modeling that achieves fast training
and inference with small model size.

3. Method

3.1. Preliminaries and Problem Setting

Given a set of multi-view images and camera poses,
NeRF [30] represents a static 3D scene with an implicit
function F : (x,d) → (c, σ), where x = (x, y, z) is the
3D spatial coordinate and d = (θ, ϕ) is the viewing direc-
tion. The output c = (r, g, b) denotes the emitted color
and σ is the volume density. The color C(r) of one pixel
crossed by the ray r(t) = o+ td from camera center o can
be calculated by aggregating the color c along the ray:

Ĉ(r) =

∫ tf

tn

σ(r(t)) · c(r(t),d) · T (t)dt, (1)

where tn and tf are the near and far bounds. T (t) is the
accumulated transmittance from tn to t:

T (t) = exp(−
∫ t

tn

σ(r(s))ds). (2)

In hash grid-based NeRF [31], a multiresolution hash en-
coder H is utilized to encode the spacial point by its co-
ordinate x. Therefore, conditioned with the audio feature
a, the basic implicit function of hash NeRF-based audio-
driven talking portrait synthesis can be formulated as:

FA : (x,d,a;H) → (c, σ). (3)

In this paper, we adopt the same basic setting as previous
NeRF-based works [23, 28, 40]. Specifically, we use a few
minutes of single-person video as the training data, which
is captured from the front view by a static camera. The
camera’s intrinsic and extrinsic parameters for each frame
are calculated from the head poses, which are estimated by



(a) Static (b) 3D hash grid (c) Tri-hash (ours)

Figure 3. The visualized occupacy grids. We show the predicted
head surfaces according to σ. (a) 3D hash grid without audio con-
dition. (b, c) 3D hash grid and our tri-plane hash representation
conditioned with audio. The MLP decoder of the 3D hash grid
becomes overloaded after being required to handle audio features
and learn the dynamic motions at the same time, while our repre-
sentation can still reconstruct the fine surface.

a 3DMM model. Audio features are extracted from a pre-
trained DeepSpeech [24] model. We also employ an off-the-
shelf semantic parsing method to separate the head, torso,
and background for various usages. Moreover, we train and
render the head and torso separately for acceleration.

3.2. Tri-Plane Hash Representation

Instant-NGP [31] utilizes a set of hash tables to reduce
the number of feature grids for efficient neural represen-
tation. Inspired by this idea, RAD-NeRF [40] is devel-
oped as a real-time and high-quality talking portrait synthe-
sis framework, which leveraged the hash map to represent
the small number of surface regions for the portrait head in
multiresolution. However, a general 3D hash grid represen-
tation is not natively suitable for our task.

A particular problem is the hash collision. Hashing
in Instant-NGP treats every position in 3D space equally,
which enhances its expressive ability for complex scenes.
Nevertheless, the number of hash collisions linearly in-
creases with the number of sampling points, which makes it
a burden for the MLP decoder to solve the conflicting gra-
dients. This problem has little effect when reconstructing
static scenes, but for talking portrait synthesis, it gets seri-
ous when the MLP decoder needs to handle multiple audio
features at the same time, as illustrated in Fig. 3.
Factorization for Hash Grid. Since fewer sampling
points always mean lower quality, it’s hard to solve this
problem by directly reducing the sampling number per ray.
Another thinking is to avoid hash collisions from high di-
mensions. As previous works have proved that a static 3D
space of the head can be represented by three 2D tensors [6],
it’s possible to squeeze the dynamic talking head into sev-
eral low-dimensional subspaces with little information loss.
From this perspective, we factorize the 3D spatial feature
volume into three orthogonal 2D hash grids.

For a given coordinate x = (x, y, z) ∈ RXYZ, we
separately encode its projected coordinates by three 2D-

multiresolution hash encoders [31]:

HAB : (a, b) → fAB
ab (4)

where the output fAB
ab ∈ RLF is the plane-level geome-

try feature for the projected coordinate (a, b) and HAB is
the multiresolution hash encoder for plane RAB, with the
number of levels L, feature dimensions per entry F . Then
we concatenate the results to get the final geometry feature
fg ∈ R3×LF :

fx = HXY(x, y)⊕HYZ(y, z)⊕HXZ(x, z). (5)

The symbol ⊕ denotes the concatenation operator that con-
catenates features into a 3× LF -channel vector.

Our proposed factorization significantly reduces hash
collision, as now the collision only occurs in 2D planes.
Assuming a common situation that the query rays are al-
most perpendicular to the frontal plane, the collision can
be reduced from O(R2N) to O(R2 + 2RN), where R2 is
the number of target pixels and N is the sampling number.
With a usual setting of N = 16 and R ≈ 256 in RAD-NeRF
[40], our representation can ideally achieve a 5× reduction
in hash collision with the same model size. This reduction
enables the MLP decoder to focus more on processing au-
dio features, leading to improved convergence and dynamic
rendering quality. 1

Overall Head Representation. The input to the MLP de-
coder consists of fx, the view direction d and a dynamic
condition feature set D including audio feature. The im-
plicit function of the tri-plane hash representation can be
formulated as:

FH : (x,d,D;H3) → (c, σ), (6)

where H3 : x → fx denotes a tri-plane hash encoder con-
sisting of all of three planar hash encoders in Eq. 4.

3.3. Region Attention Module
Dynamic conditions like audio seldom influence the

whole portrait equally. Hence, learning how these con-
ditions affect different regions of the portrait is essential
for generating natural facial movements. Many previous
works [23, 28, 47] ignore this point at the feature level and
use some costly approaches to learn the correlation implic-
itly. By leveraging the multi-resolution regional informa-
tion stored in the hash encoder, we introduce a lightweight
region attention mechanism to explicitly fetch the relations
between the dynamic feature and different spatial regions.
Region Attention Mechanism. The region attention
mechanism involves an external attention step to calcu-
late the attention vector and a cross-modal channel atten-
tion step for reweighting. We aim to connect the dynamic
condition feature with the multiresolution geometry feature
fx ∈ RN , which is encoded by the hash encoder H for a
spatial point x. However, since this hierarchical feature is



constructed by concatenation, no explicit information flow
exists during encoding.

To improve the regional information exchange between
different levels of fx efficiently, and further discriminate the
importance of audio for each region via the norm of the
attention vector, we use a two-layer MLP to capture the
global context of the space. Hence it can be explained as
the form of external attention mechanism [22] with two ex-
ternal memory units Mk and Mv for individual levels con-
nection and self-condition query:

A = ReLU(FMT
k ),

Vout = AMv.
(7)

where vector fx is viewed as an matrix F ∈ RN×1.
Then, similar to the channel attention mechanism pro-

posed by Hu et al. [26], we treat the resulting feature
Vout ∈ RO×1 as the region attention vector v ∈ RO to
reweight each channel of the dynamic condition feature
q ∈ RO. Finally, the output feature vector is:

qout = v ⊙ q (8)
where ⊙ denotes the Hadamard product. The resulting
region-aware feature qout at each channel is related to hier-
atical regions where x is located, since the region attention
vector v includes an informative multi-resolution represen-
tation of the space. Therefore, the multi-resolution spatial
region can decide which part of the information in q should
be kept or enhanced.
Speech Audio. For audio signals, given a query coordinate
x and an audio feature a ∈ RA, we calculate the geometry
feature of x by the tri-plane hash encoder H3 of our tri-
plane hash representation. Then we feed it into a two-layer
MLP to generate the region attention vector va,x ∈ RA

for audio with the same number of channels A. After that,
channel-wise attention is applied to a by va,x:

va,x = MLPa(H3(x)),

ar,x = va,x ⊙ a.
(9)

During training, in regions that vary with the audio, the at-
tention vector va,x is optimized for better utilization of the
audio feature a. Instead, for the static parts, the audio con-
ditions are considered noises and va,x is going to be a zero
vector to help denoising the useless information.
Eye Blinking. We also apply the mechanism for explicit
eye blinking control. We use a scalar to describe the action
of eye blinking and regard it as a vector e with one dimen-
sion. Differently, the region attention vector ve ∈ R1 for
eye blinking is output by a sigmoid layer:

ve,x = MLPe(H3(x)),

er,x = e · Sigmoid(ve,x).
(10)

The result er,x is scaled by ve,x according to its geometry
position. In the region of the eyes, er,x conditions the ap-

Figure 4. Visualization of Region Attention Module. Even if
influenced by some uncertain details like fluffy hair, our region
attention module successfully captures the relation between dy-
namic conditions and spatial regions without explicit annotation.

pearance significantly and is close to e for maximizing its
effect. Otherwise, it tends to become 0 to reduce the nega-
tive interference.

3.4. Training Details
Adaptive Pose Encoding. To solve the head-torso separa-
tion problem, we make an improvement based on previous
works [40, 48]. Instead of directly using the whole image
or pose matrix as the condition, we map the complex trans-
formation of the head pose into the coordinates of several
key points that have clearer position information, and lead
the torso-NeRF to learn an implicit torso pose from these
coordinates.

The encoding process is very simple. We initialize N
points in the 3D canonical space with trainable homoge-
neous coordinates Xkeys ∈ R4×N and apply the head
pose P = (R, t) to transform the key points X̂keys =

P−1Xkeys. Then we project X̂keys onto the image plane
and get the 2D coordinates X̄keys ∈ R2×N which are the
final encoding results to condition the torso-NeRF. In this
work, we use N = 3 and a 2D deformable neural field [40]
to render the pixel-wise color of the torso .1

Coarse-to-Fine Optimization. We apply a two-staged
coarse-to-fine training process for better image quality. At
the coarse stage, we follow the vanilla NeRF to use the MSE
loss for the predicted color Ĉ(r) of the image I:

Lcoarse =
∑
i∈I

∥∥∥C(i)− Ĉ(i)
∥∥∥2
2
. (11)

Since MSE loss has a weakness in optimizing sharp details,
we then apply an overall finetune with LPIPS loss [54].
Similar to RAD-NeRF [40], we randomly sample a set of
patches P from the whole image and combine the LPIPS
loss by a weight λ to enhance details:

Lfine =
∑
i∈P

∥∥∥C(i)− Ĉ(i)
∥∥∥2
2
+ λ LPIPS(P̂,P). (12)

1Additional descriptions and detailed discussions can be found in the
supplementary material.



Methods PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ AUE ↓ Sync ↑ Time FPS Size (MB)
Ground Truth N/A 0 0 0 0 7.584 - - -

Wav2Lip [32] - - 31.08 5.124 3.861 8.576 - 19 >400
PC-AVS [57] 18.25 0.2440 101.97 4.816 3.142 8.397 - 32 >500
AD-NeRF [23] 30.75 0.1034 18.60 3.345 2.201 5.205 18h 0.13 5.21
RAD-NeRF [40] 33.13 0.0519 12.05 2.812 2.102 5.052 5h 32 11.8
RAD-NeRF† 33.26 0.0486 12.20 2.802 1.750 5.197 - - -

ER-NeRF (Ours) 33.10 0.0291 10.42 2.740 1.629 5.708 2h 34 2.51
† using AU45 and overall LPIPS finetune.

Table 1. The quantitative results of the head reconstruction setting. The best results are in bold. Since Wav2Lip can see the ground
truth during the self-driven evaluation, we provide another clip of video as the image input. Hence PSNR and LPIPS are not valid. The
inference FPS of NeRF-based methods is tested on the Obama dataset [23] under the resolution of 450× 450.

4. Experiments
4.1. Experimental Settings
Dataset. For a fair comparison, the dataset for our experi-
ments is obtained from publicly-released video sets [23, 28,
33]. We collect four high-definition speaking video clips
with an average length of about 6500 frames in 25 FPS.
Each raw video is cropped and resized to 512× 512 with a
center portrait, except the one from AD-NeRF [23] with the
size of 450×450. A pre-trained DeepSpeech model is used
to extract the basic audio feature from the speech audio.
Comparison Baselines. We compare our method with
recent representative one-shot and person-specific models,
including Wav2Lip [32], PC-AVS [57], NVP [41], LSP [29]
and SynObama [39]. In addition, we also compare our
method with the three end-to-end NeRF-based models: AD-
NeRF [23], SSP-NeRF, and RAD-NeRF [28]. Furthermore,
we evaluate our method directly on the Ground Truth to pro-
vide a clearer comparison.
Implementation Details. We implement our method on
PyTorch. For a specific portrait, we train the head part for
100, 000 and 25, 000 iterations at the coarse and the fine
stage, respectively. In each iteration, we randomly sample
a batch of 2562 rays from one image. Each 2D hash en-
coder is set with L = 14, F = 1, and with resolutions from
64 to 512. The torso part is trained separately for another
100, 000 iterations. We use AdamW optimizer for both net-
works with a learning rate of 0.01 for hash encoders and
0.001 for other modules. For the control of eye blinking, we
choose AU45 [16] to describe the degree of the action. All
experiments are performed on a single RTX 3080Ti GPU.
Both the training for the head and torso take about 2 hours.

4.2. Quantitative Evaluation
Metrics. We employ Peak Signal-to-Noise Ratio (PSNR)
to measure the overall image quality and Learned Percep-
tual Image Patch Similarity (LPIPS) [54] to measure the
details. As we have already used the LPIPS during train-
ing, for a fair comparison, an additional feature-based loss
Fréchet Inception Distance (FID) [25] is involved for eval-
uating image quality. We also utilize the landmark distance

Testset A Testset B

Methods LMD ↓ Sync ↑ LMD ↓ Sync ↑
Ground Truth 0 6.701 0 7.309

Wav2Lip [32] 6.221 8.378 7.393 8.966
PC-AVS [57] 7.112 8.087 7.722 8.565
SynObama [39] 6.540 6.802 - -
NVP [41] - - 7.954 4.313
LSP [29] 5.905 4.287 8.122 5.843

AD-NeRF [23] 6.192 5.195 8.006 4.316
SSP-NeRF [28] 6.332 5.422 - -
RAD-NeRF [40] 6.357 6.186 8.332 6.680
RAD-NeRF† 6.339 6.119 8.355 6.392

Ours 6.254 6.242 8.150 6.830
† using AU45 and overall LPIPS finetune.

Table 2. The quantitative results of lip synthchronization set-
ting. The best overall results and the best NeRF-based methods
are in bold and underline, respectively.

(LMD) [9] and SyncNet confidence score (Sync) [12, 13]
for lip synchronization and action units error (AUE) [2, 1]
to evaluate face motion accuracy.
Comparison Settings. In quantitative evaluation, we focus
on the synthesized quality of the head. Our comparisons are
divided into two settings: 1) The head reconstruction set-
ting, where we split each video into training and test dataset
to evaluate the reconstruction quality of the head for a spe-
cific portrait. 2) The lip synchronization setting, where we
use the audio track of unseen videos to drive all methods for
comparisons in lip synchronization.

For the first setting, we use all videos in the collected
dataset described in Sec. 4.1 and split each video for both
training and evaluation. For the second setting, we ex-
tract two audio clips from the public demos of NVP and
SynObama, named Testset A and Testset B. Due to the
lack of pre-trained models and codes for NVP, SynObama,
and SSP-NeRF, we also get their generated videos from
released demos for evaluation. Following previous works
[23, 28, 40], we train our method and other baselines on the
Obama dataset released with AD-NeRF [23]. For each gen-
erated result, we crop and rescaled the facial area into the
same size for a fair comparison.



Figure 5. The comparison of the key frames and details of generated portraits. We show the generated results of the baselines
[32, 57, 23, 40] under the head reconstruction setting and the ground truth. For NeRF-based methods, we also synthesize the torso part for
evaluation. Please zoom in for better visualization.

Methods Wav2Lip [32] PC-AVS [57] SynObama [39] LSP [29] NVP [41] AD-NeRF [23] RAD-NeRF [40] ER-NeRF (Ours)

Lip-sync Accuracy 2.67 2.50 3.56 2.67 2.83 3.25 3.81 4.14
Image Quality 1.92 1.83 4.22 3.83 3.75 3.33 3.69 4.08
Video Realness 1.89 1.83 3.33 2.92 3.50 3.02 3.47 3.86

Table 3. User Study. The rating is of scale 1-5, the higher the better. We highlight the best and second best results.

Evaluation Results. The results of the head reconstruction
setting and lip synchronization setting are shown in Table 1
and Table 2, respectively. It can be observed that: (1) In the
head reconstruction setting, our method achieves the best
reconstruction quality in vision and lip synchronization. Al-
though the one-shot methods (Wav2Lip and PC-AVS) per-
form best in Sync and can synthesize talking heads with-
out per-scene training, they get poor scores in other met-
rics, which shows that they cannot accurately reconstruct
the specific portrait. For a fair comparison, we also apply
the overall LPIPS finetune and AU45 [16] to RAD-NeRF
to enhance its image quality and eye blinking but cause no
obvious improvement in image details. Our ER-NeRF per-
forms the best in most metrics while reaching a higher score
than other baselines in Sync. The results show that our
method can synthesize realistic portraits with high lip-sync
accuracy. (2) In the lip synchronization setting, our method
shows an excellent generalization ability to synthesize lip-
sync talking portraits. AD-NeRF and SSP-NeRF encounter
an over-smoothing lip movement, leading to a high LMD
score but low SyncNet confidence. While getting the high-

est Sync score among NeRF-based methods, our method ex-
ceeds some representative baselines in lip synchronization.
(3) Our method reaches real-time inference, with a faster
training time and smaller model size. In Table 1, we report
the inference FPS, model size and the time cost for train-
ing person-specific models. In comparison, our ER-NeRF
achieves the best performance in all three metrics, which
demonstrates its high efficiency.

4.3. Qualitative Evaluation
Evaluation Results. For an intuitive comparison of the
whole portrait, we show the key frames of a clip and de-
tails of four portraits in Figure 5. For NeRF-based meth-
ods, we synthesize the torso part to evaluate the whole por-
trait. The result shows that our ER-NeRF renders more
details and has the highest personalized lip-sync accuracy.
Although Wav2Lip and PC-AVS achieve a high score in
Sync, their generated results have an obvious gap from the
ground truth. To evaluate the torso part, all three NeRF-
based methods render the torso and head separately. AD-
NeRF severely suffers from head-torso separation (yellow



Figure 6. Evaluation of the out-of-range pose. Even with a more
compact representation, our method can still render accurate struc-
ture at a large rotation angle which is rare in the training video.

arrow), and the torso of RAD-NeRF also fails to align with
the head sometimes (red arrow). With the same basic repre-
sentation for the torso as RAD-NeRF, our method demon-
strates higher robustness and quality thanks to the design of
Adaptive Pose Encoding.

In addition, we also compare results with some out-of-
range poses, as shown in Figure 6. Despite having pruned
most feature grids, our method performs the best in image
quality and structure accuracy, which means the robustness
and efficiency of our Tri-Plane Hash Representation.
User Study We conducted a user study to better judge the
visual quality of the generated heads. We sample 28 gener-
ated video clips from the quantitative evaluation, and invite
18 attendees to join the study. The Mean Opinion Scores
(MOS) rating protocol is adopted for evaluation and the at-
tendees are required to rate the generated videos from three
aspects: (1) Lip-sync Accuracy; (2) Video Realness; (3) Im-
age Quality. The average scores of each method are shown
in Table 3. Our ER-NeRF performs the best in lip-sync ac-
curacy and realness. For image quality, only SynObama
[39] gets a higher score than our method, which however re-
lies on a large number of training videos and cannot render
in real-time. The results show the excellent visual quality
of our method for high-fidelity talking portrait synthesis.

4.4. Ablation Study
In this section, we report the ablation study under the

head reconstruction setting to prove the effectiveness of our
two main contributions. We test settings of different back-
bones, dynamic feature integration methods and attention
targets. The results are shown in Table 4 and Table 5.
Representation. We evaluate three representation back-
bones on the quality of head reconstruction. The first is an
MLP-based network, which is the same as AD-NeRF [23].
For grid-based backbones, we compare our tri-hash repre-
sentation with pure tri-plane in EG3D [6] and the Instant-
NGP [31] 3D hash grid that is used in RAD-NeRF [40].
Due to our specialized architecture, the proposed tri-hash
representation achieves the best image quality and makes a
significant improvement in lip synchronization.

Backbone Concat Att. PSNR↑ LPIPS↓ LMD↓ AUE↓ Sync↑
MLP ✓ 30.75 0.103 3.345 2.201 5.205

Pure
Tri-Plane

✓ 32.11 0.033 2.960 1.812 4.441
✓ 33.14 0.030 2.825 1.677 5.233

iNGP [31] ✓ 33.05 0.031 2.919 1.729 4.664
✓ 33.12 0.030 2.810 1.689 5.257

Tri-Hash ✓ 33.25 0.029 2.881 1.634 5.123
✓ 33.10 0.029 2.740 1.646 5.708

Table 4. Ablation Study on Tri-Plane Hash Representation and
Region Attention Module.

Type PSNR ↑ LPIPS ↓ LMD ↓ AUE ↓ Sync ↑
Feature-Wise 33.14 0.030 2.781 1.650 5.465
Channel-Wise 33.10 0.029 2.740 1.646 5.708

Table 5. Ablation Study on types of attention.

Region Attention Module. We evaluate the region at-
tention mechanism on two backbones compared with di-
rectly concatenating. The results show the enormous im-
pact of our method on modeling accurate motions. Note that
by only using our attention mechanism with existing back-
bones, we can get better scores in both image quality and lip
synchronization than current state-of-the-art methods with
half of the training time and fewer parameters, which shows
the high efficiency of our attention mechanism.
Attention Type. In Table 5, we compare three types of
attention for the region attention mechanism: feature-wise
and channel-wise. Feature-wise attention scales the entire
audio feature with a one-dimensional attention vector, while
channel-wise reweights each channel, as described in Sec-
tion 3.3. The outperforming of channel-wise attention in-
dicates that the proposed region attention mechanism suc-
cessfully captures the distinct impacts of spatial regions and
significantly improves lip motion quality.

5. Ethical Consideration
We hope our ER-NeRF can enhance interactive experi-

ences and benefits human beings. However, it could be mis-
used for some malicious purposes. As part of our respon-
sibility, we will share our generated results to help develop
stronger deepfake detectors. We believe that the responsi-
ble use of this technique can promote the healthy growth of
both machine learning research and the digital industry.

6. Conclusion
In this paper, We propose an efficient and effective

framework ER-NeRF for high-quality talking portrait syn-
thesis, mainly consisting of a Tri-Plane Hash Represen-
tation and a Region Attention Module. Our framework
achieves significant improvement in realistic talking portrait
synthesis with higher efficiency. Due to the space limita-
tion, we have put the discussion in the supplementary mate-
rial. We hope our work can benefit human beings and also
inspire more novel conditional NeRF techniques.
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A. Supplementary Material

A.1. Overview

In the supplemental document, we introduce the details
of our torso-nerf with Adaptive Head Encoding, model ar-
chitecture details, user study details, additional experiments
and analysis, ethical considerations, and the discussion of
this work.

A.2. Torso-NeRF Details

We combine the proposed Adaptive Pose Encoding and
the 2D deformable neural field from RAD-NeRF [40] to
render the torso part. As described in Section 3.4 of the
main paper, we init three points in the 3D canonical space
with trainable homogeneous coordinates:

Xkeys = (xkeys,ykeys, zkeys,1)
T ∈ R4×3. (13)

For each frame, we form the pose of head P as:

P =

(
R t
0 1

)
(14)

and apply it to transform the key points:

X̂keys = P−1Xkeys. (15)

where X̂keys is the transformed coordinates. Then we con-
vert X̂keys to the ordinary coordinates and project them
onto the plane Z = 1 to calculate their 2D coordinates
X̄keys ∈ R2×3 on the imaging plane, where

X̄keys(i, j) = γ · X̂keys(i, j)/ẑkeys(j), (16)

and γ is the coefficient learned by the network.
The overview of the torso-NeRF is shown in Figure 7.

We use X̄keys to condition the 2D deformable neural field
[40] for rendering the pixel-wise color and alpha of the torso
at the image pixel coordinate xpixel. Specifically, to render
the pixel at xpixel ∈ R2 on the image , we firstly feed X̄keys

and the pixel coordinate xpixel into an MLP, and add the
output ∆x to xpixel for a 2D deformation. The deformed
coordinate is then encoded by the 2D multiresolution hash
encoder Ht. Finally, another MLP is used to calculate the
pixel-wise transparency α and color ct.

The implicit function of the torso-NeRF can be formu-
lated as:

FT : (xpixel, X̄keys;Ht) → (ct, α) (17)

During training, the coordinates Xkey can be optimized
to gain the ability in representing the implicit relationship
between the poses of the head and torso. And due to only
linear transformations involved during forwarding, the torso
quality is improved without a significant increase in the
amount of calculation.

Methods AD-NeRF RAD-NeRF ER-NeRF

Stability 1.33 2.89 3.89
Image Quality 2.67 3.33 4.00

Table 6. User Study of Torso Quality. The rating is of scale 1-5,
the higher the better.

User Study. We also conduct a user study to evaluate the
synthesized torso part. We invite the attendees to rate the
stability and image quality of generated torsos in the head
reconstruction setting. To compare our method, we selected
AD-NeRF [23] and RAD-NeRF [40] as the baselines since
they are the only two NeRF-based methods that can syn-
thesize the torso part and have released their codes. The
results are reported in Table 6. We can observe that our ER-
NeRF achieves the best both on Stability and Image Qual-
ity by just adding a straightforward encoding step without
any deep neural network, which demonstrates the high effi-
ciency of our Adaptive Pose Encoding.

A.3. Architecture Details

Audio Feature Extractor. In the experiments, we use
the pretrained DeepSpeech [24] model to extract raw au-
dio features. We then process these features with the same
audio attention module as previous NeRF-based works
[23, 33, 40], except for changing the output dimension from
64 to 32.

Region Attention Module. The speech audio branch uti-
lizes an attention vector MLP with 2 layers and 64 hidden
dimensions. Conversely, the eye-blinking branch employs a
2-layer MLP with only 16 hidden dimensions.

Tri-plane Hash Representation. The 2D hash encoders
are configured to have 14 resolution levels and a single entry
assigned to each level, with a range of multiple resolutions
from 64 to 512. The density MLP decoder contains 3 layers,
and the color MLP decoder contains 2 layers, both of which
have 64 hidden dimensions.

A.4. User Study Details

The study involves 18 participants with an age range of
20-30 years old. To facilitate more accurate judgments, we
combine all generated videos and the ground truth into a
single high-resolution video. This allows participants to ob-
serve all motions simultaneously. To ensure fairness in the
comparison process, we assign a number to each generated
result instead of identifying them by their method. Partic-
ipants are asked to evaluate the three perspectives of the
generated portraits: (1) Lip-sync Accuracy; (2) Video Re-
alness; (3) Image Quality. To evaluate the torso-NeRF, we
additionally invite the attendees to judge two aspects of the
synthesized torso: (1) Stability; (2) Image Quality.



Figure 7. Overview of the Torso-NeRF.

Grid Instant-NGP Tri-Hash

Frontal Side 1 Side 2 Total

Collision 835186 138345 31041 26048 195434

Table 7. The number of hash collisions occurring in one feature
lookup step on a single grid resolution.

A.5. Tri-Plane Hash Representation

Complexity of Hash Collision Here we give the proof of
the complexity O(R2 + 2RN) in Section 3.2 for our Tri-
Hash Representation: 1) For the frontal plane, the projected
area is linearly correlated to R2, thus the collision is O(R2);
2) The ideal projected area for the other two side planes
is (λR)R, where λ is an adjustment. But notice only the
nearest N points can be sampled at some side areas due to
occlusion, so λR is partly correlated to N , and the collision
is O(λR2 +RN). Overall, O(R2 + 2RN) is given.

The Number of Hash Collisions. Here we give the eval-
uation during one lookup step to directly verify our effect
on hash collision reduction. The hashtable size is set to 214

and divided by 3 for each planar grid in our Tri-Hash, with
the grid resolution of 512, the max in the experiment. Ad-
justments of 1/8 and 1/4 are applied due to bilinear inter-
polation. The point coordinates are scaled up to encour-
age uniform hashing. In practice, the benefit of our method
would be more obvious, since indeed the coordinates can-
not be uniformly separated among the hash table and so the
overlapping of grids becomes more serious.

A.6. Additional Experiments

LPIPS Finetune. It may seem counter-intuitive that the
overall LPIPS [54] finetuning is less effective for RAD-
NeRF [40] but has a significant impact on the high-
frequency details of our ER-NeRF despite having a smaller
model size. This phenomenon is likely due to differences
in training difficulty. Our ablation study shows that even
a simplified architecture with only a 3D hash grid back-
bone and an audio feature dimension of 32 can repro-
duce fine details. On the other hand, RAD-NeRF uses a

(a) Obama (b) May

Figure 8. The validation LPIPS loss on our Obama dataset and
May dataset with different architectures. A complex network is
much harder to be optimized by the LPIPS finetune and reproduce
fine details.

more complex architecture with an additional hash grid and
higher-dimensional audio features to improve lip-sync per-
formance, which increases the training difficulty and makes
the network harder to optimize. As a result, the LPIPS fine-
tuning has a weaker impact on its rendering quality. The
variations in LPIPS loss during training are illustrated in
Figure 8.

Region Attention for Eye Blinking. We perform an abla-
tion study on the eye-blinking branch of the Region Atten-
tion Module in isolation. When we skip the region attention
mechanism and directly concatenate the AU45 with the in-
put of the MLP decoder, some unnatural facial movements
appear, like jittering and unreasonable lip movements with
eye blinking (Figure 9). This might be due to the module’s
inability to accurately identify the regional impact of eye
blinking and thus learns an incorrect motion mapping with
other facial regions. The results indicate that our Region
Attention Module can help decouple different semantic mo-
tions and improve robustness.

A.7. Comparison with GeneFace and DFRF

In table 8 and 9, we have also compared our ER-NeRF
with two current SOTA methods GeneFace [48] and DFRF
[33], both of which are designed for different settings, no-
tably. Meanwhile, since the code of GeneFace is released



Figure 9. Ablation on Region Attention for Eye Blinking. Some
unnatural facial movements appear when directly concatenating
the AU45 with the input to control eye blinking. After applying
the proposed region attention mechanism, the robustness has been
improved.

Methods PSNR ↑ LPIPS ↓ FID ↓ LMD ↓ AUE ↓ Sync ↑
DFRF 30.74 0.0881 13.32 3.553 2.538 4.385
GeneFace 30.24 0.0817 11.16 3.496 2.854 5.403

ER-NeRF (Ours) 33.10 0.0291 10.42 2.740 1.629 5.708

Table 8. DFRF and GeneFace at the head reconstruction setting.

Methods A: LMD ↓ A: Sync ↑ B: LMD ↓ B: Sync ↑
DFRF 6.551 4.854 8.126 4.127
GeneFace 5.465 5.849 7.237 6.275

ER-NeRF (Ours) 6.254 6.242 8.150 6.830

Table 9. DFRF and GeneFace at the lip synchronization setting.

too close to the submission deadline, it was not taken into
the baselines in the main paper. We consider the compar-
isons not entirely fair for them, and the results are just for
reference.

A.8. Additional Qualitative Comparison

We show some additional generated key frames on the
Testset A under the lip synchronization setting with high
resolution in Fig. 10. In this setting, we only synthesize
the head part. The results show that our ER-NeRF can out-
perform most baselines in image quality while retaining a
high lip-sync accuracy. We strongly recommend watching
our supplemental video for better visualization and more re-
sults.

A.9. Ethics Considerations

Our proposed ER-NeRF synthesizes high-fidelity talk-
ing portraits with accurate lip-audio synchronization. The
generated portrait video is highly realistic and difficult for
people to distinguish fake from real. We hope it can facili-
tate a wide range of applications, such as digital humans,
video production, and human-computer interaction assis-

tance. On the other hand, however, such techniques may
be misused for malicious purposes and make harm. It’s sig-
nificant to tell the users whether a video is real or fake. Re-
cent studies have already achieved success in deepfake de-
tection for face swapping, reenactment and other generating
videos [21, 56, 14, 11, 35, 15], but it remains a challenge to
discriminate synthesized high-fidelity portraits from recent
NeRF-based methods. Besides sharing our generated re-
sults to the deepfake detection communication and to help
develop more powerful deepfake detectors, we also provide
some possible perspectives to fight against the malicious use
of talking portrait synthesis:

• Protect real portrait speech videos. Since current
NeRF-based techniques rely heavily on specific training
videos, protection for these real videos is valid to prevent
misuse. For example, we can add digital watermarks to
the portrait part which can be easily detected even in the
generated fake videos.

• Limit the use of deepfake techniques. Nowadays, little
cost of deepfakes leads to an unconstrained use of these
techniques. The negative impact of the malicious use of
deepfakes can be amplified when they are unintentionally
created and shared by the public on social media plat-
forms. Even though the creators may have no malicious
intent, the spread of these deepfakes can still have harm-
ful consequences. We suggest the laws should state how
to properly make use of these face-generation techniques.
On the other hand, the public should also be aware of the
potential harm of deepfakes and treat them cautiously.

A.10. Limitation and Future Work

Compared to the one-shot methods like Wav2Lip [32],
our method has some advantages in results quality and res-
olution, however, needs per-scene training when generating
new target portraits. Enabling the generative ability may be
the target we work for.

Besides, the proposed method has two main limitations.
Firstly, our method still encounters a challenge with the
small scale of a single training video, leading to a weak
lip-audio synchronization with out-of-domain audio, such
as some cross-lingual speech or singing voice. Currently,
we rely on a pretrained speech recognition model to extract
audio features. We have noticed that some recent works
[48, 7] employed a pretrained model to enhance their gen-
eralizability. In future work, we will consider incorporating
priors from large audiovisual datasets to address this lim-
itation. Secondly, although our method has improved the
robustness and image quality of the torso part, there remain
some blurry regions. We analyze this may be caused by un-
certain movements and the form of representation itself. In
future work, we will focus on addressing this issue.



Figure 10. Additional Qualitative Comparisons. We show the synthesized head results of the lip synchronization setting on Testset A.
(a) Ground truth; (b) AD-NeRF [23]; (c) SynObama [39]; (d) RAD-NeRF [40]; (e) ER-NeRF (ours); (f) LSP [29]; (g) SSP-NeRF [28];
(h) Wav2Lip [32]; (i) PC-AVS [57].


