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Abstract

Existing text-to-image generation approaches have set
high standards for photorealism and text-image corre-
spondence, largely benefiting from web-scale text-image
datasets, which can include up to 5 billion pairs. How-
ever, text-to-image generation models trained on domain-
specific datasets, such as urban scenes, medical images,
and faces, still suffer from low text-image correspondence
due to the lack of text-image pairs. Additionally, collect-
ing billions of text-image pairs for a specific domain can
be time-consuming and costly. Thus, ensuring high text-
image correspondence without relying on web-scale text-
image datasets remains a challenging task. In this pa-
per, we present a novel approach for enhancing text-image
correspondence by leveraging available semantic layouts.
Specifically, we propose a Gaussian-categorical diffusion
process that simultaneously generates both images and cor-
responding layout pairs. Our experiments reveal that we
can guide text-to-image generation models to be aware of
the semantics of different image regions, by training the
model to generate semantic labels for each pixel. We
demonstrate that our approach achieves higher text-image
correspondence compared to existing text-to-image gen-
eration approaches in the Multi-Modal CelebA-HQ and
the Cityscapes dataset, where text-image pairs are scarce.
Codes are available in this link.

1. Introduction
Text-to-image generation aims to materialize text de-

scriptions into images, where the main challenge comes
from ensuring high image quality and correspondence be-
tween input text and output images. While texts convey
intuitive semantic depictions of images, they often lack de-
tailed spatial descriptions. For example, text descriptions
such as “A woman is wearing earrings.” do not describe
where the earrings are located within the image. Thus, when
a small number of text-image pairs are given, it is challeng-
ing for a generative model to learn what part of the image

1 * indicates equal contribution.

Figure 1. Recall of facial attributes specified in the text descrip-
tions. Text-to-image generation approaches trained on a subset of
the Multi-Modal CelebA-HQ [21,26] often fail to reflect text con-
ditions. Facial attributes are classified with a pretrained attribute
classifier [35].

corresponds to which words in the text.
Overcome this hurdle, recent text-to-image generation

approaches [33, 34, 36, 37] leverage web-scale text-image
datasets [34,38] containing up to 5 billion text-image pairs.
With access to such data, generative models can fully learn
the correspondence between input texts and output images
and synthesize photorealistic images while properly reflect-
ing text descriptions.

However, the cost of such large-scale training remains a
major obstacle, often requiring weeks of training even with
hundreds of GPUs, which limits participation in the subject
to only a few researchers. Moreover, when generating im-
ages in a specific domain, such as faces or urban scenes, col-
lecting billions of text-image pairs can be challenging due
to the difficulties in collecting images. Even with a general-
purpose pretrained model, finetuning on datasets with large
domain gaps (e.g., urban scenes or medical images) leads to
poor image quality and low text-image correspondence. Re-
cent text-to-image models trained on specific domains often
fail to reflect text conditions in the absence of web-scale
text-image pairs. To examine this issue in data-scarce sce-
narios, we evaluate text-to-image generation models trained
on a subset of the Multi-Modal CelebA-HQ [21,26] dataset.
As shown in Figure 1, existing models struggle to gener-
ate certain attributes specified in the given text conditions.
Thus, ensuring high text-image correspondence remains a
challenge for domain-specific generation.
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In this paper, we present a novel approach to achieve
high text-image correspondence for domain-specific text-
to-image generation by leveraging semantic layouts. Rather
than solely generating images based on text descriptions,
we propose to concurrently generate both images and their
corresponding semantic layouts. To this end, we design a
Gaussian-categorical diffusion process that models the joint
distribution of image-layout pairs. To the best of our knowl-
edge, this is the first approach to combine Gaussian and cat-
egorical diffusion processes into a unified diffusion process.
By generating semantic labels for each pixel in the image,
our generative model can learn the semantics of different
parts of the image, allowing it to effectively learn which
text descriptions correspond to which locations in the im-
age, even with limited text-image pairs.

We experiment our approach on subsets of the Multi-
Modal CelebA-HQ [23, 26] to simulate cases where text-
image pairs are limited and semantic layouts are available.
We also add text descriptions to the Cityscapes dataset [8]
to evaluate text-to-image generation in complex scenes with
multiple objects, where learning text-image correspondence
can be challenging. Our experiments and analyses reveal
that modeling the joint image-layout distribution can effec-
tively facilitate text-to-image generation models to achieve
high text-image correspondence when web-scale text-image
pairs are unavailable. We also demonstrate potential appli-
cations of the Gaussian-categorical diffusion models in se-
mantic image synthesis and semantic segmentation, through
cross-modal outpainting.

Our contributions are threefold:

• We define a Gaussian-categorical diffusion process for
modeling joint image-layout distributions, which is
the first approach to unify two diffusion processes for
image-layout generation.

• Our experiments reveal that generating image-layout
pairs can be a practical alternative to increase text-
image correspondence in circumstances where collect-
ing web-scale text-image pairs is infeasible.

• We present cross-modal outpainting, which demon-
strates that Gaussian-categorical diffusion models are
also capable of modeling conditional distributions for
semantic image synthesis and semantic segmentation.

2. Related work
Text-to-image generation. Text-to-image generation [47,
48, 51, 52] have consistently advanced over the years bene-
fiting from large pretrained text encoders [32, 34] and gen-
erative models [12, 16, 34]. Recent approaches [30, 33,
36, 37] tackle zero-shot text-to-image generation by train-
ing diffusion-based generative models on web-scale text-
image datasets, such as the LAION-5B [38] or the DALL-
E dataset [34], which scale from 250M to 5B text-image

“He is wearing earrings. He has 

high cheekbones, and goatee. 

He is smiling.”

“An image of an urban street view with Poles, Sidewalks, 

People, Bicycles, Traffic signs, Cars, Buildings, Vegetations, 

Walls, Riders, Roads, Skies, Traffic lights and Terrains.”

Figure 2. Samples of image, text, and layout triplets from the MM
CelebA-HQ [21, 23, 26] and the Cityscapes dataset [8].

pairs. While zero-shot text-to-image generation can synthe-
size realistic images given general text descriptions, these
approaches heavily rely on the large number of text-image
pairs used for training to achieve high text-image correspon-
dence. Thus, when these models are trained on specific
datasets (e.g., MM CelebA-HQ [21, 23, 26, 46]) to gener-
ate images within a certain domain, they often fail to satisfy
the given text conditions as seen in Figure 1. Collecting
enough text-image pairs for a specific domain to ensure high
text-image correspondence may be overly expensive since
obtaining text descriptions often require human captioning.
In this paper, we present an alternative approach for en-
hancing text-image correspondence without additional text-
image pairs by leveraging semantic layouts.
Generating image-layout pairs. Modeling the joint
image-layout distribution p(x, y) is an emerging field in
image synthesis, where the goal is to generate both the
image x and the corresponding semantic layout y. For
the purpose of training semantic segmentation models with
strong data augmentation, DatasetGAN [49] and Dataset-
DDPM [3] represent the joint image-layout distribution as
a composition of two models: an image generation model
p(x) and a classifier p (y |x). During inference, the inter-
nal representations of p(x) (i.e., feature maps) are used as
inputs of p (y |x), which then classifies each pixel to obtain
an image-layout pair.

On the other hand, SB-GAN [2] and Semantic
Palette [22] discover that joint modeling of the image-layout
distribution can be advantageous for generating complex
scenes. Specifically, they decompose the generation pro-
cess into two steps, a layout generation step p(y) followed
by a conditional image generation step p (x | y) given the
generated layout. The authors argue that generating layouts
with appropriate class proportions can effectively facilitate
the scene generation process.

SemanticGAN [24] models p(x, y) with a single
GAN [12] in the pursuit of semantic segmentation with out-
of-domain generalization. The results demonstrate that im-
ages and layouts can exhibit high alignment when generated
through a single model.

In this work, we propose a Gaussian-categorical diffu-
sion process to model p(x, y) with a single diffusion pro-
cess. Our joint image-layout generation model is extended
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Figure 3. Illustration of the Gaussian-categorical diffusion process
on the image-layout distribution of MM CelebA-HQ [23, 26].

to the text-to-image generation task, where we achieve
high text-image correspondence without requiring web-
scale text-image datasets. Specifically, we provide analy-
ses demonstrating that our model is aware of the semantics
of the generated image and properly reflects the text condi-
tions.
Diffusion process in continuous and discrete domains.
Diffusion models [11, 16, 29, 40] synthesize data x0 in an
iterative manner by repeatedly denoising pure noise xT . In
image generation, the forward noising process q (xt |xt−1)
and the reverse denoising process pθ (xt−1 |xt) are defined
using a predefined noise schedule βt,

q (xt |xt−1) := N (xt;
√
1− βtxt−1, βtI), (1)

pθ (xt−1 |xt) := N (xt−1;µθ(xt), σ
2
t I), (2)

where t ∈ [1, 2, ..., T ].
Since the true reverse process q (xt−1 |xt) is intractable,

the reverse process is approximated by minimizing the KL
divergence with the posterior q (xt−1 |xt,x0) with

Lt = DKL(q (xt−1 |xt,x0) ∥ pθ (xt−1 |xt)). (3)

To extend diffusion processes to categorical data [1, 19]
such as text or semantic labels, a categorical noise is de-
fined for the forward process, and the denoising diffusion
process is constructed in a similar manner. For instance,
Hoogeboom et al. [19] defines a categorical noise as

q (xt |xt−1) := C(xt; (1− βt)xt−1 + βt/K), (4)
pθ (xt−1 |xt) := C(xt−1;Θθ(xt)), (5)

where C denotes a categorical distribution, K is the number
of categories, and Θ is the probability mass function (PMF)
of the categorical distribution.

The key idea for defining a diffusion process in a cer-
tain distribution is to define a forward noising process
q (xt |xt−1) and derive a posterior q (xt−1 |xt,x0). In the
following section, we define the forward and reverse pro-
cesses of the Gaussian-categorical distribution, which can
model the joint distribution of image-layout pairs.

Categorical 𝑌

Gaussian 𝑋

𝑃(𝑋, 𝑌)

Figure 4. Visualization of a Gaussian-categorical distribution with
a single variable (N = 1, M = 1, K = 4, and S = 4).

3. Method
3.1. Gaussian-categorical distribution

In this section, we define the joint distribution of the
Gaussian variable X and categorical variable Y . We pa-
rameterize the Gaussian-categorical distribution as follows,

(X,Y ) ∼ NC (x,y;µ,Σ,Θ) , (6)

X = [X1, X2, ..., XN ] ∈ RN ,

Y = [Y1, Y2, ..., YM ] ∈ {1, 2, ...,K}M ⊂ RM ,

µ ∈ RS×N ,Σ ∈ RS×N×N ,Θ ∈ RM×K .

Here, µ,Σ are the mean and variance of the Gaussian dis-
tribution, and Θ is the probability mass function (PMF) of
the categorical distribution. Also, K is the number of pos-
sible states for Yi and S = KM is the total number of states
of Y . It is worth noting that the dimensions of µ and Σ,
which indicates that there is a Gaussian mean and variance
for all possible categorical states in Y .

The joint distribution of two random variables can be
written as a product of a conditional and marginal dis-
tribution. Therefore, we can also express the Gaussian-
categorical distribution as

NC(x,y;µ,Σ,Θ) = C(y;Θ) · N (x;µy,Σy) (7)

µy ∈ RN ,Σy ∈ RN×N .

The probability density function (PDF) can be written as
a weighted Gaussian distribution for each unique y ∈
{1, 2, ...,K}M as

NC(x,y;µ,Σ,Θ) =

(
M∏
i=1

Θi ,yi

)
(2π)

−N
2 |Σy|−

1
2

exp
(
− 1

2
(x− µy)

⊤Σ−1
y (x− µy)

)
,

(8)

where Θi ,yi
denotes the probability of Yi = yi, and µy,

Σy indicates the mean and variance corresponding to state
y, respectively.



3.2. Gaussian-categorical diffusion process

Similar to the diffusion process for images, we define our
reverse process of image-layout distributions as a Gaussian-
categorical transition with a Markov property. Specifically,
we define the transition probability pθ (zt−1 | zt) as

pθ (zt−1 | zt) := NC (zt−1;µθ(zt),Σθ(zt),Θθ(zt)) ,
(9)

where z represents the tuple (x,y) for simplicity.
We define the forward process of image-layout pairs z0

under the Markov assumption as

q (zt | zt−1) := NC
(
zt;
[
µt|t−1

]
×S

,
[
Σt|t−1

]
×S

,Θt|t−1

)
,

(10)

µt|t−1 :=
√
1− βN

t xt−1,

Σt|t−1 := βN
t I,

Θt|t−1 := (1− βC
t )yt−1 + βC

t/K,

where βC and βN are predefined noise schedules. We use the
notation [v]×S to indicate row-wise duplication of a vector
v (i.e., [v,v, ...,v]T ).

Intuitively, the forward process is defined as indepen-
dently applying the Gaussian and categorical noises follow-
ing a normal distribution N (0, I) and a categorical distri-
bution with uniform probability C(1/K), according to pre-
defined noise schedules βN , βC . Given a large T and ap-
propriate noise schedules, the forward process leads to an
isotropic Gaussian distribution and a uniform categorical
distribution at the final state zT .

With αt := 1 − βt and ᾱt :=
∏t

s=1 αs, we can derive a
forward process to an arbitrary timestep as

q (zt | z0) = NC
(
zt;
[
µt|0

]
×S

,
[
Σt|0

]
×S

,Θt|0

)
, (11)

µt|0 :=
√
ᾱN
t x0,

Σt|0 := (1− ᾱN
t )I,

Θt|0 := (1− ᾱC
t)y0 + ᾱC

t/K.

Finally, using Bayes theorem, we can derive the poste-
rior q (zt−1 | zt, z0), which is summarized into the follow-
ing form of a Gaussian-categorical distribution

q (zt−1 | zt, z0) = NC
(
zt−1;

[
µ̃t

]
×S

,
[
Σ̃t

]
×S

, Θ̃t

)
,

(12)

µ̃t :=

√
ᾱN
t−1β

N
t

1− ᾱN
t

x0 +

√
αN
t (1− ᾱN

t−1)

1− ᾱN
t

xt,

Σ̃t :=
(
(1− ᾱN

t−1)β
N
t /(1− ᾱN

t )
)
I,

Θ̃t := Z[αC
tyt + (1− αC

t)/K]⊙ [ᾱC
ty0 + (1− ᾱC

t−1)/K],

where Z is a normalizing constant and ⊙ is the element-

wise product. Detailed proofs for each step are provided in
A.1.

Note that parameters µ and Σ of the posterior are ex-
pressed in terms of µ̃t ∈ RN and Σ̃t ∈ RN×N , which
have a reduced dimensions than the original parameters in
Equation (6). This is due to the definition in Equation (10),
where the Gaussian noise is applied independently of the
categorical variable.

We can write the variational lower bound (VLB) as

LVLB := L0 + L1 + L2 + ...+ LT , (13)
L0 := − log pθ (z0 | z1) , (14)

Lt−1 := DKL(q (zt−1 | zt, z0) ∥ pθ (zt−1 | zt)), (15)
LT := DKL(q (zT | z0) ∥ pθ(zT )). (16)

Since the posterior q (zt−1 | zt, z0) is parameterized by µ̃t

and Σ̃t, we can also re-parameterize pθ as

pθ (zt−1 | zt) := NC(zt−1; [µ̃θ(zt)]×S , [Σ̃θ(zt)]×S ,Θθ),
(17)

µ̃θ(zt) ∈ RN , Σ̃θ(zt) ∈ RN×N ,Θθ ∈ RM×K , (18)

Thus, we can predict a reduced number of parameters to
minimize the KL divergence term in Equation (15),

DKL(q (zt−1 | zt, z0) ∥ pθ (zt−1 | zt)) (19)

= Eq

[ 1

2σ2
t

∥µ̃t − µ̃θ(zt)∥2
]
+DKL(Θ̃t ∥ Θθ(zt)) + C,

where C is a constant irrelevant to learnable parameters
θ. L0 is directly minimized through a closed-form solution
and LT does not involve any learnable parameters.

3.3. Architectural design

In order to treat image-layout pairs as a single data sam-
ple, we embed the semantic layouts (i.e., one-hot vectors)
into 3-channel vectors via learnable parameters and con-
catenate them with images along the channel dimension
(z ∈ RN×N×6). We adopt the U-Net [29] and the Efficient
U-Net [37] following existing diffusion models and modify
the input/output channels for image-layout input/outputs.
For text conditioning, we utilize the T5-L [32] text encoder
and condition the U-Net model similarly to Imagen [37].

We follow the cascaded diffusion [17] framework to gen-
erate high-resolution image-layout pairs, which involves
a sequence of an image generation model followed by a
super-resolution model. We find that resizing layouts to
a small resolution (e.g., 64 × 64) often damages the in-
tegrity of semantic labels due to nearest-neighbor sampling
on extreme scales. Thus, we generate 128 × 128 resolu-
tion images and then upsample to 256×256 resolution with
a Gaussian-categorical super-resolution model. The super-
resolution model upsamples both images and layouts fol-
lowing the Gaussian-categorical diffusion. We adopt the
classifier-free guidance on both the generation model and
the super-resolution model.



“This man has bags under eyes, receding 

hairline, and big nose.”

“The woman is wearing lipstick. She has 

blond hair, pointy nose, and oval face.”

“The woman has rosy cheeks. She is 

smiling. She wears earrings, and lipstick.”

“An image of an urban street view with People, 

Skies, Roads, Buildings, Vegetations, Cars, Poles, 

Sidewalks, Traffic lights, and Traffic signs.”

Generated

Image-Layout

Input Text

Generated

Image-Layout

Input Text
“An image of an urban street view with Cars, 

Sidewalks, Bicycles, Skies, Roads, Traffic signs, 

Vegetations, Buildings, Poles and Riders.”

“An image of an urban street view with Walls, Poles, 

Sidewalks, Terrains, Vegetations, Traffic signs, Cars, 

Skies, Roads, Buildings, Fences, and Traffic lights.”

Figure 5. Examples of text-guided generation of image-layout pairs from the Gaussian-categorical diffusion trained on MM CelebA-HQ-
100 [21, 26] and Cityscapes [8]. The text descriptions on the bottom are given as conditions to generate the image-label pairs.

4. Experiments

4.1. Text-image datasets

Multi-Modal CelebA-HQ. MM CelebA-HQ [21,26, 46] is
a collection of different annotations for the 30,000 images
in the CelebA-HQ dataset [21, 26], including text descrip-
tions, face attribute labels, and part-level segmentation la-
bels. Part-level segmentation labels consist of 19 different
classes (K=19) including all facial components and acces-
sories. To train the Gaussian-categorical diffusion model,
we use both the segmentation labels and the text descrip-
tions provided in the dataset. We also construct subsets of
the data, MM CelebA-HQ-25 and MM CelebA-HQ-50, by
randomly selecting 25% and 50% of the images, respec-
tively, to simulate data-scarce scenarios. We train and eval-
uate our models on 256× 256 resolution images.
Cityscapes. Cityscapes [8] is an urban scene dataset with
3475 image-layout pairs of complex scenes containing mul-
tiple objects, including 20 different semantic classes (K =
20). To add text descriptions to each image, we list the class
names in the following format:

“An image of an urban scene with {classes}.”

where classes are the unique class names in the correspond-
ing semantic layout. The Cityscapes dataset presents a chal-
lenging domain for generating realistic images due to the
limited number of available images and the diverse object
locations in urban scenes. Since Cityscapes images have a
unique aspect ratio of 2:1, we generate 512×256 resolution
images. We include example text-image pairs in Figure 2.

4.2. Implementation details

For synthesizing image-layout pairs, N and M are
equally set to the number of pixels in the image. Although
the Gaussian-categorical diffusion process allows different
noise schedules βN and βC for images and layouts, we set
both schedules to the cosine schedule [29]. We provide ex-
periments on the effect of different noise schedules for βC

in the supplementary section. We set T = 1000 and sam-
ple with 100 timesteps using the accelerated sampling tech-
nique [40].
4.3. Evaluating text-to-image generation

Text-to-image generation models are evaluated from two
perspectives, image fidelity and text-image correspondence.
We use the Fréchet Inception Distance (FID) [14] to mea-
sure the image fidelity. After the release of CLIP [31], the
CLIP score [13] is often used to evaluate text-image cor-
respondence for text-to-image generation. However, the
CLIP score is known to have poor generalization abili-
ties [31] when evaluating scenes with large domain gaps
(i.e., Cityscapes) and also lacks interpretability in terms of
understanding what element in the image causes a low or
high CLIP score. In order to compensate for this drawback,
we propose Semantic Recall to precisely measure the text-
image correspondence for Cityscapes generation.
Semantic Recall. The Semantic Recall is analogous to the
Semantic Object Accuracy (SOA) [15], which evaluates the
generation of specific objects in text-to-image generation by
utilizing pretrained object detectors. In our work, we use a
pretrained semantic segmentation model [44] to detect the



(a) FID-Semantic Recall

(b) Class-wise Semantic Recall

(c) Class Proportion in Cityscapes

Figure 6. (a) FID-Semantic Recall trade-off in the Cityscapes dataset. (b) Semantic Recall for minor classes. Semantic Recall is measured
using the HRNet-w48 [44] model. (c) Proportion of each semantic class in the entire Cityscapes dataset. Class proportion is compared in
log-scale for visibility.

presence of classes described in text conditions. We deter-
mine that a class is detected in a generated image if it ap-
pears in the segmentation layout. The ground-truth classes
for each image are identified by searching for class names in
text descriptions. For example, an image generated with the
text description “An urban scene with cars, roads, and traf-
fic signs.”, would be evaluated with the existence of cars,
roads, and traffic signs. Therefore, we compute the Seman-
tic Recall as the average ratio of correctly detected classes
in the generated image to the total number of classes in the
ground-truth layouts,

1

| G |
∑

xi,yi∈G

| Classes in F (xi) ∩ Classes in yi |
| Classes in yi |

,

where G is the set of generated image-layout pairs (xi, yi)
and | · | indicates the cardinality of a given set. F (·) is the
pretrained semantic segmentation model [44].
Baselines. We compare our approach with state-of-the-
art performing diffusion-based models, Imagen [37] and
the latent diffusion model (LDM) [36]. We also train a
high-performing GAN-based approach Lafite [51] trained
on MM CelebA-HQ and Cityscapes. For training LDM, we
utilize the pretrained autoencoder from the Stable Diffusion
project. Diffusion-based approaches utilize the classifier-
free guidance [18] to control the performance trade-off be-
tween text-image correspondence and image fidelity. Thus,
for these approaches, we sweep the guidance scale until the
text-image correspondence measures saturate and report all
FID-Semantic Recall or FID-CLIP score pairs.
Evaluation on Cityscapes. For the Cityscapes dataset [8],
we report the FID and Semantic Recall performance trade-
off and also provide detailed recall scores for each class
in Figure 6. Given the small number of text-image
pairs (3475 pairs), existing text-to-image models face

challenges in learning the text-image correspondence and
achieving high text-image correspondence. However, the
Gaussian-categorical diffusion effectively generates com-
plex Cityscapes scenes while maintaining high Semantic
Recall even with limited data. Additionally, the model
achieves high recall rates for minor classes, such as the bi-
cycle or the motorcycle class, which only constitute a small
portion of the dataset. This indicates that generating seman-
tic labels for each pixel facilitates the model to establish
high text-image correspondence, especially for underrepre-
sented classes.
Evaluation on MM CelebA-HQ. We further evaluate our
method on the MM CelebA-HQ-25, 50, and 100, and report
the FID-CLIP scores for each dataset. As shown in Fig-
ure 7, the Gaussian-categorical diffusion consistently out-
performs existing text-to-image approaches at datasets with
varying numbers of text-image pairs, exhibiting low FIDs
and a high CLIP scores. We provide qualitative results of
the Gaussian-categorical diffusion in Figure 5 and also com-
pare the results with existing approaches in the supplemen-
tary material.

4.4. Analyzing the internal representations

In order to visualize the advantages of jointly generat-
ing image-layout pairs, we train a Gaussian diffusion model
which generates images without corresponding semantic
layouts. Then, we collect the internal features from the
two models at different timesteps and cluster the features
in an unsupervised manner with K-means clustering. As
shown in Figure 8, the internal features of the Gaussian-
categorical model form distinct clusters that correspond to
different facial regions. Specifically, the internal features
of the Gaussian-categorical diffusion model form clusters
even in the early stages of generation (t=800), correctly
distinguishing hair, glasses and the background region.



MM CelebA-HQ-25 MM CelebA-HQ-50 MM CelebA-HQ-100

Figure 7. FID-CLIP score pairs for text-to-image generation models on different subsets of the MM CelebA-HQ dataset. The CLIP scores
are measured with the ViT-L/14-336 model. The guidance scale is swept starting from 1 until saturation.

Image

𝑡 = 100 𝑡 = 200 𝑡 = 400 𝑡 = 800

Gaussian only

Gaussian-categorical

Figure 8. Visualization of clustering results between the internal
features of the Gaussian-categorical diffusion and the Gaussian
diffusion.

The results reveal that the Gaussian-categorical diffusion
model is highly aware of the semantics of the image during
the generation process. This characteristic is advantageous
in scenarios where a generative model needs to learn how to
match specific parts of the image with corresponding input
text descriptions, as the model is capable of understanding
the semantic structure of the image. As such, training a
Gaussian-categorical diffusion is a promising approach for
achieving high correspondence between text descriptions
and image pixels, particularly when there is a scarcity of
text-image pairs available.

4.5. Image-layout fidelity and alignment

In this section, we evaluate whether generated images
and layouts closely model the real distribution, and whether
the generated pairs are semantically aligned. Following Se-
mantic Palette [2, 22] we evaluate the image-layout align-
ment using the mean intersection over union (mIoU) be-
tween the generated layouts and the segmentation labels
predicted by a pretrained HRNet [44]. Additionally, we
use the Fréchet Segmentation Distance (FSD) [4], which re-
places the Inception-V3 [42] features in the FID score [14]
to pixel counts for each class, to evaluate the quality of gen-

Methods FID ↓ mIoU ↑ FSD ↓
GANformer [20] 24.86 - 481.5

DatasetDDPM [3] 55.38 33.88 90.31
Semantic Palette [22] 52.13 53.17 48.29

Ours 20.36 65.80 42.22
Table 1. Image-layout alignment and FID of different Image-
layout generation approaches for scene generation in the
Cityscapes [8] dataset.

erated layouts. Similar to the FID score, a low FSD indi-
cates that the class distributions are close to the real distri-
bution.

We compare our results with existing uncondi-
tional image-layout generation approaches [3, 22] on the
Cityscapes dataset. Additionally, we introduce a simple
baseline (i.e., GANformer [20]) for image-layout genera-
tion, in which we generate images using a well-trained un-
conditional image generation model [20] and segment the
images using a pretrained segmentation model [44]. Note
that we cannot measure the mIoU for this baseline since
the semantic layouts are predicted using the same pretrained
network.

As shown in Table 1, the Gaussian-categorical diffu-
sion process is highly effective in modeling the joint dis-
tribution of images and layouts even for complex urban
scenes. By using a unified diffusion process, we are able
to generate image-layout pairs that exhibit high alignment,
closely resembling the real distribution. The ability of the
Gaussian-categorical diffusion to effectively model the joint
distribution of images and layouts offers promising avenues
for future research in generative modeling. By leveraging
the theoretical foundations established by our method, re-
searchers can explore new approaches for dataset genera-
tion in a range of domains, from images and audios to se-
mantic layouts and texts.



Synthesized ImagesPrediction Ground Truth

(a) Text-guided Image-to-Layout Generation (b) Text-guided Layout-to-Image Generation

ImageInput Text

“She has pointy 

nose, and arched 

eyebrows. She is 

attractive and is 

wearing lipstick.”

“This person is 

young, and 

attractive and has 

mustache, bags 

under eyes, and 

sideburns.”

“She has wavy hair, 

arched eyebrows 

and wears lipstick. 

She is young.”

“This man has 

straight hair, 

mustache, and 

bushy eyebrows.”

Input Text Semantic Layout

Figure 9. Cross-modal outpainting for (a) text-guided image-to-layout generation and (b) text-guided layout-to-image generation. Segmen-
tation layouts are generated with n = 1 resampling steps and images are generated with n = 5 resampling steps for each timestep.

4.6. Cross-modal outpainting

RePaint [27] enables existing diffusion models to inpaint
a masked image by iteratively denoising the masked region
given the known image (i.e., condition image). Specifically,
for each timestep t, images are inpainted as follows:

xknown
t−1 ∼ N (

√
ᾱtx0, (1− ᾱt)I),

xunknown
t−1 ∼ N (µθ(xt, t),Σθ(xt, t)),

xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1 ,

where m is the mask for the known image. To ensure
consistency between the inpainted regions and known re-
gions, Repaint iterates the denoising process n times for
each timestep.

The Repaint technique allows us to use the Gaussian-
categorical diffusion model as a text-guided layout-to-
image generation model (i.e., semantic image synthesis) by
considering the layouts as an image-layout pair with the im-
age part masked. Similarly, we can perform text-guided
image-to-layout generation (i.e., semantic segmentation) by
masking the layout in the image-layout pair. As shown in
Figure 9, the Gaussian-categorical diffusion generates real-
istic images or layouts conditioned on text descriptions. The
results demonstrate that a well-trained Gaussian-categorical
diffusion can serve as a generative prior for conditional gen-
eration tasks. We describe the algorithm for cross-modal
outpainting in the supplementary material.

5. Limitation
Although the Gaussian-categorical diffusion offers

means for achieving high text-image correspondence with-
out training on web-scale text-image pairs, training a
Gaussian-categorical diffusion model requires additional
semantic layout annotations of images. However, with the
assistance of recent data annotation tools [6,39], annotating
existing data can be a cost-effective option for text-to-image
generation in scenarios where obtaining web-scale text-

image pairs is costly (e.g., medical images, urban scenes,
and aerial images).

We observe that training the Gaussian-categorical diffu-
sion model on the MS-COCO dataset [25] produces poor
quality images and layouts. We suspect that this is due to the
highly diverse scenes in the COCO dataset, with 171 cate-
gories in the semantic layouts. Analyzing the challenges
of training on the MS-COCO dataset is a potential area for
future research. Nevertheless, we propose an effective ap-
proach for text-to-image generation in data-scarce scenar-
ios, where collecting data is expensive and annotating ex-
isting images is affordable.

6. Conclusion

In this paper, we define the Gaussian-categorical dif-
fusion process to model the joint distribution of image-
layout pairs. Our experiments demonstrate that the pro-
posed model can ensure high text-image correspondence
for text-to-image generation in specific domains, without
relying on web-scale text-image pairs. Our approach out-
performs existing approaches in terms of image quality and
text-image correspondence.

Our visualizations of the internal representations of the
Gaussian-categorical distribution demonstrate that the pro-
posed model is aware of the semantics of the image, bridg-
ing the gap between highly semantic text descriptions and
image pixels. Additionally, the high image-layout align-
ment of generated image-layout pairs and the results of
cross-modal outpainting show that the model precisely cap-
tures the relationship between images and labels.

Overall, the Gaussian-categorical diffusion enables text-
to-image models to achieve high text-image correspondence
by leveraging semantic labels when trained on a specific do-
main with limited text-image pairs. Our proposed model
can also be utilized as a generative prior for conditional gen-
eration tasks, such as text-guided semantic image synthesis
and text-guided semantic segmentation.
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A.1. Derivation of the Gaussian-categorical diffusion process

In the following section, we provide detailed explanation of diffusion models including the categorical
diffusion and the Gaussian-categorical diffusion.

A.1.1. Categorical diffusion process
In this section, our final goal is to derive the posterior q (yt−1 |yt,y0) of the categorical diffusion,

given the forward noising process. The forward process of the categorical diffusion process is defined
as follows:

∀t ∈ [1, 2, . . . T ], αt := 1− βt, (20)
q (yt |yt−1) := C(yt; (1− βt)yt−1 + βt/K), (21)

yt ∈ {1, 2, ..., K}M ⊂ RM , 1[yt] ∈ RM×K , (22)

where βt is the noise schedule for each timestep, K is the number of categories in the categorical distri-
bution, and M is the number of categorical variables. 1[yt] is the one-hot form of yt.

We will first prove q (yt |y0) = C(yt; ᾱty0 + (1− ᾱt)/K) through mathematical induction. The base
case t = 1 is evident though Equation (21) and let us assume the inductive case for t− 1 where

q (yt−1 |y0) := C(yt−1; ᾱt−11[y0] + (1− ᾱt−1)/K) where ᾱt :=
t∏

s=1

αs. (23)

Then we can derive q (yt |y0) as follows:

q (yt |y0) =
∑
yt−1

q (yt |yt−1,y0) q (yt−1 |y0) (24)

=
∑
yt−1

q (yt |yt−1) q (yt−1 |y0) (25)

=
∑
yt−1

[αt1[yt−1] + (1− αt)/K]yt
[ᾱt−11[y0] + (1− ᾱt−1)/K]yt−1

(26)

=
∑
yt−1

[αt1[yt] + (1− αt)/K]yt−1
[ᾱt−11[y0] + (1− ᾱt−1)/K]yt−1

. (27)

where [Θ]yt denotes the probability of event yt in the categorical distribution parameterized with Θ. By
rewriting the summation as an inner product, we obtain

q (yt |y0) = [αt1[yt] + (1− αt)/K] · [ᾱt−11[y0] + (1− ᾱt−1)/K] (28)
= ᾱt1[yt] · 1[y0] + (1− αt)ᾱt−1/K + (1− ᾱt−1)αt−1/K + (1− αt)(1− ᾱt−1)/K (29)
= ᾱt1[yt] · 1[y0] + (1− ᾱt)/K (30)
= C(yt; ᾱt1[y0] + (1− ᾱt)/K), (31)

which is the t case of Equation (21). Through mathematical induction, we can conclude that q (yt |y0) =
C(yt; ᾱt1[y0] + (1− ᾱt)/K).



Next, we will derive the posterior q (yt−1 |yt,y0) using Bayes theorem as follows:

q (yt−1 |yt,y0) =
q (yt |yt−1,y0) q (yt−1 |y0)

q (yt |y0)
(32)

=
q (yt |yt−1) q (yt−1 |y0)

q (yt |y0)
(33)

= Z [αt1[yt−1] + (1− αt)/K]yt
[ᾱt−11[y0] + (1− ᾱt−1)/K]yt−1

(34)

= Z [αt1[yt] + (1− αt)/K]yt−1
[ᾱt−11[y0] + (1− ᾱt−1)/K]yt−1

(35)

= C
(
yt−1;Z [αt1[yt] + (1− αt)/K]⊙ [ᾱt−11[y0] + (1− ᾱt−1)/K]

)
. (36)

Thus, the posterior q (yt−1 |yt,y0) is summarized as

q (yt−1 |yt,y0) = C(yt−1; Θ̃t) (37)

Θ̃t := Z[αC
t1[yt] + (1− αC

t)/K]⊙ [ᾱC
t1[y0] + (1− ᾱC

t−1)/K]. (38)

A.1.2. Gaussian-categorical diffusion process
We will derive the posterior q (zt−1 | zt, z0) of the Gaussian-categorical distribution, where the Gaus-

sian distribution defined as follows:

X, Y ∼ NC (x,y;µ,Σ,Θ) , (39)
X = [X1, X2, ..., XN ] ∈ RN ,

Y = [Y1, Y2, ..., YM ] ∈ {1, 2, ..., K}M ,

µ ∈ RS×N ,Σ ∈ RS×N×N ,Θ ∈ RM×K , and S = KM .

NC(x,y;µ,Σ,Θ) =

(
M∏
i=1

Θi ,yi

)
(2π)−

N
2 |Σy|−

1
2 exp

(
− 1

2
(x− µy)

⊤Σ−1
y (x− µy)

)
. (40)

and the forward noising process for the Gaussian-categorical diffusion is defined as

∀t ∈ [1, 2, . . . , T ], αN
t := 1− βN

t , αC
t := 1− βC

t , and zt := (xt,yt), (41)

q (zt | zt−1) := NC
(
zt;
[√

1− βN
t xt−1

]
×S

,
[
βN
t I
]
×S

, (1− βC
t)1[yt−1] + βC

t/K
)
. (42)

We will first prove that q (zt | z0) = NC
(
zt;
[√

ᾱN
t x0

]
×S

,
[
(1 − ᾱN

t )I
]
×S

, (1 − ᾱC
t)1[y0] + ᾱC

t/K
)

where ᾱt :=
∏t

s=1 αs. We will prove this using mathematical induction, where the base case t = 1 is
defined in Equation (42). Let us assume the inductive case for t− 1,

q (zt−1 | z0) = NC
(
zt−1;

[√
ᾱN
t−1x0

]
×S

,
[
(1− ᾱN

t−1)I
]
×S

, (1− ᾱC
t−1)1[y0] + ᾱC

t−1/K
)
. (43)



Then we can derive q (zt | z0) as follows:

q (zt | z0) (44)

=

∫
q (zt | zt−1, z0) q (zt−1 | z0) dzt−1 (45)

=

∫
q (zt | zt−1) q (zt−1 | z0) dzt−1 (46)

=
∑
yt−1

∫
NC(zt;

[
µt|t−1

]
×S

,
[
Σt|t−1

]
×S

,Θt|t−1) · NC(zt−1;
[
µt−1|0

]
×S

,
[
Σt−1|0

]
×S

,Θt−1|0)dxt−1,

(47)

where Θi|j := (1 − βC
i )1[yj] + βC

i/K, and [v]×S indicates row-wise duplication of a vector v (i.e.,
[v,v, ...,v]T ). By decomposing the Gaussian-categorical into a Gaussian distribution and a categorical
distribution, we can write the equation as follows:

q (zt | z0) (48)

=
∑
yt−1

∫ (
C(yt;Θt|t−1) · N (xt;µt|t−1,Σt|t−1)

)
·
(
C(yt−1;Θt−1|0) · N (xt−1;µt−1|0,Σt−1|0)

)
dxt−1

(49)

=
∑
yt−1

C(yt;Θt|t−1) · C(yt−1;Θt−1|0)

∫
N (xt;µt|t−1,Σt|t−1) · N (xt−1;µt−1|0,Σt−1|0)dxt−1 (50)

= C(yt; ᾱ
C
t1[y0] + (1− ᾱC

t)/K) · N (xt;
√

ᾱN
t x0, (1− ᾱN

t )I) (51)

= NC
(
zt;
[√

ᾱN
t x0

]
×S

,
[
(1− ᾱN

t )I
]
×S

, (1− ᾱC
t)1[y0] + ᾱC

t/K
)
, (52)

where µi|j :=
√

1− βN
i xj and Σi|j := βN

i I . Through mathematical induction, we can conclude that

q (zt | z0) = NC
(
zt;
[√

ᾱN
t x0

]
×S

,
[
(1− ᾱN

t )I
]
×S

, (1− ᾱC
t)1[y0] + ᾱC

t/K
)

.

Next, we will derive the posterior q (zt−1 | zt, z0) using Bayes theorem,

q (zt−1 | zt, z0) =
q (zt | zt−1, z0) q (zt−1 | z0)

q (zt | z0)
(53)

=
q (zt | zt−1) q (zt−1 | z0)

q (zt | z0)
(54)

=
NC(zt;

[
µt|t−1

]
×S

,
[
Σt|t−1

]
×S

,Θt|t−1) · NC(zt−1;
[
µt−1|0

]
×S

,
[
Σt−1|0

]
×S

,Θt−1|0)

NC(zt;
[
µt|0
]
×S

,
[
Σt|0

]
×S

,Θt|0)
.

(55)

We again decompose the Gaussian-categorical diffusion into a Gaussian distribution and a categorical



distribution

q (zt−1 | zt, z0) (56)

=

(
C(yt;Θt|t−1) · N (xt;µt|t−1,Σt|t−1)

)
·
(
C(yt−1;Θt−1|0) · N (xt−1;µt−1|0,Σt−1|0)

)
C(yt;Θt|0) · N (xt;µt|0,Σt|0)

(57)

=
C(yt;Θt|t−1) · C(yt−1;Θt−1|0)

C(yt;Θt|0)
·
N (xt;µt|t−1,Σt|t−1) · N (xt−1;µt−1|0,Σt−1|0)

N (xt;µt|0,Σt|0)
(58)

= C(yt−1; Θ̃t) · N (xt−1; µ̃t, Σ̃t) (59)

= NC(zt−1;
[
µ̃t

]
×S

,
[
Σ̃t

]
×S

, Θ̃t), (60)

µ̃t :=

√
ᾱN
t−1β

N
t

1− ᾱN
t

x0 +

√
αN
t (1− ᾱN

t−1)

1− ᾱN
t

xt, (61)

Σ̃t :=
(
(1− ᾱN

t−1)β
N
t /(1− ᾱN

t )
)
I, (62)

Θ̃t := Z[αC
t1[yt] + (1− αC

t)/K]⊙ [ᾱC
t1[y0] + (1− ᾱC

t−1)/K], (63)

The posterior distribution q (zt−1 | zt, z0) can be summarized as follows:

q (zt−1 | zt, z0) = NC
(
zt−1;

[
µ̃t

]
×S

,
[
Σ̃t

]
×S

, Θ̃t

)
, (64)

where Z is a normalizing constant. We approximate the reverse process by matching µ̃θ(zt), Σ̃θ(zt),
and Θθ(zt).

Finally, minimizing the KL divergence term DKL

(
q (zt−1 | zt, z0) ∥ pθ (zt−1 | zt)

)
can be decomposed



into two separate terms for the Gaussian variable and the categorical variable as follows:

DKL

(
q (zt−1 | zt, z0) ∥ pθ (zt−1 | zt)

)
(65)

=

∫
q (zt−1 | zt, z0) log

q (zt−1 | zt, z0)
pθ (zt−1 | zt)

dzt−1 (66)

=

∫
NC(zt−1;

[
µ̃t

]
×S

,
[
Σ̃t

]
×S

, Θ̃t) log
NC(zt−1;

[
µ̃t

]
×S

,
[
Σ̃t

]
×S

, Θ̃t)

NC(zt−1;
[
µ̃θ(zt)

]
×S

,
[
Σ̃θ(zt)

]
×S

,Θθ(zt))
dzt−1 (67)

=

∫
C(yt−1; Θ̃t) · N (xt−1; µ̃t, Σ̃t) log

C(yt−1; Θ̃t) · N (xt−1; µ̃t, Σ̃t)

C(yt−1;Θθ(zt)) · N (xt−1; µ̃θ(zt), Σ̃θ(zt))
dzt−1 (68)

=

∫
C(yt−1; Θ̃t) · N (xt−1; µ̃t, Σ̃t) log

C(yt−1; Θ̃t)

C(yt−1;Θθ(zt))
dzt−1

+

∫
C(yt−1; Θ̃t) · N (xt−1; µ̃t, Σ̃t) log

N (xt−1; µ̃t, Σ̃t)

N (xt−1; µ̃θ(zt), Σ̃θ(zt))
dzt−1 (69)

=

∫
C(yt−1; Θ̃t) · log

C(yt−1; Θ̃t)

C(yt−1;Θθ(zt))
dyt−1

+

∫
N (xt−1; µ̃t, Σ̃t) log

N (xt−1; µ̃t, Σ̃t)

N (xt−1; µ̃θ(zt), Σ̃θ(zt))
dxt−1 (70)

= DKL(C(yt−1; Θ̃t) ∥ C(yt−1;Θθ(zt))) +DKL(N (xt−1; µ̃t, Σ̃t) ∥ N (xt−1; µ̃θ(zt), Σ̃θ(zt))) (71)

= Eq

[ 1

2σ2
t

∥µ̃t − µ̃θ(zt)∥2
]
+DKL(Θ̃t ∥ Θθ(zt)) + C (72)
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(a) FID-CLIP Score (b) Illustration of different noise schedules
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Figure A.1. (a) FID-CLIP score pairs for different noise schedules βC . FID and CLIP scores are measured in 128 × 128 resolution. (b)
The illustration of different noise schedules. A larger p indicates stronger noise near t = 1000.

A.2. Noise schedules of the Gaussian-categorical diffusion process
The Gaussian-categorical diffusion process can have different noise schedules for βC and βN as defined

in Equation (42). In order to search for a reasonable noise schedule, we train the Gaussian-categorical
diffusion model on different schedules for βC, relative to the Gaussian noise schedule βN . Specifically,



we fix βN as the cosine noise schedule [29] and set βC as a function of a pth power of βN , in other words
βC := (βN)p, which are plotted in Figure A.1 (b). In Figure A.1, we present the FID-CLIP score of these
results at the 128× 128 resolution on the CelebA-HQ dataset [26]. Overall, choosing p near 1 is a good
choice for achieving text-image correspondence. We leave further analysis on noise scheduling between
different modalities as a future research topic.

Figure A.2. FID-Semantic Recall of the Gaussian-categorical diffusion model compared to the results generated by the Stable Diffusion
model finetuned on Cityscapes [8] (SD-finetuned) and zero-shot text-to-image generation of the pretrained Stable Diffusion (SD-zero-shot).
We use the Stable Diffusion v1.4 for both zero-shot generation and finetuning.

A.3. Comparison with Stable Diffusion
Recently, finetuning a general-purpose text-to-image generation model using domain-specific datasets

has shown great success in generating high-quality images with strong text-image correspondence.
Specifically, the Stable Diffusion project provides a large pretrained Latent Diffusion Model (LDM) [36]
trained on a web-scale dataset, the LAION 5B [38], that is capable of generating artistic images. In this
section, we demonstrate the limitation of finetuning a generative model in cases of significant domain
gaps. We finetune Stable Diffusion v1.4 using the Cityscapes dataset and report the FID-Semantic Recall
pairs in Figure A.2. We also provide zero-shot text-to-image generation results for comparison. While
finetuning stable diffusion can be effective in natural domains such as the MM CelebA-HQ, it should
not be viewed as an all-encompassing solution for addressing issues in text-to-image generation. Neither
finetuning Stable Diffusion nor zero-shot text-to-image generation exhibits a low FID or a high Seman-
tic Recall for generating the urban scenes of Cityscapes [8]. Training a Gaussian-categorical diffusion
model can be an effective approach for generating unique domains such as medical images or aerial
photos.

A.4. Visualizing the domain gaps in CLIP scores
The CLIP score [13] is a reliable measure in most cases for evaluating the quality of text-to-image gen-

eration in natural domains such as the MS COCO [25]. However, in certain cases, the CLIP model [31]
may have poor generalization abilities for specific domains with significant differences from its train-
ing data. Since the train dataset of CLIP is not publicly available for this analysis, we replace it with
the MS COCO dataset which contains diverse images of different scenes. As shown in Figure A.3



(a) CLIP feature Visualization (b) FID-CLIP Score in Cityscapes

Figure A.3. (a) Visualization of CLIP features from different datasets using t-SNE. While the CelebA-HQ dataset closely clusters with
several large-scale image datasets such as the ImageNet and MS COCO dataset, urban scene datasets such as Cityscapes or BDD100K
form distinct clusters. (b) CLIP scores display inconsistent trends when measured on the Cityscapes dataset.

(a), we plot the features from the CLIP image encoder [31] for different datasets using the t-SNE vi-
sualization technique [43]. Each point in Figure A.3 (a) represents the averaged CLIP features from a
single dataset. While general image datasets such as the ImageNet [9], ADE20K [50], and the CelebA-
HQ [26] are closely clustered to the MS COCO dataset, other datasets such as the urban scene datasets
(e.g., Cityscapes [8] and BDD100K [7]) or the number datasets (e.g., MNIST [10] and SVHN [28]) form
distinct clusters apart from the MS COCO dataset [25].

This indicates that the Cityscapes dataset may have a domain gap significantly large enough to render
the CLIP score unreliable. As shown in Figure A.3 (b), FID-CLIP score pairs for the Latent Diffusion
Model (LDM) [36] display inconsistent trends of increase and decrease as the guidance scale increases.
Thus, we do not use the CLIP score to evaluate the Cityscapes text-to-image generation and instead use
the Semantic Recall.

A.5. Semantic Recall in Cityscapes
To compensate for the limitations of the CLIP score when evaluating datasets with large domain

gaps, we introduce the Semantic Recall which evaluates the generation of specific semantic categories
specified in the test description. The Semantic Recall is the average ratio of correctly detected classes in
the generated image to the total number of classes in the ground-truth layouts,

Semantic Recall :=
1

| G |
∑

xi,yi∈G

| Classes in F (xi) ∩ Classes in yi |
| Classes in yi |

,

where G is the set of generated image-layout pairs (xi, yi) and | · | indicates the cardinality of a given
set. F (·) is the pretrained semantic segmentation model [44]. We provide full details of the Semantic
Recall for each class in Figure A.4 (b). The Gaussian-categorical diffusion model is especially effective
for generating less frequently encountered classes such as the Motorcycle and Traffic light classes.

In this section, we also report the Semantic F-score as an evaluation measure for the semantic accuracy
of the generated image. The Semantic F-score is similar to the Semantic Recall but uses the F-score,



(a) FID-Semantic Recall (b) Class-wise Semantic Recall

(c) FID-Semantic F-score (d) Class-wise Semantic F-score

Figure A.4. (a) FID-Semantic Recall for the Cityscapes dataset and (b) detailed class-wise Semantic Recall. (c) FID-Semantic F-score for
the Cityscapes dataset and (c) detailed class-wise Semantic Recall. Classes are sorted from the most occurring classes (left) to the least
occurring (right). The Gaussian-categorical diffusion model outperforms existing baselines by a large margin in the Semantic F-score,
indicating that our approach does not overly generate objects.

which takes both recall and precision into account as:

Semantic F-score :=
2

Semantic Recall−1 + Semantic Precision−1 ,

where Semantic Precision is calculated similarly to the Semantic Recall. While the Semantic Recall
is useful for detecting the existence of certain objects, it may overcompensate for verbose generation.
For instance, a text-to-image generation model that generates all semantic classes regardless of the text
condition may achieve a high recall without understanding the text description. Therefore, we use the
F-score to evaluate whether a text-to-image generation model precisely generates the classes specified
in the text description. The results in Figure A.4 (c) demonstrate that the Gaussian-categorical diffusion
model outperforms existing text-to-image in the Cityscapes [8] dataset, exhibiting a high F-score and a
low FID. This suggests that our model does not overly generate semantic classes regardless of the text
description.

A.6. Quantitative results for cross-modal outpainting
As demonstrated in the main paper, a well-trained Gaussian-categorical diffusion is capable of per-

forming text-guided segmentation and layout-to-image generation. The key idea is to view an image or a



layout as a masked image-layout pair and inpaint the masked modality using the RePaint technique [27].
The detailed algorithm following RePaint [27] is provided in Algorithm 1. We also compare the quanti-
tative comparison of the results for segmentation and layout-to-image generation on the CelebA-HQ
dataset [21, 26] in Table A.1 and Table A.2. We train a segmentation (i.e., Deeplab v3 [5]) and a
layout-to-image generation model (i.e., OASIS [41]) on the MM CelebA-HQ-25. While the Gaussian-
categorical diffusion does not outperform models dedicated to segmentation or layout-to-image gen-
eration, it yields reasonable quantitative results which suggest that the Gaussian-categorical diffusion
can serve as a generative prior for tasks other than text-to-image generation. Additionally, we find that
training the Gaussian-categorical diffusion with a lower p value leans towards better layout-to-image
generation while a higher p value leads to better segmentation performance. In this manner, extreme
values of p (i.e., p = 0 and p → ∞) are equivalent to training a conditional generation model (i.e.,
layout-to-image and semantic segmentation).

Algorithm 1 Cross-modal outpainting for conditional generation.
1: zT ∼ NC(x,y; 0, I,Θ)
2: t← T
3: while t > 0 do
4: n← N
5: while n > 0 do
6: zknown

t−1 ∼ NC(zt−1;
[
µt−1|0

]
×S

,
[
Σt−1|0

]
×S

,Θt−1|0) ▷ Apply noise to known area zknown

7: zunknown
t−1 ∼ NC(zt−1;

[
µ̃θ(zt)

]
×S

,
[
Σ̃θ(zt)

]
×S

,Θθ(zt)) ▷ Denoise single step zt

8: zt−1 = m⊙ zknown
t−1 + (1−m)⊙ zunknown

t−1 ▷ Update unknown area

9: if n < N and t > 1 then

10: zt ∼ NC(zt;
[
µt|t−1

]
×S

,
[
Σt|t−1

]
×S

,Θt|t−1) ▷ Resample timestep t
11: end if
12: n← n− 1
13: end while
14: t← t− 1
15: end while

Method mIoU ↑
Deeplab v3 [5] 73.88

Ours p = 0.5 32.52
Ours p = 1.0 51.56
Ours p = 3.0 59.82

Table A.1. Quantitative results for semantic segmentation on
the 25% of the MM CelebAMask-HQ dataset [23]. Segmenta-
tion predictions are generated by resampling noise 5 times for
each timestep (N = 5).

Method FID ↓ mIoU ↑
OASIS [41] 20.64 77.35

Ours p = 0.5 30.45 71.51
Ours p = 1.0 33.25 66.81
Ours p = 3.0 47.89 40.09

Table A.2. Quantitative results for layout-to-image generation
on MM CelebAMask-HQ-25 dataset [23]. mIoU is measured
between the input layout and the segmentation results of the
generated image using a pretrained HRNet [44].

A.7. Ablation study and additional baselines
In this section, we provide results for different text-to-image generation approaches and compare them

against our approach. First, we train a Gaussian diffusion model with an identical architecture as our



model which generates images without the corresponding layouts. The visualization in Figure 8. of
the main paper demonstrate that the internal features of this Gaussian-categorical diffusion model form
distinct clusters compared to the Gaussian diffusion model.

Second, we present a text-to-image generation approach that leverages semantic segmentation labels
during training. Given text inputs, we sequentially generate layouts from texts and then images from
the generated layouts. Specifically, we train a categorical diffusion model [1] for text-to-layout gener-
ation and a layout-to-image synthesis model called SDM [45]. We train a modified version of SDM to
incorporate text conditions to generate image from layouts.

To provide quantitative results, we report the FID-CLIP score pairs for the MM CelebA-HQ-25 in
Figure A.5. Our approach effectively enhances the performance of the Gaussian diffusion model by
simultaneously generating corresponding semantic layouts. Also, our simultaneous generation of images
and layouts outperforms the sequential generation from text to layouts and then to images.

Figure A.5. FID-CLIP scores for the Gaussian diffusion on the MM CelebA-HQ-25 dataset, compared against existing approaches and the
Gaussian-categorical diffusion.

A.8. Qualitative comparison
We provide the qualitative results from existing text-to-image generation models, and the Gaussian-

categorical diffusion trained on MM CelebA-HQ-25 in the remaining supplementary material (Fig-
ure A.6, Figure A.7, and Figure A.8). Since diffusion-based models produce different results based
on the guidance scale of the classifier-free guidance, we sample images from results exhibiting FID
around 20. The guidance scales for each model to achieve an FID of 20 are 2, 10, and 10 for LDM,
Imagen, and the Gaussian-categorical diffusion, respectively. We also provide uncurated results for gen-
erated image-layout pairs from the Gaussian-categorical diffusion model in Figure A.9 and Figure A.10.



Real Image Ours Imagen LDM LAFITE

The person has arched

eyebrows. She wears heavy

makeup, and earrings. She

is attractive.

She wears lipstick, 

earrings. She has blond

hair, wavy hair, arched

eyebrows, and pointy

nose. She is attractive.

The woman has mouth slightly

open, rosy cheeks, narrow

eyes, high cheekbones, big

nose, and bushy eyebrows. 

She is smiling, and attractive. 

She wears earrings.

This person has blond hair, 

pointy nose, and arched

eyebrows. She is young. 

She wears earrings, and 

heavy makeup.

She has black hair, big lips, 

oval face, and bushy

eyebrows and is wearing

lipstick, and earrings.

The person has brown hair, 

arched eyebrows, high

cheekbones, rosy cheeks, 

pointy nose, and wavy hair

and is wearing earrings, and 

heavy makeup.

This person has big nose, 

and pointy nose. She is

young. She wears earrings, 

and heavy makeup.

Text Input

Figure A.6. Qualitative comparison between the Gaussian-categorical diffusion model and existing text-to-image generation models on
MM CelebA-HQ-25. We observe that existing models struggle to generate accessories such as earrings.



He has bushy eyebrows, 

gray hair, and sideburns. 

He is bald.

The man has pointy

nose, and big nose. He

is bald. He has no

beard.

This person is bald and 

has pointy nose, and 

big nose.

This man has double chin, 

high cheekbones, oval face, 

big nose, big lips, and bags

under eyes. He is young, 

chubby, and bald and wears

necktie. He has no beard.

He is wearing necktie. He

is bald and has bushy

eyebrows, arched

eyebrows, bags under

eyes, big nose, pointy nose, 

and sideburns.

This man is bald and 

has mustache.

The man has high

cheekbones, big lips, 

and oval face. He is

bald.

Real Image Ours Imagen LDM LAFITEText Input

Figure A.7. Qualitative comparison between the Gaussian-categorical diffusion model and existing text-to-image generation models on
MM CelebA-HQ-25. We observe that existing models tend to generate hair even when given text conditions specifying baldness.



Real Image Ours Imagen LDM LAFITE

This person has pale skin, 

mouth slightly open, bags

under eyes, gray hair, 

double chin, and big nose. 

He is chubby.

This man has wavy hair, 

big lips, brown hair, and 

pale skin.

She wears lipstick. She

has pale skin, pointy nose, 

blond hair, and high

cheekbones. She is young.

This attractive, and 

young person has pale

skin, and big nose.

She has pale skin, arched

eyebrows, and wavy hair

and is wearing earrings, 

and heavy makeup.

The person wears heavy

makeup, earrings. She

has arched eyebrows, 

blond hair, and pale skin. 

She is young.

She is wearing earrings, 

and lipstick. She has wavy

hair, pale skin, and arched

eyebrows. She is attractive.

Text Input

Figure A.8. Qualitative comparison between the Gaussian-categorical diffusion model and existing text-to-image generation models on
MM CelebA-HQ-25. We observe that existing approaches often fail to appropriately generate colors of skin.



She has rosy cheeks. She is

smiling, and attractive. She wears

necklace.

She has big lips, and wavy hair

and wears lipstick. She is young.

He has mouth slightly open, 

bushy eyebrows, black hair, and 

straight hair. He is young. He has

beard.

This woman has oval face. She is

young.

This person has wavy hair, pointy

nose, and blond hair. She is

wearing lipstick. She is attractive.

This man has straight hair. He is

attractive.

She has arched eyebrows, and 

big nose. She wears earrings. 

She is smiling.

This person is attractive and has

mustache, sideburns, and pointy

nose.

The person is young and has

blond hair.

He wears necktie. He has black

hair, and high cheekbones. He is

smiling, and young.

This person has bushy eyebrows, 

mouth slightly open, arched

eyebrows, high cheekbones, and 

big lips. She is attractive, and 

smiling. She wears heavy makeup.

This person has oval face, and big

lips. She is attractive.

She is wearing necklace, and 

heavy makeup. She has arched

eyebrows. She is young.

This woman is wearing necklace, 

lipstick. She has mouth slightly

open, big lips, high cheekbones, 

and narrow eyes.

Generated

Image-Layout

Input Text

Generated

Image-Layout

Input Text

Generated

Image-Layout

Input Text

Generated

Image-Layout

Input Text

Generated

Image-Layout

Input Text

She is wearing lipstick, and heavy

makeup. She has big lips, blond

hair, wavy hair, pointy nose, 

arched eyebrows, and high

cheekbones. She is young.

Figure A.9. Example image-layout pairs generated by the Gaussian-categorical diffusion trained on the MM CelebA-HQ-100 dataset.



Generated

Image-Layout

Input Text

An image of an urban street view

with Skies, Traffic signs, Buildings, 

Poles, Terrains, Cars, Bicycles, 

Roads, Sidewalks, Vegetations

and People. 

An image of an urban street view

with Skies, Fences, Roads, 

Terrains, People, Bicycles, Traffic

lights, Vegetations, Buildings, 

Poles, Sidewalks and Traffic signs.

An image of an urban street view

with Skies, Traffic signs, Roads, 

Buildings, Cars, People, Poles, 

Vegetations and Riders.

An image of an urban street view

with Buildings, Roads, People, 

Traffic signs, Skies, Cars, Poles, 

Vegetations and Sidewalks.

An image of an urban street view

with Bicycles, Terrains, 

Vegetations, Sidewalks, Traffic

signs, Cars, Riders, Trucks, 

Buildings, People, Poles, Skies

and Roads.

An image of an urban street view

with Cars, Buildings, Fences, 

Poles, Skies, Traffic lights, Traffic

signs, Sidewalks, Vegetations, 

Roads and Terrains.

An image of an urban street view

with Terrains, Riders, Sidewalks, 

Buildings, Traffic signs, Bicycles, 

Vegetations, Fences, Roads, Poles, 

Skies, Traffic lights, Cars and 

People.

An image of an urban street view

with Traffic lights, Walls, Traffic

signs, Cars, Bicycles, Sidewalks, 

Skies, Vegetations, Poles, 

Buildings, Roads and Terrains.

An image of an urban street view

with Sidewalks, Vegetations, Traffic

signs, Buildings, People, Roads, 

Cars, Traffic lights, Bicycles, Skies

and Poles.

Generated

Image-Layout

Input Text

Generated

Image-Layout

Input Text

Figure A.10. Example image-layout pairs generated by the Gaussian-categorical diffusion trained on the cityscapes dataset.


