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Figure 1: With a large-scale pretrained vector-quantized tokenizer (e.g., the dVAE of DALL-E) and CLIP, StylerDALLE
can transfer various types of styles (indicated on the top), from abstract art styles to specific artist styles and more.

Abstract

Despite the progress made in the style transfer task, most
previous work focus on transferring only relatively sim-
ple features like color or texture, while missing more ab-
stract concepts such as overall art expression or painter-

specific traits. However, these abstract semantics can be
captured by models like DALL-E or CLIP, which have
been trained using huge datasets of images and textual
documents. In this paper, we propose StylerDALLE, a
style transfer method that exploits both of these models
and uses natural language to describe abstract art styles.
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Specifically, we formulate the language-guided style trans-
fer task as a non-autoregressive token sequence transla-
tion, i.e., from input content image to output stylized im-
age, in the discrete latent space of a large-scale pretrained
vector-quantized tokenizer, e.g., the discrete variational
auto-encoder (dVAE) of DALL-E. To incorporate style in-
formation, we propose a Reinforcement Learning strategy
with CLIP-based language supervision that ensures styl-
ization and content preservation simultaneously. Experi-
mental results demonstrate the superiority of our method,
which can effectively transfer art styles using language in-
structions at different granularities. Code is available at
https://github.com/zipengxuc/StylerDALLE.

1. Introduction
In the last few years, a lot of work has focused on the

style transfer task using a reference image as a representa-
tive of the target style, where the goal is to transfer the style
of the reference to a content image [14, 16, 28, 3, 22, 8,
9, 40]. Recent improvements in this field include: reduc-
ing the artifacts [2, 25, 5, 40], modeling the style-content
relationship [28, 43, 24], increasing the generation diver-
sity [21, 37, 46] and many others. However, art styles are
usually abstract concepts, e.g., pop art, fauvism, and the
style of Van Gogh. To transfer these abstract art styles to a
content image, the low-level features (e.g., textures and col-
ors), which are commonly extracted from a single reference
image, are not enough. A possible solution is to collect a set
of reference images that can be used, e.g., to train a Gen-
erative Adversarial Network (GAN) for artist-specific style
transfer [36, 47, 19]. The disadvantage of this set-based
representation is the effort required to collect sufficiently
large style-specific data for training.

Recently, large-scale image generative models [32, 31,
35, 45] have shown their power to generate high-quality im-
ages of various types, e.g., realistic photo, cartoon, ukiyo-e
print, or painting of a specific artist. Moreover, CLIP [30],
which is trained with 400 million text-image pairs, learns
good joint knowledge between language and vision. Can
we leverage the power of these large-scale models for
style transfer? In this paper, we propose StylerDALLE,
a language-guided style transfer method that uses both
the vector-quantized tokenizer of large-scale image gener-
ative methods and CLIP. There are three advantages of our
method. Firstly, as compared to images, language is a more
natural and efficient way to describe abstract art styles and
enables more flexibility. Language can directly indicate art
styles at different levels, e.g., “Van Gogh style oil painting”
and “Van Gogh starry night style oil painting”. Secondly,
using CLIP and the language description of style saves the
effort of collecting style images, as CLIP already learns
style-related knowledge and thus can be used to provide

supervision. Thirdly, using a large-scale pretrained vector-
quantized tokenizer potentially enables style transfer results
to be closer to real artworks, as the model is trained from an
enormous number of real-world images. In concrete, we
propose a Non-Autoregressive Transformer (NAT) model
[15], which translates tokens of a content image to tokens of
a stylized image in the discrete latent space of a pretrained
visual tokenizer, and a two-stage training paradigm.

First of all, since both the input content image and output
stylized image can be represented by a sequence of tokens
via the large-scale pretrained vector-quantized tokenizer,
we formulate the language-guided style transfer task as a
token sequence translation. Specifically, we design a NAT
model that learns to translate a token-based representation
of a low-resolution image into a full-resolution representa-
tion, where the final token sequence contains appearance
details specialized for the target style. The most important
advantage of using NAT in image generation, with respect
to the more common autoregressive transformer (AT) based
generation, is that NAT is much faster than AT at inference
time, as it allows a parallel token generation while AT gen-
erates in a token-by-token way.

Secondly, we propose to use CLIP-based language su-
pervision to ensure stylization and content preservation si-
multaneously, saving the effort to collect data and design
dedicated losses. A similar solution that uses CLIP to do
style transfer is CLIPStyler [20]. Since merely maximizing
the CLIP similarity with respect to a textual style descrip-
tion is not enough for a style transfer task, which should also
preserve the content of the source image, CLIPstyler intro-
duces a hybrid of losses, including a content loss measured
in an external pre-trained VGG network. Conversely, we
propose an alternative direction, which avoids the need to
tune the coefficients of different loss functions so as to keep
the balance between style and content. Specifically, we in-
troduce a two-stage training paradigm: 1) a self-supervised
pretraining stage, where the model learns to add semanti-
cally coherent image details from a low-resolution image
to a high-resolution image; and 2) a style-specific fine-
tuning stage, where the model learns to incorporate style
into the high-resolution image. Since the fine-tuning phase
is built on top of the first stage, the translator is able to
keep the semantic consistency with respect to the input im-
age as learned during pretraining. Moreover, we create a
textual prompt by concatenating both the style and the tex-
tual description of the image content (i.e., its caption). This
way, the prompt simultaneously models both the target ap-
pearance (i.e., the style description) and the image content
which should be preserved by the translation process. Fi-
nally, since our translator’s output is discrete and there is
no ground-truth tokens for a stylized image, we introduce
a Reinforcement Learning (RL) approach to fine-tune the
translator using a reward based on the CLIP similarity be-
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tween the stylized image and textual prompt, enabling the
model to explore the answers in the latent space of a pre-
trained vector-quantized tokenizer.

We call our network StylerDALLE and we show that
it can generate stylized images driven by different types
of language guidance. Compared with previous language-
guided and reference image-based transfer methods, our
generated images are less inclined to produce artifacts or se-
mantic errors. Moreover, they can capture abstract concepts
related to the target style (e.g., the typical brushstrokes of
the artist) besides low-level features like texture and colors.
We illustrate the effectiveness of our method through quali-
tative results, quantitative results, and a user study.

To conclude, our main contributions are:

• We propose StylerDALLE, a language-guided style
transfer method that manipulates the discrete latent
space of a pretrained vector-quantized tokenizer using
a token sequence translation approach.

• We propose a non-autoregressive translation network
that translates a low-resolution content image into a
full-resolution image with style-specific details.

• We propose a two-stage training procedure, including
an RL strategy to ensure stylization and content preser-
vation using CLIP-based language supervision.

• Experimental results show that StylerDALLE can ef-
fectively transfer abstract style concepts, going beyond
simple texture and color features while simultaneously
preserving the semantic content of the translated scene.

2. Related Work

Reference Image-Based Style Transfer. Gatys et al. [14]
propose a neural style transfer method in which a pre-
trained CNN is used to extract content and style informa-
tion from images, and to transfer the latter from an image
to another. Following this pioneering work, a lot of inter-
ests have been attracted, with different methods focusing
on different aspects of the topic, such as, e.g., diversified
style transfer [37, 41], or attention mechanisms to fuse style
and content [44, 28, 24]. A specific line of work focuses
on artistic style transfer. For instance, Chen et al. [3] pro-
pose to use internal-external learning and contrastive learn-
ing with GANs to bridge the gap between human artworks
and AI-created artworks. Wang et al. [40] introduce an aes-
thetic discriminator trained with a large corpus of human-
created artworks. Other works train GANs using an artist-
specific collection of images [36, 19, 4]. In contrast, we
use the generic visual-language semantics embedded in the
large-scale pretrained vector-quantized tokenizer and CLIP
to avoid collecting style or artist-specific datasets.

Language-Guided Style Transfer. Very recently a few
works have proposed transferring methods conditioned on a
textual description of the style. For instance, Fu et al. [12]
use contrastive learning to train a GAN for artistic style
transfer, but they adopt descriptive language instructions
rather than more abstract style concepts. Gal et al. [13]
use the CLIP space for a domain adaptation of a pre-trained
StyleGAN [17]. The method closest to our approach is
CLIPStyler [20], where a patch-wise CLIP loss is used to
train a U-Net [34]. However, to condition the style change
while preserving the image content, CLIPStyler uses hybrid
losses and a rejection threshold, introducing many hyperpa-
rameters. In our method, we only use CLIP-based language
supervision to ensure the style and content, saving the ef-
forts of designing losses and tuning hyperparameters.

Large-scale Text-to-Image Generation Models. Re-
cently, text-to-image models trained with large or very large
scale datasets [32, 31, 35, 45, 1] have attracted tremendous
attention because of their excellent performance in generat-
ing high-quality images starting from a textual query. In-
spired by their strong ability to synthesize various types of
images, we study how to use large-scale text-to-image mod-
els for style transfer. Specifically, we focus on transformer-
based methods, which are potentially less time-consuming
as compared to diffusion model-based methods [26]. In ad-
dition, we propose to use a non-autoregressive transformer
that can generate tokens in parallel.

3. Background
Vector-Quantzied Image Tokenizer. Transformer-based
text-to-image generative models [32, 10, 11, 45, 1] rely
on a vector-quantized image tokenizer to produce a dis-
crete representation of the images, e.g., DALL-E [32] has
a dVAE [33] and PARTI [45] has a ViT-VQGAN. Despite
the differences in implementing the tokenizers, the effects
are the same. In more detail, an image I is transformed into
a k×k grid of tokens X = {xi,j}i,j=1,...k, using an encoder
E(·). Each token xi,j ∈ X = E(I) is an index of a code-
book of embeddings (C = {eee1, ...eeeM}, 1 ≤ xi,j ≤ M ),
built during the training, and corresponds to a patch in I .
A decoder G(·) takes as input a grid of embeddings and
reconstructs the original image: Î = G({eeexi,j

}i,j=1,...k).
Training in the transformer-based text-to-image generative
models consists of two stages. The first stage is dedicated
to training the image tokenizer, while in the second phase, a
transformer is used to learn a prior distribution over the text
and the image tokens. In StylerDALLE (Sec. 4) we only
use the pretrained image tokenizer.

Non-Autoregressive Transformer (NAT). Gu et al. [15]
propose a NAT for natural language translation, which con-
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Figure 2: A schematic illustration of StylerDALLE. We propose a NAT to translate tokens of a half-resolution content image
to tokens of a full-resolution stylized image. StylerDALLE consists of three parts: 1) image tokenization preprocessing, to
obtain the discrete visual tokens from a pretrained image tokenizer; 2) self-supervised pretaining, to train the NAT to predict
full-resolution content images from half-resolution content images; and 3) style-specific fine-tuning, to let the model adding
style details in the up-scaling prediction via Reinforcement Learning with language-prompted CLIP guidance. Specifically,
in our NAT, the decoder input is duplicated from the tokens of the half-resolution image, following the natural positional
correspondence (as highlighted by orange rectangles in the left part) with the full-resolution image.

sists of an encoder and a decoder. The encoder takes as
input a source sentence X = {x1, ..., xN ′} of N ′ tokens
and outputs a distribution over possible output sentences
Y = {y1, ..., yN}, where Y is the translation of X in the
target language and, usually, N ̸= N ′. The main novelty of
NAT with respect to AT is that, during training, NAT uses
a conditional independent factorization for the target sen-
tence and the following log-likelihood:

L(θ) =
N∑

n=1

log p(yn|x1:N ′ ; θ), (1)

which differs from the common AT factorization in which
the prediction of the n-th token (yn) depends on the previ-
ously predicted tokens (p(yn|y0:n−1, x1:N ′ ; θ)). This condi-
tional independence assumption makes it possible a parallel
generation of Y at inference time, largely accelerating the
translation time with respect to AT models. Importantly, to
make parallel generation possible, the encoder input (X) is
provided as input to the decoder as well, and individual to-
kens (xn ∈ X) can be copied zero or more times, with the
number of times each input is copied depending on a spe-
cific predicted “fertility” value. As we will see in Sec. 4.1,
we do not need to predict fertilities because, in our case, the
cardinality of the input copies is fixed and determined by
the up-scaling task we use for the image translation.

4. Method

The language-guided style transfer task can be described
as follows. Given an image I , we want to generate a new
image Is which preserves the semantic content of I but
changes its appearance according to a textual style descrip-
tion ts (e.g., “cartoon”). In StylerDALLE, we formulate
this task as a visual-token based translation, from tokens
of a content image to tokens of a stylized image. Specifi-
cally, given a content image I we first downsample I to get
a half-resolution image I ′. Then, I ′ is fed to the tokeniza-
tion encoder (Sec. 3) which extracts a discrete grid of k× k
source tokens X ′ = E(I ′). X ′ can now be “translated” into
a target (discrete) representation Ŷ , where Ŷ is a grid at the
original resolution (2k×2k) and Ŷ = f(X ′), being f(·) the
translation function. Finally, Ŷ is fed into the tokenization
decoder obtaining the stylized image Is = G(Ŷ ). In the
following subsections, we describe the architecture of f(·)
and the way in which it is trained.

4.1. Architecture and self-supervised pre-training

For our translation network f(·) we use a NAT architec-
ture [15] (Sec. 3) which we train from scratch using a self-
supervised learning pretext task consisting in predicting the
image at full resolution. Specifically, given the downsam-



pled image I ′ and its corresponding grid of tokens X ′ =
E(I ′), we use the indexes in X ′ to extract the corresponding
embeddings from C (Sec. 3). For each xi,j ∈ X ′, let eeexi,j

be the corresponding embedding in C and let N ′ = k2. The
so obtained set of embeddings is flattened into a sequence,
and, for each element eeen of the sequence (1 ≤ n ≤ N ′), we
add an absolute positional embedding [38] pppn, where pppn
has the same dimension as eeen: vvvn = eeen + pppn. The final se-
quence V ′ = {vvv1, ..., vvvn, ..., vvvN ′} is input to the encoder of
f(·). Note that an alternative solution is to directly fed f(·)
with (a flattened version of) X ′ and let f(·) learn its own
initial token embedding. However, using the embeddings
in C has the advantage of exploiting the image representa-
tion of the pre-trained image tokenizer. Moreover, from the
original image I we extract the ground truth X = E(I),
which is flattened in a sequence of N = 4k2 tokens.

Finally, following [15], we build a second sequence of
input embeddings V , with cardinality N , which is fed to
the decoder of f(·). As mentioned in Sec. 3, differently
from NAT, we do not predict fertility values. Instead, we
get the input of the decoder by simply replicating each ele-
ment xi,j ∈ X ′ according to the positional correspondences
between the low-resolution image and high-resolution im-
age (as in Fig. 2). The rationale behind this choice is that
f(·) is trained to predict the full-resolution image, and each
encoder input (eeexi,j

) corresponds to a patch in the subsam-
pled image I ′ and to 4 patches in the full-resolution image I .
Thus, initializing the decoder with 4 replicas of each source-
image patch initial embedding provides a coarse-grained
signal for the upsampling task. Similar to before, the em-
beddings extracted from C are then flattened and added with
a new positional encoding.

Both the encoder and the decoder have self-attention lay-
ers and no causal masking is used. However, following [15],
in the decoder, we mask out each query position (n) only
from attending to itself. Using V ′ and V , f(·) generates N
parallel posterior distributions over the visual vocabulary
({1, ...,M}): P = fθ(V

′, V ), where P is a N × M ma-
trix, Pn ∈ [0, 1]M and Pn[y] = pθ(Yn = y|V ′, V ). Using
Y = {y1, ..., yn, ..., yN}, f(·) is trained to maximize:

Lpre−train(θ) =

N∑
n=1

logPn[yn]. (2)

This pre-training stage is independent of the target style
and it can be shared over different styles. After this stage,
f(·) is able to generate realistic low-level details (which are
missing in I ′). In the next, we describe how a specific style
is incorporated in f(·) using a fine-tuning phase.

4.2. Style-specific fine-tuning

Given a style description provided with a textual sen-
tence ts, the goal is to fine-tune the pre-trained translator

f(·) (Sec. 4.1) to make it generate image details in the style
of ts. We fine-tune only the decoder of f(·), keeping frozen
the encoder. To ensure both stylization and content preser-
vation, we design a prompt that consists of two parts, i.e., a
style description ts and an image caption ta, which describe
the image content and can be obtained from a generic image
captioning dataset. For instance, given ta = “A man’s hand
is adjusting his black tie” and ts = “cartoon”, we obtain
tq = “a cartoon of a man’s hand is adjusting his black tie.
On the other hand, in order to represent the image gener-
ated by f(·), we first need to sample the distributions in P
(Sec. 4.1), and we do so using multinomial sampling:

Ŷn = Sampling(Pn[y]), ∀n ∈ {1, ..., N}. (3)

The sampled sequence Ŷ is reshaped to a 2k × 2k grid and
fed to the image detokenizer to get the final image Is =
G(Ŷ ). Finally, using the CLIP visual and textual encoders
we compute the cosine similarity on the CLIP space:

r = SimCLIP (I
s, tq). (4)

However, directly using Eq. 4 as the fine-tuning objective
function is not possible because Eq. 3 is not differentiable.
In addition, since there is no ground truth for the tokens of
stylized images we use RL to encourage the model to ex-
plore the answers in the latent space of a pretrained vector-
quantized model. We use the REINFORCE algorithm [42]
that updates the parameters of fθ(·) using the CLIP-based
reward r, which could keep awarding the model for achiev-
ing better-stylized results until the model reaches a limit.
This leads to the gradient estimate:

∇θ|dLfine−tune(θ|d) =
N∑

n=1

r∇θ|d logPn[yn], (5)

where θ|d indicates the parameters of the decoder only (we
found fine-tuning both could lead to content loss). By max-
imizing Eq. 5 we encourage f(·) to generate images having
both the content and the style of the prompt tq .

With respect to the whole method, the reason we use
down-sampled versions of the content image is that “style”
is commonly assumed to be involved in the low-level vi-
sual details, such as colors, texture, painting strokes, etc.
X ′, which in our formulation represents I at a lower resolu-
tion, presumably keeps most of the content in I discarding
some details, this way facilitating the style translation pro-
cess. Preliminary experiments (in Appendix A.2) in which
we fed the encoder with tokenized full-resolution images
led to poor results, demonstrating that the different cardi-
nality between the source and the target sequence is an es-
sential component in this translation process.
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Figure 3: Qualitative results of StylerDALLE-1 on various styles: (a) Monet Sunrise, (b) Picasso cubism, (c) Van Gogh
blue color, (d) Van Gogh purple color, (e) warm and relaxing, (f) ukiyo-e print, (g) fauvism, (h) pixel art illustration. The
style references at the top are for illustration only (not used as input to the model).

5. Experiments

5.1. Training Details

We implement our method based on two types of pre-
trained vector-quantized tokenizer: 1) the officially released
dVAE of DALL-E 1 [27] and 2) the VQGAN of Ru-
DALLE [39], and consequently obtain two groups of re-
sults, noting as StylerDALLE-1 and StylerDALLE-Ru,
respectively. We use the two models in our experiment be-
cause they are open-sourced while our method is applicable
to any large-scale pretrained vector-quantized tokenizer.

To train the model, we use the MS-COCO [23] train-
set, which contains 83k images of common objects in daily
scenes. In the self-supervised pretraining stage, we only use
the images while in the style-specific fine-tuning stage we
use both images and captions. The StylerDALLE NAT
model consists of a 4-layer encoder and an 8-layer decoder
while the attention head number is 8 and the hidden dimen-
sion is 512. We use Pytorch [29] to implement our method.
We train the NAT model for 25 epochs with a learning rate
of 1e-4. We use Adam [18] optimizer. In the style-specific
fine-tuning stage, we use both the images and the captions.
In particular, we utilize all the caption annotations to en-

hance the model robustness, as usually human-beings an-
notate different captions of a single image. Notably, the
caption annotations are only used at the fine-tuning stage.
In other words, StylerDALLE does not need to use image
caption as input at inference time. We only fine-tune the de-
coder of the NAT model, and keep the encoder frozen. We
use Adam optimizer with a learning rate of 1e-6. For CLIP
model, we use the CLIP ViT-B/32 model. For both training
stages, the model is trained on a single RTX-A6000 GPU
for 24 hours.

5.2. Experimental Results

In the following, we present qualitative, quantitative, and
user study results of our method and comparative methods,
as well as comparisons with reference image-based meth-
ods. The additional implementation details, ablation study,
inference time comparison, and additional experimental re-
sults are shown in Appendix A.1, A.2, A.3, and A.5,
respectively.

Qualitative Results. In Fig. 1, Fig. 3 and Fig. 4, we
show that our method can effectively transfer various types
of styles, i.e., a) abstract art styles, e.g., “fauvism” and
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Figure 4: Qualitative results of StylerDALLE-Ru on various styles: (a) Monet, (b) Monet Paris, (c) Monet Venice, (d) Van
Gogh, (e) Van Gogh Irises, (f) Van Gogh Almond, (g) Van Gogh Starry Night, (h) Van Gogh Sunflowers. The style references
at the top are for illustration only (not used as input to the model).

Dataset Method
Style

Fauvism Monet
Monet
Sunrise

Monet
Sunset

Monet
Paris

Van Gogh
Irises

Van Gogh
Almond Blossoms

CoCo CLIPstyler-Fast 26.11 27.46 24.78 26.70 27.60 26.23 27.05
Ours 30.61 27.72 28.81 30.68 29.63 28.14 31.64

AFHQ CLIPstyler-Fast 26.52 26.08 23.27 25.05 25.42 23.28 24.31
Ours 29.96 26.55 26.58 29.11 26.10 28.04 31.92

ImageNet-100 CLIPstyler-Fast 26.63 27.16 24.33 26.12 27.28 26.32 26.23
Ours 30.22 27.53 28.29 30.28 27.67 28.26 31.60

Table 1: Quantitative comparisons with CLIPstyler [20] on different types of styles and datasets.

“pop art”; b) artist-specific styles, e.g., “Monet” and “Van
Gogh”; c) artist-specific styles with additional descriptions,
e.g., “Monet Paris” and “Van Gogh Sunflowers”; d) artis-
tic painting types, e.g., “pixel art illustration”; and e) emo-
tional effects, e.g., “warm and relaxing”. According to the
qualitative results, we draw the following conclusions: 1)
StylerDALLE can transfer abstract style concepts which
go beyond the texture and color features and are similar to
the typical trait of the artist/artistic target style; 2) each style
corresponds to generated images that are different from
those of other styles; 3) the image content is well preserved;

and 4) StylerDALLE can be applied to open-domain con-
tent images (i.e., the image content can contain animals, hu-
man beings, daily objects, buildings, etc.).

Further, we compare StylerDALLE with the recent
language-guided style transfer method CLIPStyler [20].
CLIPstyler proposes two methods: 1) CLIPStyler-
Optimization, which optimizes a style transfer network for
each content image, thus being time-consuming; and 2)
CLIPStyler-Fast, which is the most comparable method to
ours as it trains a network for each style, and then it can
be used with any content images. As shown in Fig. 5,



CLIPStyler-
Optimization

CLIPStyler-
Fast

StylerDALLE
（Ours）
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Figure 5: Comparisons with language-guided methods. The styles are (a) fauvism, (b) Monet, (c) Monet Impression Sunrise,
(d) oil painting, (e) watercolor painting, (f) Van Gogh, (g) Van Gogh blue color. The style references at the top are for
illustration only (not used as input to the model).

CLIPStyler-Optimization generates diverse stylized results
but it suffers from inharmonious artifacts. For instance, in
the column “Monet”, there are many plants on the train.
In addition, CLIPStyler-Optimization has the problems of
writing the style text in the results, as in the results of ”fau-
vism” and so on. On the other hand, the images generated
by CLIPStyler-Fast do not contain artifacts but there is less
variation among different styles. Importantly, it is hard to
recognize the typical trait of each artistic style, and the main
differences among the styles are the colors. In contrast, the
results of StylerDALLE are much closer to the artworks
of the specific artistic style, they show distinct differences
among different styles, and they have no artifact issues.

Quantitative Results. To do quantitative analysis, we
use the CLIP similarity score, formalized as score =
SimCLIP (I, ts), which is computed between generated
stylized images and textual description of the target style.
In Tab. 1, we present the results of StylerDALLE-1 and
CLIPstyler-Fast. Since both methods are applicable for
arbitrary content images, we use the MS-COCO val-set,
AFHQ val-set [6], and ImageNet-100 val-set [7] for evalua-
tion. According to the results on multiple datasets, although
the way we use CLIP is to compute rewards in Reinforce-
ment Learning, instead of directly using CLIP-scores to op-
timize the network as CLIPstyler, we achieve comparable

(%)
CLIPstyler-

Fast
Styler

DALLE-1
Styler

DALLE-Ru

Preference 15.90 15.33 68.76

Table 2: Preference scores of user study.

and even better quantitative results, indicating the effective-
ness of our method.

User Study. We conduct a user study to see human opin-
ions towards the stylized images coming from different
methods: 1) CLIPstyler-Fast, 2) StylerDALLE-1, and 3)
StylerDALLE-Ru. In specific, we collect opinions from
35 human subjects with a 30-question questionnaire. In
each question, we ask them to select one stylized result that
is closest to a target style. As in Tab. 2, among the three
methods, StylerDALLE-Ru achieves the highest prefer-
ence score of 68.76%, indicating the superiority of our
method. We also find that humans prefer StylerDALLE-
Ru much more than StylerDALLE-1. We infer this could
be because the results from StylerDALLE-1 are blurry, as
they are based on the dVAE of DALLE-1, and humans dis-
like blurry images. More user study details are given in A.4.
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Figure 6: Comparisons with reference image-based methods. StylerDALLE is able to transfer more abstract concepts, e.g.,
specific painting strokes, and is less likely to produce semantic errors.

Comparisons with Reference Image-Based Methods.
We compare StylerDALLE with state-of-the-art reference
image-based methods: 1) AesUST [40], an arbitrary style
transfer method which enhances the aesthetic reality us-
ing a GAN trained with a collection of artworks; and 2)
StyTr2 [9], an arbitrary style transfer method which uses a
transformer to eliminate the biased content representation
issues of CNN-based methods. To make the comparison
feasible, we show the results of AesUST and StyleTr2 us-
ing two Van Gogh paintings as the reference images, and
the results of StylerDALLE trained using the correspond-
ing language description.

As shown in Fig. 6, the results of StylerDALLE are dis-
tinctive from the results of reference image-based methods.
In concrete, the results of both AesUST and StyleTr2 are
mostly affected by the colors and the textures of the refer-
ence images, and to some extent in an unnatural way. For in-
stance, on the bottom line, in the “Van Gogh Irises” stylized
results of AesUST and StyleTr2, the textures of the irises
get transferred to the orange cup. In transferring the style of
“Van Gogh Starry Night”, the objects in the results of Ae-
sUST and StyleTr2 are mostly in the same dark-sky blue as
the reference image, making the scenes a bit in-realistic. By
contrast, the colors and textures used in the reference style
are well transferred while being appropriately applied to the
contents, without changing the original semantics. More-
over, StylerDALLE achieves to transfer higher-level style
features, e.g., the brushstroke, rather than merely colors and
textures, leading to the results of a similar style to the target
one. For example, the strokes in Starry Night are sharper as
compared to the ones in Irises, and the differences are also

presented in the stylized results of StylerDALLE.

6. Conclusion
We present StylerDALLE, a language-guided style

transfer method that leverages the power of the large-scale
pretrained vector-quantized image tokenizer and CLIP.
Specifically, inspired by natural language translation, we
propose a non-autoregressive sequence translation approach
to manipulate the discrete visual tokens, from the con-
tent image to the stylized image. We use Reinforcement
Learning to include CLIP-based language supervision on
the style and content. Differently from previous work,
StylerDALLE can transfer abstract style concepts that are
implicitly represented in the pretrained image tokenizer and
CLIP and which cannot be easily obtained using reference
images. Moreover, using the large-scale pretrained latent
space as the basic image representation makes it possible
to reduce the artifacts and the semantic incoherence better
than the previous work that operates at the pixel level.
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A. Appendix
A.1. Implementation Details

For pretrained vector-quantized image tokenizer, we use
the officially released dVAE of DALL-E1 or the VQGAN
of Ru-DALLE2.

To compare with CLIPStyler, we use the official imple-
mentation.3 For all reference image-based comparing meth-
ods, we use the officially released trained models.4

A.2. Ablation Study

We study two ablations of StylerDALLE: (1) without
captions, and (2) without scaling.

Firstly, we ablate the usage of captions in formulat-
ing the prompt-based reward during the style-specific fine-
tuning stage (Sec. 4.2). In more detail, instead of using
the CLIP similarity between the stylized image Is and the
prompt tq (which combines the style description ts and
the image caption ta) as the reward, we discard ta and
we compute the CLIP similarity between the stylized im-
age Is and the style description ts as the reward. As
shown in Fig. 7, the two models StylerDALLE-1 and
StylerDALLE-Ru show different results on the ablation
“w/o captions”. For StylerDALLE-1 (Fig. 7(a)), we see
that the results of the full model are slightly better. In the
results of StylerDALLE-1, the details are preserved bet-
ter, and the colors are closer to the light and muted colors
used in watercolor painting. Moreover, the results are over-
all harmonious as there are few abrupt brushstrokes. Mean-
while, “StylerDALLE-1 w/o captions” also presents a sat-
isfying style transfer quality, as the results keep a good bal-
ance between the stylization and content maintainess. This
indicates our method can also work for the dVAE of DALL-
E when no caption is provided, thus being less annotation-
dependent. Nevertheless, “StylerDALLE-Ru w/o cap-
tions” (Fig. 7(b)) fails to keep content consistency, empha-
sizing the significance of using captions as part of the lan-
guage supervision in the Reinforcement Learning process
for maintaining the content.

Secondly, we ablate the operation of down-sampling
as introduced in Sec. 4. Specifically, we directly in-
put the discrete tokens of the full-resolution image to the
NAT model while conducting the same self-supervised pre-
training and style-specific fine-tuning. As shown in the re-
sults of “ StylerDALLE-1 w/o scaling” (Fig. 7(a)) and
‘ StylerDALLE-Ru w/o scaling” (Fig. 7(b)), scaling is
an important procedure in StylerDALLE: when the NAT

1DALL-E: https://github.com/openai/dall-e
2Ru-DALLE:https://github.com/ai-forever/

ru-dalle
3CLIPStyler: https://github.com/cyclomon/

CLIPstyler
4AesUST: https://github.com/EndyWon/AesUST,

StyTr2: https://github.com/diyiiyiii/StyTR-2.

model is input with the discrete tokens of the full-resolution
image, the style cannot be incorporated effectively through
the Reinforcement Learning fine-tuning stage.

A.3. Inference Time

To generate a single 256×256 stylized image (includ-
ing the time to down-sample, encode, translate through the
NAT, and decode), StylerDALLE needs 0.076s, which
is the average time computed over the COCO val-set us-
ing an RTX-A6000 GPU. The main idea of our paper is
to use large-scale pretrained image generative models for
style transfer and we focus on using vector-quantization-
based methods. Therefore, we conclude that as compared
to style transfer methods that are based on large-scale dif-
fusion models, StylerDALLE has the advantage of having
less inference time. For instance, as reported in a recent
paper [1], Imagen [35] takes 9.1s to generate a 256×256
image on TPUv4 accelerators.

A.4. User Study Details

Other than the quantitative analysis and qualitative anal-
ysis, as in Tab. 2, we further involve human subjects to
evaluate the style transfer results of StylerDALLE and
the comparing method CLIPstyler. To help the participants
know the styles, at the beginning of evaluating each style,
we incorporate several illustrations of the style (Tab. 8(a)).
We show part of the questionnaire in Tab. 8(b). We use
Google Forms to collect user opinions.

A.5. Additional Experimental Results

Additional Comparison Results. In Fig. 9, we illustrate
the additional comparing results between StylerDALLE
and CLIPStyler-Optimization (i.e., the mainly proposed
method in the paper). As shown, CLIPStyler-Optimization
suffers from two issues. Firstly, there are many inharmo-
nious artifacts that appear in the stylized images. For exam-
ple, there are many plant-like artifacts in the stylized results
of “Monet” and multiple suns in the “Monet Sun Impres-
sion” results. Secondly, the texts related to the language in-
structions are written in stylized images unexpectedly. For
instance, as in the top example of the “fauvism” train, the
written text “fauvism” is on the front of the bus.

On the contrary, both StylerDALLE-1 and
StylerDALLE-Ru do not have the above two issues.
Furthermore, our results achieve well-characterized styl-
ization results consistent with language instructions, and
different styles are expressed with varied and distinctive
brushstrokes related to the specific style. In the following,
we give more generated results of StylerDALLE-1 and
StylerDALLE-Ru.

Additional Qualitative Results. We give more stylized
results produced by StylerDALLE-Ru in Fig. 10, Fig. 11

https://github.com/openai/dall-e
https://github.com/ai-forever/ru-dalle
https://github.com/ai-forever/ru-dalle
https://github.com/cyclomon/CLIPstyler
https://github.com/cyclomon/CLIPstyler
https://github.com/EndyWon/AesUST
https://github.com/diyiiyiii/StyTR-2


Content Image                     StylerDALLE-1 StylerDALLE-1 w/o caption  StylerDALLE-1 w/o scaling 
(a) Ablation study results on StylerDALLE-1, which is implemented based on the officially released dVAE of DALL-E [27].

Content Image                   StylerDALLE-Ru StylerDALLE-Ru w/o caption StylerDALLE-Ru w/o scaling 
(b) Ablation study results on StylerDALLE-Ru, which is implemented based on the VQGAN of Ru-DALLE [39].

Figure 7: Ablation study on StylerDALLE.

and Fig. 12, and StylerDALLE-1 in Fig. 13, Fig. 14 and
Fig. 15, respectively. In particular, we also show the in-
termediate results Î (as in Fig. 2), which are generated
with the output tokens using the model right after the self-
supervised pre-training (and before the style-specific fine-
tuning stage). Similar to what we have concluded, both
StylerDALLE-1 and StylerDALLE-Ru achieve distinc-
tive and harmonious stylized results on various styles and
images. In addition, the differences between Î and Is are
significant. As shown, Î is photo-realistic while Is presents
varied brushstrokes, edges, and colors with respect to each
style instruction, indicating that StylerDALLE has been
effectively fine-tuned with our language-guided rewards in
the Reinforcement Learning stage.

By comparing the results of StylerDALLE-1 and
StylerDALLE-Ru, although we draw the joint conclu-

sions as above, we also see the differences between the two,
resulting from the usage of different vector-quantized im-
age tokenizers. For example, StylerDALLE-Ru achieves
clearer stylized images, as it is implemented based on the
VQGAN image tokenizer. On the other hand, our method,
i.e., StylerDALLE has been proven effective on both
vector-quantized image tokenizers. It is reasonable to ex-
pect that the style transfer results can be further improved
by using more advanced vector-quantized image tokenizers
if they could be open-sourced.

In addition, we include non-cherry pick results on ex-
tra styles, i.e., “3023”, “a chill and sad Monet style paint-
ing”, “a rosy romantic relaxed Monet style painting” and
“child drawing”, in Fig. 16. These results come from
StylerDALLE-Ru.



(a) We illustrate each style with several examples to let the participant know the styles.

(b) In each question, we ask the participant to select one image that is most likely to be of the target style. The order of the candidates is randomly shuffled.

Figure 8: Illustrations of the user study details.
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Figure 9: Comparisons between StylerDALLE and CLIPStyler, styles are shown on the bottom.
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Figure 10: Additional stylized results of StylerDALLE-Ru.
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Figure 11: Additional stylized results of StylerDALLE-Ru.
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Figure 12: Additional stylized results of StylerDALLE-Ru.
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Figure 13: Additional stylized results of StylerDALLE-1.
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Figure 14: Additional stylized results of StylerDALLE-1.
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Figure 15: Additional stylized results of StylerDALLE-1.
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Figure 16: Non-cherry pick results on extra styles.


