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Abstract

Content and style (C-S) disentanglement is a fundamen-
tal problem and critical challenge of style transfer. Existing
approaches based on explicit definitions (e.g., Gram matrix)
or implicit learning (e.g., GANs) are neither interpretable
nor easy to control, resulting in entangled representations
and less satisfying results. In this paper, we propose a new
C-S disentangled framework for style transfer without using
previous assumptions. The key insight is to explicitly extract
the content information and implicitly learn the comple-
mentary style information, yielding interpretable and con-
trollable C-S disentanglement and style transfer. A simple
yet effective CLIP-based style disentanglement loss coor-
dinated with a style reconstruction prior is introduced to
disentangle C-S in the CLIP image space. By further lever-
aging the powerful style removal and generative ability of
diffusion models, our framework achieves superior results
than state of the art and flexible C-S disentanglement and
trade-off control. Our work provides new insights into the
C-S disentanglement in style transfer and demonstrates the
potential of diffusion models for learning well-disentangled
C-S characteristics.

1. Introduction
Given a reference style image, e.g., Starry Night by Vin-

cent Van Gogh, style transfer aims to transfer its artistic
style, such as colors and brushstrokes, to an arbitrary con-
tent target. To achieve such a goal, it must first properly
separate the style from the content and then transfer it to an-
other content. This raises two fundamental challenges: (1)
“how to disentangle content and style (C-S)” and (2) “how
to transfer style to another content”.

To resolve these challenges, valuable efforts have been
devoted. Gatys et al. [19] proposed A Neural Algorithm
of Artistic Style to achieve style transfer, which explicitly
defines the high-level features extracted from a pre-trained
Convolutional Neural Network (CNN) (e.g., VGG [76]) as

*This work was done when Zhizhong Wang was an intern at Huawei.
†Corresponding author.

content, and the feature correlations (i.e., Gram matrix) as
style. This approach acquires visually stunning results and
inspires a large number of successors [35, 30, 53, 1, 95].
Despite the successes, by diving into the essence of style
transfer, we observed three problems with these approaches:
(1) The C-S are not completely disentangled. Theoreti-
cally, the C-S representations are intertwined. For exam-
ple, matching the content representation of an image may
also match its Gram matrix, and vice versa. (2) What CNN
learned is a black box rugged to interpret [97], which makes
the C-S definitions [19] uninterpretable and hard to control.
(3) The transfer process is modeled as a separate optimiza-
tion of content loss and style loss [19], so there lacks a deep
understanding of the relationship between C-S. These prob-
lems usually lead to unbalanced stylizations and disharmo-
nious artifacts [6], as will be shown in later Fig. 3.

On the other hand, disentangled representation learn-
ing [27] provides other ideas to implicitly disentangle C-
S, either supervised [47, 37] or unsupervised [9, 98]. For
style transfer, Kotovenko et al. [45] utilized fixpoint triplet
style loss and disentanglement loss to enforce a GAN [21]-
based framework to learn separate C-S representations in
an unsupervised manner. Similarly, TPFR [79] learned
to disentangle C-S in latent space via metric learning and
two-stage peer-regularization, producing high-quality im-
ages even in the zero-shot setting. While these approaches
successfully enforce properties “encouraged” by the corre-
sponding losses, they still have three main problems: (1)
Well-disentangled models seemingly cannot be identified
without supervision [57, 70], which means the unsupervised
learning [45, 79] may not achieve truly disentangled C-S, as
will be shown in later Fig. 3. (2) These approaches are all
based on GANs and thus often confined to the GAN pre-
defined domains, e.g., a specific artist’s style domain [75].
(3) The implicitly learned C-S representations are still black
boxes that are hard to interpret and control [57].

Facing the challenges above, in this paper, we propose
a new C-S disentangled framework for style transfer with-
out using previous assumptions such as Gram matrix [19]
or GANs [45]. Our key insight stems from the fact that
the definition of an image’s style is much more complex
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than its content, e.g., we can easily identify the content of a
painting by its structures, semantics, or shapes, but it is in-
tractable to define the style [67, 22, 38, 87]. Therefore, we
can bypass such a dilemma by explicitly extracting the con-
tent information and implicitly learning its complementary
style information. Since we strictly constrain style as the
complement of content, the C-S can be completely disen-
tangled, and the control of disentanglement has been trans-
formed into the control of content extraction. It achieves
both controllability and interpretability.

However, achieving plausible and controllable content
extraction is also non-trivial because the contents extracted
from the content images and style images should share the
same content domain, and the details of the extracted con-
tents should be easy to control. To this end, we resort to
recent developed diffusion models [28, 78] and introduce a
diffusion-based style removal module to smoothly dispel the
style information of the content and style images, extract-
ing the domain-aligned content information. Moreover, ow-
ing to the strong generative capability of diffusion models,
we also introduce a diffusion-based style transfer module to
better learn the disentangled style information of the style
image and transfer it to the content image. The style disen-
tanglement and transfer are encouraged via a simple yet ef-
fective CLIP [68]-based style disentanglement loss, which
induces the transfer mapping of the content image’s content
to its stylization (i.e., the stylized result) to be aligned with
that of the style image’s content to its stylization (i.e., the
style image itself) in the CLIP image space. By further co-
ordinating with a style reconstruction prior, it achieves both
generalized and faithful style transfer. We conduct compre-
hensive comparisons and ablation study to demonstrate the
effectiveness and superiority of our framework. With the
well-disentangled C-S, it achieves very promising styliza-
tions with fine style details, well-preserved contents, and a
deep understanding of the relationship between C-S.

In summary, our contributions are threefold:

• We propose a novel C-S disentangled framework for
style transfer, which achieves more interpretable and
controllable C-S disentanglement and higher-quality
stylized results.

• We introduce diffusion models to our framework and
demonstrate their effectiveness and superiority in con-
trollable style removal and learning well-disentangled
C-S characteristics.

• A new CLIP-based style disentanglement loss coordi-
nated with a style reconstruction prior is introduced to
disentangle C-S in the CLIP image space.

2. Related Work
Neural Style Transfer (NST). The pioneering work of

Gatys et al. [19] has opened the era of NST [34]. Since

then, this task has experienced tremendous progress, in-
cluding efficiency [35, 52, 90], quality [23, 89, 55, 10,
7, 1, 46, 83, 56, 6, 92, 32, 99, 12, 96, 84], general-
ity [5, 30, 53, 65, 13, 33, 29, 85, 95, 59, 93], and diver-
sity [80, 86, 88]. Despite these successes, the essence of
these approaches is mostly based on the explicitly defined
C-S representations, such as Gram matrix [19], which have
several limitations as discussed in Sec. 1. In our work, we
propose new disentangled C-S representations explicitly ex-
tracted or implicitly learned by diffusion models, achieving
more effective style transfer and higher-quality results.

Disentangled Representation Learning (DRL). The
task of DRL [27] aims at modeling the factors of data vari-
ations [51]. Earlier works used labeled data to factorize
representations in a supervised manner [37]. Recently, un-
supervised settings have been largely explored [42], espe-
cially for disentangling style from content [98, 31, 51, 40,
91, 45, 66, 70, 8, 48]. However, due to the dependence on
GANs [21], their C-S disentanglement is usually restricted
in the GAN pre-defined domains (e.g., Van Gogh’s style
domain). Besides, disentanglement cannot be effectively
achieved without providing sufficient data [57]. In contrast,
our framework learns the disentangled style from a single
style image, and the disentanglement can be easily achieved
by providing only a few (∼50) content images for training.

Diffusion Models. Diffusion models [77] such as
denoising diffusion probabilistic models (DDPMs) [28,
63] have recently shown great success in image genera-
tion [78, 14, 17], image manipulation [62, 2, 41], and text-
conditional synthesis [64, 74, 69, 71, 24, 4, 54]. These
works have demonstrated the power of diffusion models to
achieve higher-quality results than other generative models
like VAEs [81], auto-regressive models [16], flows [44], and
GANs [39]. Inspired by them, we introduce a diffusion-
based style removal module and a style transfer module in
our framework. These modules can smoothly remove the
style information of images and better learn the recovery of
it to achieve higher-quality style transfer results. To the best
of our knowledge, our work is the first to introduce diffusion
models to the field of neural style transfer.

3. Background
Denoising diffusion probabilistic models (DDPMs) [77,

28] are latent variable models that consist of two diffu-
sion processes, i.e., a forward diffusion process and a re-
verse diffusion process. The forward process is a fixed
Markov Chain that sequentially produces a series of la-
tents x1, ..., xT by gradually adding Gaussian noises at each
timestep t ∈ [1, T ]:

q(xt|xt−1) := N (
√
1− βtxt−1, βtI), (1)

where βt ∈ (0, 1) is a fixed variance schedule. An impor-
tant property of the forward process is that given clean data
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Figure 1. Overview of our proposed StyleDiffusion. The content image Ic and style image Is are first fed into a diffusion-based style
removal module to explicitly extract the domain-aligned content information. Then, the content of Ic is fed into a diffusion-based style
transfer module to obtain the stylized result Ics. During training, we fine-tune the style transfer module via a CLIP-based style disentan-
glement loss LSD coordinated with a style reconstruction prior (see details in Sec. 4.3, we omit it here for brevity) to implicitly learn the
disentangled style information of Is.

x0, xt can be directly sampled as:

q(xt|x0) := N (
√
ᾱtx0, (1− ᾱt)I),

xt :=
√
ᾱtx0 +

√
1− ᾱtϵ,

(2)

where αt := 1−βt and ᾱt :=
∏t

s=0 αs. Noise ϵ ∼ N (0, I)
has the same dimensionality as data x0 and latent xt.

The reverse process generates a reverse sequence by
sampling the posteriors q(xt−1|xt), starting from a Gaus-
sian noise sample xT ∼ N (0, I). However, since
q(xt−1|xt) is intractable, DDPMs learn parameterized
Gaussian transitions pθ(xt−1|xt) with a learned mean
µθ(xt, t) and a fixed variance σ2

t I [28]:

pθ(xt−1|xt) := N (µθ(xt, t), σ
2
t I), (3)

where µθ(xt, t) is the function of a noise approximator
ϵθ(xt, t). Then, the reverse process can be expressed as:

xt−1 :=
1
√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)) + σtz, (4)

where z ∼ N (0, I) is a standard Gaussian noise indepen-
dent of xt. ϵθ(xt, t) is learned by a deep neural network [72]
through optimizing the following loss:

min
θ
∥ ϵθ(xt, t)− ϵ ∥2 . (5)

Later, instead of using the fixed variances, Nichol and
Dhariwal [63] presented a strategy for learning the vari-
ances. Song et al. [78] proposed DDIM, which formulates

an alternative non-Markovian noising process that has the
same forward marginals as DDPM but allows a different re-
verse process:

xt−1 :=
√
ᾱt−1fθ(xt, t)+

√
1− ᾱt−1 − σ2

t ϵθ(xt, t)+σtz,

(6)
where fθ(xt, t) is the predicted x0 at timestep t given xt

and ϵθ(xt, t):

fθ(xt, t) :=
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt
. (7)

Changing the choice of σt values in Eq. (6) can achieve dif-
ferent reverse processes. Especially when σt = 0, which is
called DDIM [78], the reverse process becomes a determin-
istic mapping from latents to images, which enables nearly
perfect inversion [41]. Besides, it can also accelerate the
reverse process with much fewer sampling steps [14, 41].

4. Method
Our task can be described as follows: given a style image

Is and an arbitrary content image Ic, we want to first disen-
tangle the content and style of them and then transfer the
style of Is to the content of Ic. To achieve so, as stated in
Sec. 1, our key idea is to explicitly extract the content infor-
mation and then implicitly learn the complementary style
information. Since our framework is built upon diffusion
models [28, 78], we dub it StyleDiffusion.

Fig. 1 shows the overview of our StyleDiffusion, which
consists of three key ingredients: I) a diffusion-based style



removal module, II) a diffusion-based style transfer mod-
ule, and III) a CLIP-based style disentanglement loss coor-
dinated with a style reconstruction prior. In the following
subsections, we will introduce each of them in detail.

4.1. Style Removal Module

The style removal module aims at removing the style
information of the content and style images, explicitly ex-
tracting the domain-aligned content information. Any rea-
sonable content extraction operation can be used, depending
on how the users define the content. For instance, users may
want to use the structural outline as the content, so they can
extract the outlines [36, 94] here. However, as discussed in
Sec. 1, one challenge is controllability since the control of
C-S disentanglement has been transformed into the control
of content extraction. To this end, we introduce a diffusion-
based style removal module to achieve both plausible and
controllable content extraction.

Given an input image, e.g., the style image Is, since the
color is an integral part of style [50], our style removal
module first removes its color by a commonly used ITU-
R 601-2 luma transform [20]. The obtained grayscale im-
age is denoted as I ′s. Then, we leverage a pre-trained dif-
fusion model [14] ϵθ to remove the style details such as
brushstrokes and textures of I ′s, extracting the content Ics .
The insight is that the pre-trained diffusion model can help
eliminate the domain-specific characteristics of input im-
ages and align them to the pre-trained domain [11, 41]. We
assume that images with different styles belong to different
domains, but their contents should share the same domain.
Therefore, we can pre-train the diffusion model on a sur-
rogate domain, e.g., the photograph domain, and then use
this domain to construct the contents of images. After pre-
training, the diffusion model can convert the input images
from diverse domains to the latents x via the forward pro-
cess and then inverse them to the photograph domain via the
reverse process. In this way, the style characteristics can be
ideally dispelled, leaving only the contents of the images.

Specifically, in order to obtain the results with fewer
sampling steps and ensure that the content structures of the
input images can be well preserved, we adopt the determin-
istic DDIM [78] sampling as the reverse process (Eq. (8)),
and the ODE approximation of its reversal [41] as the for-
ward process (Eq. (9)):

xt−1 =
√
ᾱt−1fθ(xt, t) +

√
1− ᾱt−1ϵθ(xt, t), (8)

xt+1 =
√
ᾱt+1fθ(xt, t) +

√
1− ᾱt+1ϵθ(xt, t), (9)

where fθ(xt, t) is defined in Eq. (7). The forward and re-
verse diffusion processes enable us to easily control the in-
tensity of style removal by adjusting the number of return
step Tremov (see details in later Sec. 5.1). With the increase
of Tremov , more style characteristics will be removed, and

the main content structures are retained, as will be shown
in later Sec. 5.3. Note that for content images that are pho-
tographs, the diffusion processes are optional1 since they
are already within the pre-trained domain, and there is al-
most no style except the colors to be dispelled. The supe-
riority of diffusion-based style removal against other opera-
tions, such as Auto-Encoder (AE) [53]-based style removal,
can be found in supplementary material (SM).

4.2. Style Transfer Module

The style transfer module aims to learn the disentangled
style information of the style image and transfer it to the
content image. A common generative model like AEs [30]
can be used here. However, inspired by the recent great suc-
cess of diffusion models [14, 41], we introduce a diffusion-
based style transfer module, which can better learn the dis-
entangled style information in our framework and achieve
higher-quality and more flexible stylizations (see Sec. 5.3).

Given a content image Ic, denote Icc is the content of Ic
extracted by the style removal module (Sec. 4.1). We first
convert it to the latent x using a pre-trained diffusion model
ϵθ. Then, guided by a CLIP-based style disentanglement
loss coordinated with a style reconstruction prior (Sec. 4.3),
the reverse process of the diffusion model is fine-tuned
(ϵθ → ϵθ̂) to generate the stylized result Ics referenced by
the style image Is. Once the fine-tuning is completed, any
content image can be manipulated into the stylized result
with the disentangled style of the style image Is. To make
the training easier and more stable, we adopt the determin-
istic DDIM forward and reverse processes in Eq. (8) and
Eq. (9) during the fine-tuning. However, at inference, the
stochastic DDPM [28] forward process (Eq. (2)) can also be
used directly to help obtain diverse results [86] (Sec. 5.3).

4.3. Loss Functions and Fine-tuning

Enforcing the style transfer module (Sec. 4.2) to learn
and transfer the disentangled style information should ad-
dress two key questions: (1) “how to regularize the learned
style is disentangled” and (2) “how to aptly transfer it to
other contents”. To answer these questions, we introduce
a novel CLIP-based style disentanglement loss coordinated
with a style reconstruction prior to train the networks.

CLIP-based Style Disentanglement Loss. Denote Icc
and Ics are the respective contents of the content image Ic
and the style image Is extracted by the style removal mod-
ule (Sec. 4.1). We aim to learn the disentangled style infor-
mation of the style image Is complementary to its content
Ics . Therefore, a straightforward way to obtain the disentan-
gled style information is a direct subtraction:

Dpx
s = Is − Ics . (10)

1Unless otherwise specified, we do not use the diffusion processes for
content images in order to better maintain the content structures.
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Figure 2. Illustration of different loss functions to transfer the disentangled style information. (a) L1 loss cannot guarantee the stylized
results are within the style domain and may suffer from a collapse problem. (b) Direction loss aligns the disentangled directions but cannot
realize accurate mappings. (c) Combining L1 loss and direction loss is able to achieve accurate one-to-one mappings from the content
domain to the style domain.

However, the simple pixel differences do not contain mean-
ingful semantic information, thus cannot achieve plausible
results [19, 45]. To address this problem, we can formulate
the disentanglement in a latent semantic space:

Ds = E(Is)− E(Ics), (11)

where E is a well-pre-trained projector. Specifically, since
Is and Ics have similar contents but with different styles,
the projector E must have the ability to distinguish them
in terms of the style characteristics. In other words, as we
define that images with different styles belong to different
domains, the projector E should be able to distinguish the
domains of Is and Ics . Fortunately, inspired by the recent
vision-language model CLIP [68] that encapsulates knowl-
edgeable semantic information of not only the photograph
domain but also the artistic domain [18, 69, 49], we can
use its image encoder as our projector E off the shelf. The
open-domain CLIP space here serves as a good metric space
to measure the “style distance” between content and its styl-
ized result. This “style distance” thus can be interpreted as
the disentangled style information. Note that here the style
is implicitly defined as the complement of content, which
is fundamentally different from the Gram matrix [19] that
is an explicit style definition independent of content (see
comparisons in Sec. 5.3). The comparisons between CLIP
space and other possible spaces can be found in SM.

After obtaining the disentangled style information Ds,
the next question is how to properly transfer it to other con-
tents. A possible solution is directly optimizing the L1 loss:

Dcs = E(Ics)− E(Icc ),

LL1
SD =∥ Dcs −Ds ∥,

(12)

where Ics is the stylized result, Dcs is the disentangled style
information of Ics. However, as illustrated in Fig. 2 (a) and
further validated in later Sec. 5.3, minimizing the L1 loss
cannot guarantee the stylized result Ics is within the style
domain of the style image Is. It is because L1 loss only

minimizes the absolute pixel difference (i.e., Manhattan dis-
tance); thus, it may produce stylized images that satisfy the
Manhattan distance but deviate from the target style domain
in the transfer direction. Besides, it may also lead to a col-
lapse problem where a stylized output meets the same Man-
hattan distance with different contents in the latent space.

To address these problems, we can further constrain the
disentangled directions as follows:

Ldir
SD = 1− Dcs ·Ds

∥ Dcs ∥∥ Ds ∥
. (13)

This direction loss aligns the transfer direction of the con-
tent image’s content to its stylization (i.e., the stylized re-
sult) with the direction of the style image’s content to its
stylization (i.e., the style image itself), as illustrated in
Fig. 2 (b). Collaborated with this loss, the L1 loss LL1

SD

thus can achieve accurate one-to-one mappings from con-
tents in the content domain to their stylizations in the style
domain, as illustrated in Fig. 2 (c).

Finally, our style disentanglement loss is defined as a
compound of LL1

SD and Ldir
SD:

LSD = λL1LL1
SD + λdirLdir

SD, (14)

where λL1 and λdir are hyper-parameters set to 10 and
1 in our experiments. Since our style information is in-
duced by the difference between content and its stylized
result, we can deeply understand the relationship between
C-S through learning. As a result, the style can be natu-
rally and harmoniously transferred to the content, leading
to better stylized images, as will be shown in later Fig. 3.

Style Reconstruction Prior. To fully use the prior infor-
mation provided by the style image and further elevate the
stylization effects, we integrate a style reconstruction prior
into the fine-tuning of the style transfer module. Intuitively,
given the content Ics of the style image Is, the style transfer
module should be capable of recovering it to the original
style image as much as possible. Therefore, we can define
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Figure 3. Qualitative comparisons with state of the art. Zoom-in for better comparison. Please see more in SM.

a style reconstruction loss as follows:

LSR =∥ Iss − Is ∥, (15)

where Iss is the stylized result given Ics as content. We
optimize it separately before optimizing the style disentan-
glement loss LSD. The detailed fine-tuning procedure can
be found in SM. The style reconstruction prior helps our
model recover the style information more sufficiently. It
also provides a good initialization for the optimization of
LSD, which helps the latter give full play to its ability, thus
producing higher-quality results (see later Sec. 5.3).

5. Experimental Results
5.1. Implementation Details

We use ADM diffusion model [14] pre-trained on Ima-
geNet [73] and adopt a fast sampling strategy [41]. Specif-
ically, instead of sequentially conducting the diffusion pro-
cesses until the last timestep T (e.g., 1000), we accelerate
them by performing up to T{·} < T (which is called return
step), i.e., Tremov = 601 for style removal and Ttrans =

301 for style transfer. Moreover, as suggested by [41], we
further accelerate the forward and reverse processes with
fewer discretization steps, i.e., (Sfor, Srev) = (40, 40)
(Sfor for forward process and Srev for reverse process) for
style removal, and (Sfor, Srev) = (40, 6) for style trans-
fer. When fine-tuning or inference, we can adjust Tremov

or Ttrans to flexibly control the degree of style removal and
C-S disentanglement, as will be shown in Sec. 5.3. To fine-
tune the model for a target style image, we randomly sample
50 images from ImageNet as the content images. We use
Adam optimizer [43] with an initial learning rate of 4e-6
and increase it linearly by 1.2 per epoch. All models are
fine-tuned with 5 epochs. See more details in SM.

5.2. Comparisons with Prior Arts

We compare our StyleDiffusion against ten state-of-the-
art (SOTA) methods [19, 95, 12, 1, 56, 6, 13, 79, 35, 55].
For fair comparisons, all these methods are fine-tuned or
trained on the target styles similar to our approach.

Qualitative Comparisons. As can be observed in Fig. 3,
due to the entangling of C-S representations, Gatys [19]



Ours Gatys EFDM StyTr2 ArtFlow AdaAttN IECAST MAST TPFR Johnson LapStyle
SSIM ↑ 0.672 0.311 0.316 0.537 0.501 0.542 0.365 0.392 0.536 0.634 0.657

CLIP Score ↑ 0.741 0.677 0.607 0.531 0.546 0.577 0.646 0.590 0.644 0.537 0.595
Style Loss ↓ 0.837 0.111 0.178 0.216 0.258 0.310 0.284 0.229 0.989 0.364 0.274

User Style - 43.1% 41.2% 39.3% 36.4% 37.2% 33.8% 39.1% 14.5% 42.8% 47.3%
Study Overall - 26.0% 38.1% 44.0% 34.2% 43.9% 32.7% 32.2% 22.6% 43.4% 46.2%
Training Time/h ∼0.4 - ∼3 ∼4 ∼3 ∼3 ∼3 ∼3 ∼10 ∼1 ∼3
Testing Time/s 5.612 10.165 0.028 0.168 0.204 0.076 0.034 0.066 0.302 0.015 0.008

Table 1. Quantitative comparisons with state of the art. The training/testing time is measured with an Nvidia Tesla A100 GPU, and the
testing time is averaged on images of size 512×512 pixels. ↑: Higher is better. ↓: Lower is better.

and EFDM [95] often produce unsatisfying results with dis-
torted contents (e.g., rows 1-3) and messy textures (e.g.,
rows 4-8). StyTr2 [12] and ArtFlow [1] improve the results
by adopting more advanced networks [82, 44], but they may
still produce inferior results with halo boundaries (e.g., rows
2-3) or dirty artifacts (e.g., rows 4-6). AdaAttN [56] per-
forms per-point attentive normalization to preserve the con-
tent structures better, but the stylization effects may be de-
graded in some cases (e.g., rows 1, 2, 4, and 5). IECAST [6]
utilizes contrastive learning and external learning for style
transfer, so fine-tuning it on a single style image would re-
sult in degraded results. MAST [13] uses multi-adaptation
networks to disentangle C-S. However, since it still relies
on the C-S representations of [19], the results usually ex-
hibit messy textures and conspicuous artifacts. TPFR [79]
is a GAN-based framework that learns to disentangle C-
S in latent space. As the results show, it cannot recover
correct style details and often generates deviated styliza-
tions, which signifies that it may not learn truly disentangled
C-S representations [57]. Like our method, Johnson [35]
and LapStyle [55] also train separate models for each style.
However, due to the trade-off between C-S losses of [19],
they may produce less-stylized results or introduce unnatu-
ral patterns (e.g., rows 1-6).

By contrast, our StyleDiffusion completely disentangles
C-S based on diffusion models. Therefore, it can generate
high-quality results with sufficient style details (e.g., rows
1-4) and well-preserved contents (e.g., rows 5-8). Com-
pared with the previous methods that tend to produce mixed
results of content and style, our approach can better con-
sider the relationship between them. Thus, the stylizations
are more natural and harmonious, especially for challeng-
ing styles such as cubism (e.g., row 2) and oil painting (e.g.,
rows 1, 3, 4, and 5).

Quantitative Comparisons. We also resort to quanti-
tative metrics to better evaluate our method, as shown in
Tab. 1. We collect 32 content and 12 style images to synthe-
size 384 stylized results and compute the average Structural
Similarity Index (SSIM) [1] to assess the content similarity.
To evaluate the style similarity, we calculate the CLIP im-
age similarity score [68] and Style Loss [19, 30] between
the style images and the corresponding stylized results. As

shown in Tab. 1, our method obtains the highest SSIM and
CLIP Score while the Style Loss is relatively higher than
other methods. It is because these methods are directly
trained to optimize Style Loss. Nevertheless, the Style Loss
achieved by our method is still comparable and lower than
the GAN-based TPFR [79]. Furthermore, it is noteworthy
that our method can also incorporate Style Loss to enhance
the performance in this regard (see later Sec. 5.3).

User Study. As style transfer is highly subjective and
CLIP Score and Style Loss are biased to the training ob-
jective, we additionally resort to user study to evaluate the
style similarity and overall stylization quality. We randomly
select 50 C-S pairs for each user. Given each C-S pair, we
show the stylized results generated by our method and a ran-
domly selected SOTA method side by side in random order.
The users are asked to choose (1) which result transfers the
style patterns better and (2) which result has overall better
stylization effects. We obtain 1000 votes for each question
from 20 users and show the percentage of votes that existing
methods are preferred to ours in Tab. 1. The lower numbers
indicate our method is more preferred than the competitors.
As the results show, our method is superior to others in both
style consistency and overall quality.

Efficiency. As shown in the bottom two rows of Tab. 1,
our approach requires less training time than others as it
is fine-tuned on only a few (∼50) content images. When
testing, our approach is faster than the optimization-based
method Gatys [19], albeit slower than the remaining feed-
forward methods due to the utilization of diffusion models.
We discuss it in later Sec. 6, and more timing and resource
details can be found in SM.

5.3. Ablation Study

Control of C-S Disentanglement. A prominent advan-
tage of our StyleDiffusion is that we can flexibly control the
C-S disentanglement by adjusting the content extraction of
the style removal module (Sec. 4.1). Fig. 4 demonstrates
the continuous control achieved by adjusting the return step
Tremov of the style removal module. As shown in the top
row, with the increase of Tremov , more style characteris-
tics are dispelled, and the main content structures are re-
tained. Correspondingly, when more style is removed in the
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Figure 4. Control of C-S disentanglement by adjusting the re-
turn step Tremov of the style removal module. The top row shows
the extracted contents of the style image. The bottom row shows
the corresponding stylized results. * denotes our default setting.
Zoom-in for better comparison. See SM for quantitative analyses.

top row, it will be aptly transferred to the stylized results in
the bottom row, e.g., the twisted brushstrokes and the star
patterns. It validates that our method successfully separates
style from content in a controllable manner and properly
transfers it to other contents. Moreover, the flexible C-S
disentanglement also makes our StyleDiffusion versatile for
other tasks, such as photo-realistic style transfer (see SM).

Superiority of Diffusion-based Style Transfer. Al-
though our style transfer module is not limited to the dif-
fusion model, using it offers three main advantages: (1)
Flexible C-S trade-off control. As shown in Fig. 5, we can
flexibly control the C-S trade-off at both the training stage
(top row) and the testing stage (bottom row) by adjusting
the return step Ttrans of the diffusion model. With the in-
crease of Ttrans, more style characteristics are transferred,
yet the content structures may be ruined (e.g., the last col-
umn). When proper Ttrans is adopted, e.g., Ttrans = 301,
the sweet spot can be well achieved. Interestingly, as shown
in the last two columns of the bottom row, though the model
is trained on Ttrans = 301, we can extrapolate the style by
using larger Ttrans (e.g., 401) at the testing stage (but the
results may be degraded when using too large Ttrans, e.g.,
601). It provides a very flexible way for users to adjust the
results according to their preferences. This property, how-
ever, cannot be simply achieved by using other models, e.g.,
the widely used AEs [30, 53], since our framework does
not involve any feature transforms [30, 53] or C-S losses
trade-off [3]. (2) Higher-quality stylizations. Owing to
the strong generative ability of the diffusion model, it can
achieve higher-quality stylizations than other models. For
comparison, we use the pre-trained VGG-AE [30, 49] as
the style transfer module and fine-tune its decoder network
for each style. As shown in column (b) of Fig. 6, though
the results are still acceptable, they may produce distorted
contents and inferior textures, clearly worse than the results
generated by the diffusion model in column (a). This is
also validated by the bottom quantitative scores. It signifies
that the diffusion model can better learn the disentangled

101 201 301* 401 601
Figure 5. Control of C-S trade-off by adjusting the return step
Ttrans of the style transfer module. The top row shows adjusting
Ttrans at the training stage while fixing Ttrans = 301 at the test-
ing stage. The bottom row shows adjusting Ttrans at the testing
stage while fixing Ttrans = 301 at the training stage. * denotes
our default setting. Zoom-in for better comparison. See SM for
quantitative analyses.

Style Content (a) Diffusion (b) AE
SSIM / CLIP Score: 0.672 / 0.741 0.526 / 0.702

Figure 6. Diffusion-based vs. AE-based style transfer.

content and style characteristics in our framework, helping
produce better style transfer results. (3) Diversified style
transfer. As mentioned in Sec. 4.2, during inference, we
can directly adopt the stochastic DDPM [28] forward pro-
cess (Eq. (2)) to obtain diverse results (see SM). The diverse
results can give users endless choices to obtain more satis-
factory results. However, using other models like AEs in
our framework cannot easily achieve it [86].

Loss Analyses. To verify the effectiveness of each loss
term used for fine-tuning our StyleDiffusion, we present ab-
lation study results in Fig. 7 (a-d). (1) Using L1 loss LL1

SD

successfully transfers the cubism style like the blocky pat-
terns in the top row, but the colors stray from the style im-
ages, especially in the bottom row. It is consistent with
our earlier analyses in Sec. 4.3 that the L1 loss is prone
to produce implausible results outside the style domain. (2)
Adding direction loss Ldir

SD helps pull the results closer to
the style domain. The textures are enhanced in the top
row, and the colors are more plausible in the top and bot-
tom rows. (3) By further coordinating with the style recon-
struction prior LSR, the stylization effects are significantly
elevated where the style information is recovered more suf-



Style Content (a) LL1
SD (b) + Ldir

SD (c) + LSR* (d) LSR (e) LGram (f) + LSR

SSIM / CLIP Score: 0.660 / 0.652 0.693 / 0.705 0.672 / 0.741 0.793 / 0.488 0.429 / 0.712 0.367 / 0.763

Figure 7. Ablation study on loss functions. * denotes our full model. Zoom-in for better comparison.

ficiently. It may be because it provides a good initialization
for the optimization of LL1

SD and Ldir
SD, which helps them

give full play to their abilities. As verified in Fig. 7 (d), us-
ing the style reconstruction alone cannot learn meaningful
style patterns except for basic colors. All the above analyses
are also supported by the bottom quantitative scores.

Comparison with Gram Loss. To further verify the
superiority of our proposed losses, we replace them with
the widely used Gram Loss [19, 30] in Fig. 7 (e-f). As
can be observed, Gram Loss destroys the content structures
severely, e.g., the zebra head in the top row and the enlarged
area in the bottom row. This is because it does not disen-
tangle C-S and only matches the global statistics without
considering the relationship between C-S. In contrast, our
losses focus on learning the disentangled style information
apart from the content, which is induced by the difference
between content and its stylized result. Therefore, they can
better understand the relationship between C-S, achieving
more satisfactory results with fine style details and better-
preserved contents, as validated by Fig. 7 (c) and the bottom
quantitative scores. Furthermore, we also conduct compar-
isons between our proposed losses and Gram Loss [19, 30]
on the AE baseline [30, 49] to eliminate the impact of dif-
fusion models. As shown in Fig. 8 (a-b), our losses can
achieve more satisfactory results than Gram Loss, which is
consistent with the results in Fig. 7. Moreover, as shown
in Fig. 8 (c), they can also be combined with Gram Loss to
improve the performance on the Style Loss metric. How-
ever, it may affect the full disentanglement of C-S in our
framework, which strays from our target and decreases the
content preservation (see SSIM score in Fig. 8 (c)). There-
fore, we do not incorporate Gram Loss in our framework by
default.

6. Conclusion and Limitation
In this work, we present a new framework for more in-

terpretable and controllable C-S disentanglement and style
transfer. Our framework, termed StyleDiffusion, leverages

Style Content (a) LGram (b) Ours (c) Both

SSIM: 0.306 0.526 0.464
CLIP Score: 0.586 0.702 0.728
Style Loss: 0.263 0.732 0.231

Figure 8. More loss function ablation study on the AE baseline.

diffusion models to explicitly extract the content informa-
tion and implicitly learn the complementary style informa-
tion. A novel CLIP-based style disentanglement loss coor-
dinated with a style reconstruction prior is also introduced
to encourage the disentanglement and style transfer. Our
method yields very encouraging stylizations, especially for
challenging styles, and the experimental results verify its
effectiveness and superiority against state of the art.

Currently, the framework still suffers from several limi-
tations: (1) The model needs to be fine-tuned for each style,
and arbitrary style transfer is left to our future work. (2)
The efficiency is not fast enough due to the use of diffusion
models. Further research in accelerating diffusion sampling
would be helpful. (3) There are some failure cases analyzed
in SM, which may help inspire future improvements. More-
over, our framework may also be applied to other image
translation [31] or manipulation [66] tasks, and we would
like to explore them in our future work.
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• Section A: Discussion of societal impact.
• Section B: List of used assets.
• Section C: Details of style removal process.
• Section D: Details of StyleDiffusion fine-tuning.
• Section E: More timing and resource information.
• Section F: More ablation study and analyses.
• Section G: Extensions to photo-realistic style transfer,

multi-modal style manipulation, and diversified style
transfer.

• Section H: More comparison results with state-of-the-
art style transfer methods.

• Section I: Additional results synthesized by the pro-
posed method.

• Section J: Limitation and discussion.

A. Societal Impact
Positive Impact. There may be three positive impacts of

the proposed method. (1) The proposed method may help
the workers engaged in artistic creation or creative design
improve the efficiency and quality of their work. (2) The
proposed method may inspire researchers in similar fields
to design more effective and superior approaches in the fu-
ture. (3) The proposed method may help the common users
obtain more satisfactory creative results.

Negative Impact. The proposed method may be used
for generating counterfeit artworks. To mitigate this, further
research on identification of generated content is needed.

B. Used Assets
We used the following assets to (1) conduct the compar-

ison experiments [1.-10.] and (2) train the proposed style
transfer networks [11.-12.]. To the best of our knowledge,
these assets have no ethical concerns.

1. Gatys [19]: https://
github.com/leongatys/
PytorchNeuralStyleTransfer, MIT Li-
cense.

2. EFDM [95]: https://github.com/YBZh/
EFDM, MIT License.

3. StyTr2 [12]: https://github.com/
diyiiyiii/StyTR-2, No License.

4. ArtFlow [1]: https://github.com/
pkuanjie/ArtFlow, No License.

5. AdaAttN [56]: https://github.com/
Huage001/AdaAttN, No License.

6. IECAST [6]: https://github.com/
HalbertCH/IEContraAST, MIT License.

7. MAST [13]: https://github.com/
diyiiyiii/Arbitrary-Style-Transfer-
via-Multi-Adaptation-Network, No Li-
cense.

8. TPFR [79]: https://github.com/
nnaisense/conditional-style-
transfer, View License in repository.

9. Johnson [35]: https://github.com/
abhiskk/fast-neural-style, MIT License.

10. LapStyle [55]: https://github.com/
PaddlePaddle/PaddleGAN/blob/develop/
docs/en_US/tutorials/lap_style.md,
Apache-2.0 License.

11. ADM [14]: https://github.com/openai/
guided-diffusion, MIT License.

12. ImageNet [73]: https://image-net.org/, Un-
known License.

C. Details of Style Removal Process
As detailed in Algorithm 1, the style removal process

consists of two steps. In the first step, we remove the
color of the input image I using a color removal opera-
tion Rcolor (e.g., the commonly used ITU-R 601-2 luma
transform [20]), obtaining grayscale image I ′. In the sec-
ond step, we use the pre-trained diffusion model ϵθ and
adopt the deterministic DDIM forward and reverse pro-
cesses to gradually remove the style information. To accel-
erate the process without sacrificing much performance, we
use fewer discretization steps {ts}

Sfor

s=1 such that t1 = 0 and
tSfor

= Tremov . We set Sfor = 40 for forward process and
Srev = 40 for reverse process in all experiments. While us-
ing larger Sfor or Srev could reconstruct the high-frequency
details better, we found the current setting is enough for our
task. For more details about their effects, we suggest the
readers refer to [41]. After Kr iterations (we set Kr = 5
for all experiments) of forward and reverse processes, the
style characteristics of I ′ will be dispelled, and thus we ob-
tain the content Ic of the input image.

D. Details of StyleDiffusion Fine-tuning
Similar to [41] and detailed in Algorithm 2, we first pre-

compute the content latents {xci}Ni=1 using the determin-
istic DDIM forward process of the pre-trained diffusion
model ϵθ. The precomputed content latents can be stored
and reused for fine-tuning other styles. In our experiments,
we fine-tune the diffusion models for all styles using the
same precomputed latents of 50 content images sampled
from ImageNet [73]. Fine-tuning with more content im-
ages may improve the results but also increases the time
cost. Thus, we made a trade-off and found the current set-
ting could work well for most cases. To accelerate the pro-
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Algorithm 1: Style Removal Process.
Input: pre-trained model ϵθ, input image I , return

step Tremov , forward step Sfor, reverse step
Srev , iteration Kr

Output: input image’s content Ic

// Remove color

1 I ′ = Rcolor(I)
// Diffusion-based style removal

2 Compute {ts}
Sfor

s=1 s.t. t1 = 0, tSfor
= Tremov

3 x0 ← I
4 for k = 1 : Kr do
5 for s = 1 : Sfor − 1 do
6 xts+1 ←√

ᾱts+1fθ(xts , ts) +
√

1− ᾱts+1ϵθ(xts , ts)

7 end
8 xtSrev

← xtSfor

9 for s = Srev : 2 do
10 xts−1 ←√

ᾱts−1fθ̂(xts , ts) +
√

1− ᾱts−1ϵθ̂(xts , ts)

11 end
12 end
13 Ic ← x0

cess, we use fewer discretization steps {ts}
Sfor

s=1 such that
t1 = 0 and tSfor

= Ttrans. We set Sfor = 40 for forward
process and Srev = 6 for reverse process in all experiments.
We found Srev = 6 is enough to reconstruct clear content
structures during style transfer.

In the second step, we precompute the style latent xs

with the same process as above. The style latent will be
used to optimize the style reconstruction loss.

In the third step, we copy ϵθ to ϵθ̂ and start to update ϵθ̂ in
two substeps. In the first substep, we feed the style latent xs

and generate the stylized image Iss through the determin-
istic DDIM reverse process. The model is updated under
the guidance of the style reconstruction loss LSR. The first
substep is repeated Ks times (we set Ks = 50 for all ex-
periments) until converged. In the second substep, we feed
each content latent in {xci}Ni=1 and generate the stylized im-
age through the deterministic DDIM reverse process. The
model is updated under the guidance of the style disentan-
glement loss LSD. At last, we repeat the whole third step K
epochs (we set K = 5 for all experiments) until converged.

E. Timing and Resource Information

Here, we provide more details on the timing and resource
information of our StyleDiffusion using an Nvidia Tesla
A100 GPU when stylizing 512× 512 size images.

Style Removal. When we use the default setting
(Sfor, Srev) = (40, 40), the forward and reverse processes

Algorithm 2: StyleDiffusion Fine-tuning.
Input: pre-trained model ϵθ, content images’

contents {Icci}Ni=1, style image’s content Ics ,
style image Is, return step Ttrans, forward
step Sfor, reverse step Srev , fine-tuning
epoch K, style reconstruction iteration Ks

Output: fine-tuned model ϵθ̂
// Precompute content latents

1 Compute {ts}
Sfor

s=1 s.t. t1 = 0, tSfor
= Ttrans

2 for i = 1 : N do
3 x0 ← Icci
4 for s = 1 : Sfor − 1 do
5 xts+1 ←√

ᾱts+1fθ(xts , ts) +
√

1− ᾱts+1ϵθ(xts , ts)

6 end
7 Save the latent xci ← xtSfor

8 end
// Precompute style latent

9 Compute {ts}
Sfor

s=1 s.t. t1 = 0, tSfor
= Ttrans

10 x0 ← Ics
11 for s = 1 : Sfor − 1 do
12 xts+1 ←

√
ᾱts+1fθ(xts , ts) +

√
1− ᾱts+1ϵθ(xts , ts)

13 end
14 Save the latent xs ← xtSfor

// Fine-tune the diffusion model

15 Initialize ϵθ̂ ← ϵθ
16 Compute {ts}Srev

s=1 s.t. t1 = 0, tSrev
= Ttrans

17 for k = 1 : K do
// Optimize the style reconstruction loss

18 for i = 1 : Ks do
19 xtSrev

← xs

20 for s = Srev : 2 do
21 xts−1 ←√

ᾱts−1fθ̂(xts , ts) +
√

1− ᾱts−1ϵθ̂(xts , ts)

22 Iss ← fθ̂(xts , ts)
23 L ← LSR(Iss, Is)
24 Take a gradient step on ∇θ̂L
25 end
26 end

// Optimize the style disentanglement loss

27 for i = 1 : N do
28 xtSrev

← xci

29 for s = Srev : 2 do
30 xts−1 ←√

ᾱts−1fθ̂(xts , ts) +
√

1− ᾱts−1ϵθ̂(xts , ts)

31 Ics ← fθ̂(xts , ts)
32 L ← LSD(Icci, Ics, I

c
s , Is)

33 Take a gradient step on∇θ̂L
34 end
35 end
36 end



each takes around 4.921 seconds. Therefore, the whole
style removal process takes around 2 × 4.921 × 5 = 49.21
seconds. It requires about 11GB of GPU memory to run at
resolution 512× 512 pixels.

Fine-tuning. As illustrated in Algorithm 2, the StyleDif-
fusion fine-tuning process consists of a latent precomputing
stage and a model updating stage. The latent precomputing
stage is carried out just once and can be reused for fine-
tuning other styles. When we use Sfor = 40 as default,
the forward process takes around 4.921 seconds. There-
fore, when we precompute the latents from 50 images, it
takes around 50 × 4.921 = 246.05 seconds and requires
about 11GB GPU memory. For the model updating stage,
when the batch size is 1 and Srev = 6, the first sub-
step (optimizing the style reconstruction loss LSR) takes
around 2.092 seconds for each repeat, and the second sub-
step (optimizing the style disentanglement loss LSD) takes
around 3.351 seconds for each content latent. Therefore,
one epoch with 50 repeated first substep and 50 precom-
puted content latents for the second substep takes around
50× 2.092+50× 3.351 = 272.15 seconds. When we fine-
tune the model with 5 epochs, it takes around 23 minutes in
total. The fine-tuning process requires about 26GB of GPU
memory.

Inference. When we use the default setting
(Sfor, Srev) = (40, 6), the forward process takes around
4.921 seconds and the reverse process takes around 0.691
seconds. Therefore, the total inference time is 4.921 +
0.691 = 5.612 seconds. The inference process requires
about 13GB of GPU memory.

Currently, we have not optimized the model size and
GPU memory consumption here. We believe there is sub-
stantial room for improvement, and we would like to elabo-
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Figure 9. C-S disentanglement of style image achieved by ad-
justing the return step Tremov of the style removal module. CLIP
score (averaged on 384 image pairs) measures the style similar-
ity with the style image. When more style information is removed
(blue line), it will be transferred to the stylized result (orange line).

rate on that in future work.

F. More Ablation Study and Analyses

Quantitative Analyses of C-S Disentanglement. Here,
we provide more quantitative results to analyze the C-S Dis-
entanglement achieved by our StyleDiffusion. As shown in
Fig. 9, we observe that the style is well disentangled from
the content in the style image by adjusting the return step
Tremov of the style removal module. As such, when more
style information is removed (blue line), it will be trans-
ferred to the corresponding stylized result (orange line).
The quantitative analyses are consistent with the qualitative
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Figure 10. C-S trade-off achieved by adjusting the return step
Ttrans of the style transfer module at the training stage while
fixing Ttrans = 301 at the testing stage. SSIM and CLIP score
(averaged on 384 image pairs) measure the content similarity and
the style similarity, respectively.
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Figure 11. C-S trade-off achieved by adjusting the return step
Ttrans of the style transfer module at the testing stage while fix-
ing Ttrans = 301 at the training stage. SSIM and CLIP score
(averaged on 384 image pairs) measure the content similarity and
the style similarity, respectively.



Style Content (a) ImageNet-VGG (b) CLIP-ViT-B/16* (c) CLIP-ViT-B/32 (d) CLIP-RN50 (e) CLIP-RN101

SSIM / CLIP Score: 0.541 / 0.602 0.672 / 0.741 0.591 / 0.705 0.529 / 0.677 0.582 / 0.719
Figure 12. Ablation study on different disentanglement space (VGG vs. CLIP, columns (a-b)) and CLIP image encoders (columns
(b-e)). * denotes our default setting. Zoom-in for better comparison.

results displayed in Fig. 4 of our main paper.

Quantitative Analyses of C-S Trade-off. We also pro-
vide more quantitative results to analyze the C-S trade-off
achieved by our StyleDiffusion. As shown in Fig. 10 and
Fig. 11, we can flexibly control the C-S trade-off at both
the training stage (Fig. 10) and the testing stage (Fig. 11)
by adjusting the return step Ttrans of diffusion models. The
sweet spot areas are highlighted in the figures, which are the
most probable for obtaining satisfactory results. Overall,
the quantitative analyses are consistent with the qualitative
results displayed in Fig. 5 of our main paper.

CLIP Space vs. VGG Space. As discussed in our main
paper, we leverage the open-domain CLIP [68] space to
formulate the style disentanglement. The pre-trained CLIP
space integrates rich cross-domain image (and supplemen-
tarily, text) knowledge and thus can measure the “style dis-
tance” more accurately. As shown in Fig. 12 (a-b), we com-
pare it with the ImageNet [73] pre-trained VGG-19 [76],
which has been widely adopted in prior arts [19, 30] to ex-
tract the style information. As is evident, using the CLIP
space recovers the style information more sufficiently and
realistically, significantly outperforming the VGG space
(which is also validated by the bottom quantitative scores).
It may be attributed to the fact that the VGG is pre-trained
on ImageNet and therefore lacks a sufficient understanding
of artistic styles. In contrast, the CLIP space encapsulates a
myriad of knowledge of not only the photograph domain but
also the artistic domain, which is more powerful in depict-
ing the style of an image. Besides, it is worth noting that the
CLIP space naturally provides multi-modal compatibility,
which can facilitate users to control the style transfer with
multi-modal signals, e.g., image and text (see later Sec. G).

Different CLIP Image Encoders. We also investigate
the effects of different CLIP [68] image encoders to con-
duct the style disentanglement. As shown in Fig. 12 (b-
e), in general, ViTs [15] achieve better visual results than

ResNets (RN) [25], e.g., the brushstrokes are more natural
in the top row, and the colors are more vivid in the bottom
row. And ViT-B/16 performs better than ViT-B/32 in cap-
turing more fine-grained styles. Interestingly, our findings
coincide with the reported performance of these image en-
coders on high-level vision tasks (e.g., classification) in the
original CLIP paper [68]. It indicates that our stylization
performance is closely related to the high-level semantic
representations learned by the image encoder, which also
gives evidence to the correlations between high-level vision
tasks and low-level vision tasks.

Diffusion-based Style Removal vs. AE-based Style
Removal. To demonstrate the superiority of diffusion-
based style removal, we compare it with a possible alter-
native, i.e., Auto-Encoders (AEs), since one may argue that
the diffusion model is a special kind of (Variational) Auto-
Encoder network [61]. We directly use the AEs released by
Li et al. [53], which employ the VGG-19 network [76] as
the encoders, fix them and train decoder networks for in-
verting VGG features to the original images. They select
feature maps at five layers of the VGG-19, i.e., Relu X 1
(X=1,2,3,4,5), and train five decoders accordingly, which
we denote as AEX (X=1,2,3,4,5) in the following. When
used for style removal, we iteratively perform the encod-
ing and decoding processes of AEs for the input images.
The comparison results are shown in Fig. 13. As can be
observed in the bottom five rows, AE-based style removal
cannot plausibly remove the detailed style and often intro-
duces color noises/artifacts and destroys the content struc-
tures, which is undesirable for style removal. By con-
trast, diffusion-based style removal can smoothly remove
the style details while preserving the main content struc-
tures, significantly outperforming AE-based style removal.

G. Extensions

Photo-realistic Style Transfer. Our StyleDiffusion suc-
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AE3-based: Iter = 1, 5, 10, 20 Iter = 5

AE4-based: Iter = 1, 5, 10, 20 Iter = 5

AE5-based: Iter = 1, 5, 10, 20 Iter = 1

Figure 13. Diffusion-based style removal vs. AE-based style removal. The last column shows the enlarged areas of the corresponding
best style removed results manually selected in each row. As can be observed, diffusion-based style removal can better remove the detailed
style of the style image while preserving the main content structures. In contrast, AE-based style removal cannot plausibly remove the
detailed style and often introduces color noises/artifacts and destroys the content structures.



Style Content 1 Result 1 Content 2 Result 2
Figure 14. Photo-realistic style transfer achieved by our StyleDiffusion. We set Tremov = 401 and Ttrans = 101 for this task.

Content Style Result + “Pointillism” + “Sketch” + “Cubism” + “Watercolor”

Figure 15. Multi-modal style manipulation. Our framework is compatible with image and text modulation signals, which provides users
with a more flexible way to manipulate the style of images.

Style Content Sample 1 Sample 2 Sample 3 Sample 4 Animation

Figure 16. Diversified style transfer. Our framework can easily achieve diversified style transfer during inference by directly adopting
the stochastic DDPM [28] forward process. Click on the last image to see animation using Adobe Reader.

cessfully separates style from content in a controllable man-
ner. Thus, it can easily achieve photo-realistic style trans-
fer [60] by adjusting the content extraction of the style re-
moval module. Specifically, since the style of a photo is
mainly reflected by the low-level and high-frequency fea-
tures such as colors and brightness, we reduce Tremov to
a relatively smaller value, e.g., 401. Moreover, to better
preserve the content structures, we adjust the style transfer
process and reduce Ttrans to 101. We show some photo-
realistic style transfer results synthesized by our StyleDif-
fusion in Fig. 14.

Multi-modal Style Manipulation. As our framework
leverages the open-domain CLIP [68] space to measure the
“style distance”, it is naturally compatible with image and
text modulation signals. By adding a directional CLIP loss
term [18, 41] to our total loss, our framework can eas-

ily achieve multi-modal style manipulation, as shown in
Fig. 15. As far as we know, our framework is the first uni-
fied framework to achieve both image and text guided style
transfer.

Diversified Style Transfer. In the fine-tuning, our style
transfer module adopts the deterministic DDIM [78] for-
ward and reverse processes (Eq. (8) and Eq. (9) in the main
paper). However, during inference, we can directly replace
the deterministic DDIM forward process with the stochastic
DDPM [28] forward process (Eq. (2) in the main paper) to
achieve diversified style transfer [86], as shown in Fig. 16.
The users can easily trade off the diversity and quality by
adjusting the return step or iteration of the DDPM forward
process. The diverse results can give users endless choices
to obtain more satisfactory results [86, 88].



Content Content gray Style Result
Figure 17. Failure case of type 1: vanishing of salient content.
Some results generated by our method may vanish the salient con-
tent of the content image, e.g., the red carps.

Style Result 1 Result 2 Result 3
Figure 18. Failure case of type 2: biased color distribution.
Our method may generate results that deviate from the color dis-
tribution of the style image.

H. More Comparison Results

In Fig. 20 and 21, we provide more qualitative compari-
son results with state-of-the-art style transfer methods.

I. Additional Stylized Results

In Fig. 22 and 23, we provide additional stylized results
synthesized by our proposed StyleDiffusion.

J. Limitation and Discussion

Except for the limitations we have discussed in the main
paper, here we provide some failure cases and analyze the
reasons behind them. Further, we also discuss the possible
solutions to address them, which may help inspire future
improvements to our framework.

Vanishing of Salient Content. Some of our generated
results may vanish the salient content of the content image,
e.g., the red carps in Fig. 17. It can be attributed to the
color removal operation used in our style removal module.
The commonly used ITU-R 601-2 luma transform [20] may
not well preserve the original RGB image’s color contrast
and color importance, as shown in column 2 of Fig. 17.
We adopt it here mainly for its simplicity and fast speed.
This problem may be addressed by using more advanced
contrast-preserving decolorization techniques, like [58].

Biased Color Distribution. As shown in Fig. 18, though
our method learns the challenging pointillism style well,
the color distribution seems to stray from that of the style
image. This problem can be alleviated by increasing the
style reconstruction iteration Ks (see Algorithm 2) to inject
more style prior, but the training time also increases sig-
nificantly. One may consider borrowing some ideas from

Style Style removed Result 1 Result 2
Figure 19. Failure case of type 3: inseparable content and
style. Our method is hard to transfer plausible style for style im-
ages with inseparable content and style. The second column shows
the style removed result of the style image.

existing color transfer approaches [26] to address this prob-
lem.

Inseparable Content and Style. Our method is hard to
achieve plausible style transfer for style images with insep-
arable content and style, e.g., the simple line art shown in
Fig. 19. Since the content of line art is also its style, our
framework is hard to separate them properly, as shown in
column 2 of Fig. 19. One possible solution is to treat line
art as the style only and increase the return step Tremov of
the style removal module to dispel as much style informa-
tion as possible, or increase the return step Ttrans of the
style transfer module to learn as sufficient line art style as
possible.
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Figure 20. More qualitative comparison results (set 1) with state of the art. Zoom-in for better comparison.
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Figure 21. More qualitative comparison results (set 2) with state of the art. Zoom-in for better comparison.



Figure 22. Additional stylized results (set 1) synthesized by our proposed StyleDiffusion. The first row shows content images and the
first column shows style images.



Figure 23. Additional stylized results (set 2) synthesized by our proposed StyleDiffusion. The first row shows content images and the
first column shows style images.
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