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Abstract

The images and sounds that we perceive undergo sub-
tle but geometrically consistent changes as we rotate our
heads. In this paper, we use these cues to solve a problem
we call Sound Localization from Motion (SLfM): jointly es-
timating camera rotation and localizing sound sources. We
learn to solve these tasks solely through self-supervision.
A visual model predicts camera rotation from a pair of im-
ages, while an audio model predicts the direction of sound
sources from binaural sounds. We train these models to
generate predictions that agree with one another. At test
time, the models can be deployed independently. To obtain
a feature representation that is well-suited to solving this
challenging problem, we also propose a method for learning
an audio-visual representation through cross-view binau-
ralization. estimating binaural sound from one view, given
images and sound from another. Our model can success-
fully estimate accurate rotations on both real and synthetic
scenes, and localize sound sources with accuracy competi-
tive with state-of-the-art self-supervised approaches. Project
site: https://ificl.github.io/SLfM.

1. Introduction

As you rotate your head, the images and sounds that
you perceive change in geometrically consistent ways. For
example, after turning to the right, a sound source that was
directly in front of you will become louder in your left ear
and quieter in your right, while simultaneously the visual
scene will move right-to-left across your visual field (Fig. 1).

We hypothesize that these co-occurring audio and visual
signals provide “free” supervision that captures geometry,
including the motion made by a camera and the direction of
sound sources. These are each core problems in machine
perception, but are largely studied separately, often using
supervised methods that rely on difficult-to-acquire labeled
training data, such as annotated sound directions. We take in-
spiration from self-supervised approaches to structure from
motion [104], which learn to estimate 3D structure and cam-
era pose by solving both tasks simultaneously.

o

Figure 1: Images and sounds change in geometrically consistent
ways. For example, when we rotate to the right, a sound source
that is initially in front of us becomes louder in our left ear. We use
these cues to jointly train models for two tasks: localizing sounds
from binaural audio and estimating camera rotation from images.
The two models are trained entirely through self-supervision, by
learning to produce outputs that agree with one other.

Analogously, we propose a problem we call sound lo-
calization from motion (SLfM): jointly estimating camera
rotation from images and the sound direction from binaural
audio. By solving both tasks simultaneously, we avoid the
need for labeled training data. Our models provide each
other with self-supervision: a visual model predicts the ro-
tation angle between pairs of images, while an audio model
predicts the azimuth of sound sources. We force their pre-
dictions to agree with one another, such that changes in
rotation are consistent with changes in sound direction and
binaural cues. After training, the models can be deployed
independently, without multimodal data at test time.

This is a challenging task that requires perceiving motion
in images and binaural cues in audio. Our second contribu-
tion is a method for learning representations that are well-
suited to this task through cross-view binauralization. We
train a network to convert mono to binaural sound for one
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viewpoint, given an audio-visual pair sampled from another

viewpoint. Since the sound source is not necessarily visible

in the images, the only way to successfully solve this pretext
task is by analyzing the changes in the camera pose and
predicting how they affect the sound direction.

All components of our model are entirely self-supervised
and are trained solely on unlabeled audio-visual data. Our
results suggest that paired audio-visual data provides a use-
ful and complementary signal for learning about geometry.
In contrast to other audio or visual self-supervised pose es-
timation methods, we obtain supervision from abundantly
available audio data, thus avoiding the need of 3D ground
truth or correspondences between pixels [104, 106] or audio
samples [17]. Through experiments, we show:
¢ Paired audio-visual data provides a supervisory signal for

pose estimation tasks.

* We obtain competitive performance with state-of-the-art
self-supervised sound localization methods [17].

* We obtain strong rotation estimation performance, and our
model generalizes to Stanford2D3D [6] dataset, where it is
competitive with classic sparse feature matching methods.

 The features we learn through our pretext task outperform
other representations for our downstream tasks.

2. Related Work

Audio for spatial perception. Recent works have explored
the use of sound for spatial understanding. Purushwalkam
et al. [71] reconstructed floor plans in simulated environ-
ments [12]. Chen et al. [18] used ambient sounds from envi-
ronments to learn about scene structures. Konno et al. [48]
integrated sound localization to visual SfM while do not
jointly learn them. Other work learns representations for
spatial audio-visual tasks. Yang et al. [97] predicted whether
stereo channels are swapped in a video, and Morgado et
al. [63] solved a spatial alignment task. The learned represen-
tations are then used to improve localization, up-mixing, and
segmentation models. In contrast, we learn camera pose and
sound localization solely from self-supervision, obtaining
angular predictions without labeled data. Other work uses
echolocation sounds to learn representations [29, 96] and
predict depth maps [19, 70] and estimate camera poses [96]
using labeled data. In contrast, our proposed approach jointly
learns binaural sound localization and camera pose through
passive audio sensing, without supervision.

Acoustic synthesis and spatialization. Researchers have
explored visually-guided sound synthesis [28, 33, 42, 21]
and text-guided audio synthesis [49, 95, 40]. Additionally,
researchers have investigated generating realistic environ-
mental acoustics using visual information [11, 84, 15, 57].
Chen et al. [14] introduced the novel-view acoustic syn-
thesis task, which synthesizes binaural sound at the target
view using audio and visual information from a source view.

Liang et al. [50] proposed an audio-visual neural field in
real-world audio-visual scenes. Many recent works have
proposed to generate spatial audio from mono audio using
visual cues [64, 30, 74, 93, 51, 103, 32], or the relative pose
between sound sources and the receiver [78, 41]. Inspired
by these works, our feature learning approach learns spatial
representations through an audio prediction task.

Binaural sound localization. Humans have the ability
to localize sound sources from binaural sound [80]. Tradi-
tional approaches estimate interaural time delays via cross-
correlation using hand-crafted features [47], factorization
methods [82], or loudness differences between ears [77, 90].
Chen et al. [17] adapted methods from self-supervised vi-
sual tracking to the problem of binaural sound localization.
Similarly, we estimate direction through self-supervision.
However, we obtain our supervision through cross-modal su-
pervision from vision instead of from correspondence cues.
Moreover, we also obtain visual camera rotation estimation
through our learning process. Francl [27] learned representa-
tions of sound location with a contrastive loss where positive
and negative examples are selected based on the extent of
head movements. Other works have used supervised learn-
ing techniques with labeled data to localize sound sources in
reverberant environments [1, 89, 94]. Unlike these methods,
our model learns 3D sound localization without labels.

Camera pose estimation. Traditional methods for cam-
era pose estimation are based on finding correspondences
between images and then solving an optimization problem
using constraints from multi-view geometry [36]. These
include structure from motion methods that estimate full
pose [83] and camera rotation [8]. Recent methods have
directly predicted camera pose using neural networks, in-
cluding methods that use photos [72, 45, 59, 44, 55] or RGB-
D scans [99, 98, 22, 23]. Our setup is similar to work that
learns relative camera poses from sparse views [43, 9], and
we use their network architectures. However, we learn the
camera pose through cross-modal supervision from audio,
rather than from labels. Our work is also closely related
to methods that learn structure from motion through self-
supervision [104, 106], such as by jointly learning models
that perform depth and camera pose estimation with pho-
toconsistency constraints. In contrast, our visual model’s
learning signal comes solely from audio-based supervision,
and we jointly learn audio localization.

Audio-visual learning. A number of works have focused
on learning multimodal representations for audio and vision,
taking into account semantic correspondence and temporal
synchronization [67, 92, 7, 65, 68, 2, 60]. Other approaches
study audio-visual sound localization [39, 61, 16, 62], source
separation [56, 31, 58, 87], active speaker detection [3, 86, 5],
navigation [12, 13, 10] and forensics [105, 34, 24]. Our
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Figure 2: Method overview. (a) We learn a feature representation by predicting how changes in images lead to changes in sound in a
cross-view binauralization pretext task. We convert mono sound to binaural sound at a target viewpoint, after conditioning the model on
observations from a source viewpoint. (b) We use the representation to jointly solve two pose estimation tasks: visual rotation estimation and
binaural sound localization. We train the visual rotation angle, ¢ ¢, to be consistent with the difference in predicted sound angles 6, and 6;.

focus, in contrast, is on utilizing multi-view audio-visual
signals to learn geometry.

3. Sound Localization from Motion

We address the sound localization from motion (SLfM)
task: predicting the azimuth of a sound source from binaural
audio and camera rotation from two images. First, we present
a self-supervised representation that can be used to solve this
downstream task. Then, we show how the representation can
be used to solve the task.

3.1. Learning representation via spatialization

We learn an audio-visual representation that conveys spa-
tial information by solving a cross-view binauralization task:
converting mono sound to stereo for one viewpoint, given an
audio-visual pair sampled from another viewpoint (Fig. 2a).
In order to successfully solve the task, a model must im-
plicitly estimate the sound direction in the source view and
predict how the change in viewpoint will affect the sound
in the target view. A key difference between this task and
traditional, single-view binauralization [30] is that the sound
source need not be visible in any of the images. Hence, the
task cannot be solved from the target audio-visual pair alone.

We binauralize the sound a, at the target view through
an audio predictor Fy. To make our representation suitable
for downstream tasks, we factorize it into visual features
fuv(Vs, v¢), which are intended to create features relevant
to relative pose, and audio features f,(a;), which capture
sound localization cues. We predict the binauralized audio a;
at the target view from mono audio a;, the visual change of
(vs, v¢) and binaural sound a, heard at the source viewpoint:

a; = Fy (étafv(vsvvt)afa(as))' (D

We represent audio a as a spectrogram A using short-time
Fourier transform (STFT). Following Gao et al. [30], given

the mix of stereo audio A; = STFT(al + alt), we predict
the difference of two channels A; = STFT(a’ — aff). We
optimize the L1 loss between predicted spectrogram A, and
ground-truth spectrogram A;:

ﬁpretext = ||At - AtHl- (2)

Multi-view binauralization. Following Zhou et al. [104],
we improve our representations by binauralizing sounds at
N different target viewpoints, using observations from a sin-
gle source viewpoint s. We hypothesize that jointly solving
spatialization problems from a single viewpoint for multiple
target viewpoints would require the model to make more
accurate predictions of sound source locations, thereby im-
proving the estimation of view changes:

N
1 -
Eprctcxt = N Z H-/—'.H (Aiafv(vsavi)afa(as)) - AzHl

3)
3.2. Estimating pose and localizing sounds

We now address the problem of learning models for sound
localization and pose estimation, using our self-supervised
audio-visual features. Given two views, we predict sound
directions and relative rotation. We train the model to make
these two predictions consistent with one another, while
using simple binaural constraints to resolve ambiguities.

We are given images v, and v; (rotated views recorded
at the same position) and learned visual embedding f,. We
predict the scalar rotation angle ¢, ; via the encoder g,:

—sin ¢ ¢
cosdsy |’
4
where R ; is 2D rotation matrix of ¢ ;. Following common
practice in indoor scene reconstruction, we give the cam-
era a fixed downward tilt [102, 73, 101] and only estimate
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azimuth [43]. This is also a common assumption in audio
localization [1, 89], since azimuth has strong binaural cues.

Similarly, we predict the azimuths of the sound sources
using audio features and the encoder g,:

o (fa(ai)), sing;]", )

where we represent the azimuth as a vector r;

r; = [cos 0;

Cross-modal geometric consistency. When the camera
is rotated, the sound source ought to rotate in the opposite
direction (Fig. 2b). For example, a 30° clockwise camera
rotation should result in a 30° counterclockwise rotation in
sound direction. Such a constraint could be converted into a
loss:

»Crot - ||rs - Rs,trtH2' (6)

However, a well-known ambiguity called front-back con-
fusion [77, 25] exists in binaural sound perception: one
cannot generally tell whether a sound is in front of the view,
or behind them. To address that, we use permutation invari-
ant training [100] (PIT), and allow the model to use either
the predicted sound direction or its reflection about the x
axis without penalty. This results in the loss:

L:geo - min Hf's - Rs,tf‘tsz (7)

T E{rs,Q!‘S}
ri€{r:,Qrs}

where () = [(1) _OJ reflects the sound direction.

As a consequence of this ambiguity, there are also two
possible solutions for the visual rotation model, since the
visual rotation matrices can be mirrored about the x axis.
For example, one can create a solution with equal loss by
multiplying the rotations and sound directions by Q). We
discuss this ambiguity in more depth in Sec. 4.4.

Incorporating binaural observations. Without additional
constraints, the solution is ambiguous, and may collapse into
a trivial solution (e.g., predicting zero for all three angles).'
To avoid this, we force the model to agree with a simple bin-
aural cue based on interaural intensity difference (IID). We
predict whether the sound is to the left or right of the viewer,
based on whether it is louder in the left or right microphone:
d = sign(log ‘2—; ’), where |A| is the magnitude of the spec-
trogram A. We perform this left/right test at each timestep
in the spectrogram and then pool via majority voting (see

Appendix A.4 for details). We penalize predictions that are
inconsistent with these “left or right” observations:

['binaural = ['BCE (Sin 01" dz) 5 (8)

where Lpcr is binary cross entropy loss.

"'Work on self-supervised SfM has similar ambiguities [104], and deals
with them by adding analogous constraints, such as photometric consistency.
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Encouraging symmetry. To help regularize the model, we
also add symmetry constraints. For sound localization, swap-
ping the left and right channels of the audio ought to result
in a prediction in the opposite direction since the binaural
cues are reversed. For rotation estimation, the relative pose
between images s and ¢ should invert the pose from ¢ to s.
We encourage both constraints via a loss:

Esym = |9 + eﬂipl + |¢s,t + ¢t,s|a (9)

where 60g;;, is the prediction of sound angle 6 using audio
with swapped audio channels, and ¢ ; and ¢, ; are the pre-
dicted rotations between cameras s and ¢.

Overall loss. We combine these constraints to obtain an

overall loss:
L= >\[-:geo + Ebinaural + Esym; (10)

where ) is the weight for the geometric loss.
4. Experiments

We have introduced a self-supervised method to learn
camera pose and sound localization from audio-visual data.
In experiments, we first evaluate how well our learned repre-
sentation captures spatial information. We then evaluate how
well our method learns camera pose and sound localization
by comparing it with baselines. Finally, we show general-
ization to indoor panorama images Stanford2D3D [6] and
in-the-wild binaural audio [17].

4.1. Implementations

Visual pose encoder. We follow recent pose estimation
work [9, 43] and build a Siamese-style visual pose network
fv with ResNet-18 [38] as the backbone. We compute dense
4D correlation volumes between the features from the third
residual layer and then encode them by convolution layers.
We resize images to 320 x 240 and encode a pair of im-
ages into 512-d features. We use an MLP g, to map visual
features to 1-d logits for our SLfM models.



Binaural audio encoder. We obtain binaural audio em-
beddings f,(-) using ResNet-18 [38] that operates on spec-
trograms. We covert the two-channel waveform of length
L to a spectrogram representation of size 256 x 256 x 4
using short-time Fourier transform (STFT), where we keep
both the magnitude and phase of spectrograms. We extract
512-d features of binaural sound with f, and map them to
1-d logits using an MLP g,.

Audio prediction model. We adopt the light-weighted
audio-visual U-Net [30] to perform binauralization. We feed
in spectrograms of size 256 x 256 x 2 and predict the target
spectrograms. We concatenate the visual pose features f, ()
and audio features f,(-) at the bottleneck of U-Net. We
show the architecture of our models in Fig. 3. Please see
Appendix A.4 for more implementation details.

4.2. Dataset

Since there is no public multi-view audio-visual dataset
with camera poses and sound direction ground truth, we
use the SoundSpaces 2.0 platform [15] to create a dataset.
Our 3D scenes come from Habitat-Matterport 3D dataset
(HM3D) [76], which is a large dataset of real 3D scenes.
This setup allows us to have photorealistic images and high-
quality spatial audio with real-world acoustics phenomenon
(e.g., reverberation), as well as providing the ground-truth
camera pose and sound directions that can be used for evalu-
ation. We call this dataset HM3D-SS.

We generate binaural Room Impulse Responses (RIRs)
and images with a 60° field of view, using 100 scenes of
HM3D [76]. For each audio-visual example, we randomly
place sound sources in the scene with a height range of
(0.7,1.7) meters, and sample 4 different rotated viewpoints
at one location within 4 meters. The rotations are limited to
(10°,90°) relative to the source viewpoints. We follow the
standard practice to set the height to agents to be 1.5m and
lock a downward tilt angle [43, 101, 73, 102]. We render the
binaural RIRs and images given the position of agents and
sound sources. We obtain binaural audio by convolving bin-
aural RIRs with mono audio samples from LibriSpeech [69]
and Free Music Archive [20]. To ensure that the evaluation
tests the model’s pose estimation abilities, rather than its
ability to visually localize sound sources, the sound sources
are not visible on screen.

We create 50K audio-visual pairs from 200K viewpoints.
The audio was rendered with average reverberation of
RTgp = 0.4s (see Appendix A.4 for details). We divided our
data into 81/9/10 scenes for the train/val/test, respectively.

4.3. Evaluating the learned representation

First, we directly evaluate the quality of our learned fea-
tures for rotation estimation and sound localization via linear
probing with labeled data (rather than learning them jointly
through self-supervision).

Baselines and ablations. We compare our model
with several baselines that use alternative pretext tasks:
1) AVSA [63]: it learns spatial cues by training a model
to spatially align video and audio clips extracted from dif-
ferent viewing angles. We adapt this model to our dataset
and train with 4 different views; 2) RotNCE [27]: it applies
contrastive learning on the audio from different angles and
uses annotations of the agent’s rotation to select positive
and negative samples, which results in learning audio spatial
representation. For baselines, we use the same architecture
for feature extractors to ensure fair comparisons.

To determine if we utilize visual and audio features from
different views to solve the binauralization task, we also
study some variants of our models: 1) Ours-NoA: we only
provide visual features for the binauralization task; 2) Ours-
NoV: which only uses audio from the other view to spatialize
sounds; 3) Ours-GTRot: we provide ground-truth rotation
embedding instead of features from visual frames.

Besides the mono-to-binaural task, we also experiment
with another objective: predicting the right channel from the
left channel. We train our L2R model with the same setup
as our M2B model. (Please see Appendix A.2 for pretext
results.)

Downstream tasks. We assess the quality of spatial rep-
resentations we learned from our pretext tasks in two down-
stream tasks: relative camera rotation and 3D sound localiza-
tion. We formulate them as classification problems, where
angles are categorized into 64 bins, and we use accuracy
as the evaluation metric. To evaluate the learned features,
we freeze them and train a linear classifier on the down-
stream tasks. We compare the performance of our features
with those learned from RotNCE [27], AVSA [63], Ima-
geNet [37], and random features, and report the results in
Tab. 1. Our approach outperforms the baselines in both tasks,

Model Audio Loc. Camera Rot.
ode Acc (%) 1T Acc (%) 1
Random feature 4.8 4.7
ImageNet [38]+Random - 56.3
RotNCE [27] 50.9 -

5 AVSA [63] 71.2 6.5

g Ours-NoA - 9.6

£ Ours-NoV 53.9 -

ﬁ Ours—GTRot 70.6 -
Ours-L2R (3 views) 78.5 76.1
Ours (2 views) 74.5 80.0
Ours (3 views) 75.4 81.3
Supervised 81.5 95.8

Table 1: Downstream task performance on HM3D-SS dataset.
We report linear probe performance on the audio localization and
camera rotation downstream tasks.



Model Audio angle  Camera angle
oce MAE ()|  MAE()|
Chance 40.28 29.41
SIFT [54] - 12.2
= Ours w/o Reflect 28.08 26.80
8 Ours—Prompt - 9.13
& Ours-L2R 3.22 0.80
E Ours 3.17 0.77
a
Ours—Front 4.48 3.08
Ours—GTRot 1.83 -
Superglue [81] - 2.47
Supervised 1.71 0.46
Chance 40.81 2941
SIFT [54] - 12.2
o Ours w/o Reflect 28.24 26.81
é Ours-L2R 3.18 0.81
g Ours 3.37 0.84
M OQurs—Front 3.99 2.49
Ours—GTRot 1.96 -
Superglue [81] - 2.47
Supervised 2.50 0.46

Table 2: Sound localization from motion results on HM3D-SS.
We evaluate our SLfM models on each modality independently.

indicating that we learn better spatial representations. Fur-
thermore, our linear probe models show comparable perfor-
mance against the supervised method which can be regarded
as approximate upper bounds for our models, suggesting that
our pretext tasks help learn a useful representation. Please
see Appendix A.2 for experiments on FreeMusic [20].

Emerging camera pose from audio prompting. To help
understand the strong performance of our self-supervised
features, we asked whether we could use the cross-view
binauralization model alone to estimate camera rotation. In-
spired by prompting in vision and language models [75],
we obtain rough estimates of camera rotation by providing
our model with carefully-provided inputs. Given a pair of
images (v, v;), we create a synthetic binaural audio prompt,
as. We then ask our model to generate the binaural sound

Stanford2D3D

i

Ground Truth: 48° | Prediction: 47.28°

GT: Left | Pred: Left

Figure 4: Qualitative results on real-world examples. We show
our predictions on Stanford2D3D [6] and In-the-wild audio [17].
Green denotes accurate predictions.

In the wild audio [17]
Model Acc (%) T

Stanford2D3D [6]

Model Rot Err. (°) |
GCC-PHAT [47] 772 Mean  Med.
1D [17] 754 SIFT [54] 16.4 0.06
b ©Qurs) 821 LoFTR [85] 6.10 1.3
MonoCLR [17] 874 Superglue [81]  5.07  0.07
StereoCRW [17] 87.2 Ours—Prompt 993  9.02
Ours-L2R 84.9 Ours-L2R 1.12  0.71
Ours 84.0 Ours 1.14  0.67

Table 3: Evaluation of our SLfM models on the real-world
data. We evaluate our audio localization model on the In-the-
wild audio [17] (left) and our camera pose model on the Stan-
ford2D3D [6] (right). Rot. denote camera rotation.

a; for the target viewpoint. By analyzing the IID cues in
a;, we can estimate the model’s implicitly predicted cam-
era pose. To do this, we find the nearest neighbor of our
generated audio a,, using a database of synthetically gen-
erated audio with known sound directions. Please refer to
Appendix A.l for more details. Our method achieves the
mean absolute error of 9.13° on HM3D-SS dataset where
chance is 29.41° (Tab. 2). Our approach can also generalize
to Stanford2D3D [6] dataset, where we can achieve mean
absolute error of 9.93° (Tab. 3).

4.4. Evaluating SLfM

We evaluated our SLfM models on the HM3D-SS dataset.
We use the mean absolute error of angle in degrees as evalua-
tion metrics. To avoid sound field ambiguity, we filtered out
samples with sound angles outside of (—90°,90°) for the
evaluation set. When training our SLfM models, we use our
best-performing features, i.e., pretext tasks trained with 3
views. We freeze learned audio and visual features and only
train multi-layer perceptrons on top of them and evaluate
them independently on each modality.

Baselines and ablations. For relative camera pose estima-
tion, we compare our models with sparse feature matching
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Figure 5: Real video. We play music using a speaker and record
a video using iPhone with a binaural microphone (different from
training examples). We show the predicted camera rotation and
sound direction over time. They change smoothly and match our
camera motion. Please see our project webpage for video results.
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Figure 6: Qualitative results on HM3D-SS. Given two images and their corresponding audio at the source viewpoints, our approach can
individually predict the relative camera pose and localize sound locations accurately. We visualize our camera rotation prediction with blue
bar and our sound angle prediction with orange bar. To highlight the subtle differences in the waveforms, we color code the amplitude.

Please see the project webpage for more video results.

using SIFT [54] and SuperGlue [81], followed by rotation fit-
ting. We use those methods to detect key points, run Lowe’s
ratio test, and use RANSAC with five-point algorithm to
recover the camera pose [54, 36, 66, 26]. For the sound
localization task, we compared with time delay estimation
methods: the popular GCC-PHAT [47] and the recent self-
supervised method StereoCRW [17]. As far as we know,
there are no other baselines that can estimate poses and
sound source directions without labels.

We also compared several variations of our method, in-
cluding Ours—Front, where we filter out the samples with
sound sources behind the viewers to remove binaural ambi-
guity during training, and an oracle model Ours—GTRot,
which uses ground-truth rotation angles instead.

Results. We show our results in Tab. 2. Our models can
predict the azimuths of sound sources, obtaining strong per-
formance without any labels. Without providing reflection
invariance (Eq. (7)), the model failed to learn reasonable
geometric due to the audio ambiguity. Our self-supervised
model achieves comparable performance against our oracle
model (Ours-GTRot) and supervised models, indicating we
estimate camera poses and localize sound accurately. We
show some qualitative results on HM3D-SS in Fig. 6 with
LibriSpeech samples [69].

Generalization to other datasets. We further demonstrate
the generalization ability of our models by experimenting
with out-of-distribution, real-world data. We evaluate our
camera rotation model on Stanford2D3D [6] with real indoor
RGB images (Tab. 3). We obtain image pairs by cropping
from panoramas. Although our model is trained on render-
ings of HM3D [76], it obtains strong generalization ability.
Compared with rotation estimation based on SIFT [54] and
SuperGlue [81], our model is significantly better on mean

rotation error. We also report median rotation error to be
consistent with prior works [9, 43]. However, SIFT [54] and
Superglue [81] have a very low median error. This is likely
due to the all-or-nothing nature of feature matching-based
approaches, which either produce highly accurate predic-
tions if the matches are correct (especially for “easy” cases
with small amounts of rotation) or else produce gross errors.

We also evaluate our sound localization model on the in-
the-wild binaural audio [17]. We use binary accuracy as the
metric for left-or-right direction classification accounting for
the fact that microphone baselines are unknown for internet
videos. For an apples-to-apples comparison to prior work,
we retrained our model using 0.51s length of audio for the
binaural audio encoder f,(-). As shown in Tab. 3, our model
obtains similar performance to StereoCRW, a state-of-the-art
self-supervised time delay method, suggesting we have a
strong capability for sound localization. We show qualitative
results in Fig. 4. We also perform both tasks on a self-
recorded video (Fig. 5) of a rotating camera and a binaural
microphone. We show the mean and standard deviation of
predictions in 1.0s windows.

Handling ambiguity. In binaural sound perception, there
is a fundamental ambiguity that whether the sound is in front
of or behind us. It leads to multiple solutions with equal loss
in our model, mirroring sound sources and negating rotation
angles with flipped z axis (Fig. 7). These two solutions differ
in that a visual rotation angle either indicates a clockwise
or counterclockwise rotation. For evaluation, we convert
“backwards” counterclockwise predictions to clockwise pre-
dictions by simply providing the model with pairs of input
frames, then negating the model’s outputs if the angle is the
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Multi-source Small trans.

0

Model Acc (%) 1 Acc (%) 1

Aud. Rot. Aud. Rot.
Random feature 4.5 4.7 5.7 3.8
ImageNet [38]+Random - 56.3 - 23.0
RotNCE [27] 35.8 - - -
AVSA [63] 559 6.7 654 6.1
Ours (3 views) 59.2 779 72.2  49.6
Supervised 745 958 81.6 635

Table 4: Generalization to more complex scenarios. We evaluate
the audio and visual features learned from more complex scenarios
via linear probing. Aud. and Rot. denote audio localization and
camera rotation respectively.

opposite of the expected direction’.

4.5. Generalization to more complex scenarios

We investigate whether our approach generalizes to more
complex scenarios, such as with multiple sound sources or
when translation is included in camera motion.

Multiple sound sources. We evaluate our representations
and SLfM models on more complex scenes containing mul-
tiple sound sources. We train our models with two source
sources placed in the scenes. One of them is dominant and
our sound localization target. We report the results in Tab. 4
and Tab. 5. Our model learns better representations than
baselines and achieves accurate predictions of the azimuth
of the source and camera pose even in challenging scenarios
with multiple sound sources.

Translation in camera motions. To study how small trans-
lations in the camera motion could affect our models, we
generate 50K pairs of audio-visual data with both rotation
and translation change, limiting the uniformly sampled trans-
lation to 0.5 meters. We train our models with LibriSpeech

2Similar to ambiguities in SfM where reconstructions can be reoriented
such that the sky is in the positive y direction [36, 35, 4].

—e— CamRot
AudLoc

o

Angle Err (°)
»

N

.—/—’“_/

0.1 0.2 0.3 0.4 0.5
RT60 (s)

0

Figure 7: Mirror ambiguity.
The +z and +x axes repre-
sent forward and rightward di-
rections. Both solutions have
the same loss.

Figure 8: Robustness to re-
verberation. We study the
effect of reverberation on our
SLfM model.

Multi-source Small trans.
Model MAE (°) | MAE (°) |

Aud. Rot. Aud. Rot.
Chance 4046 2941 40.28 29.41
SIFT [54] - 12.2 - 12.2
Ours 7.67 0.71 6.28 1.04
Ours-GTRot 5.81 - 4.24 -
Superglue [81] - 2.47 — 247
Supervised 3.60 0.46 1.71 0.46

Table 5: SLfM results on more complex scenarios. We evaluate
our model on the version of HM3D-SS with two sound sources. We
also evaluate our model trained with small translations on rotation-
only examples.

Model Losses Audio angle Camera angle
‘Cgeo Ebinaural Lsym MAE (O) wL MAE (O) \lr
4 37.60 29.20
Ours 4 v 37.52 29.17
v 4 3.58 6.99
4 4 v 3.17 0.77

Table 6: Ablation experiments on our SLfM losses. We evaluate
our SLfM models with different combinations of losses.

samples [69]. For our linear probing evaluation, we measure
the ability of features to handle complex examples by testing
on the dataset that has translation. For our SLfM model, we
study our ability to learn from noisy data, thus we evaluate
it on the rotation-only examples. As the results are shown
in Tab. 4 and Tab. 5, we successfully learn useful features
and obtain accurate rotation and sound direction predictions
despite the presence of translation. Since we jointly learn the
audio and visual representations, it can negatively impact the
learning of one modality when another one becomes harder.

4.6. Ablation study

Robustness to reverberation. We study how our SLfM
models perform under the different reverberation configu-
rations. We used SoundSpaces [15] to create audio with
average reverberation RTgg € {0.1,0.2,0.3,0.4,0.5} while
keeping the visual signals the same. We train our model on
each setting. As shown in Fig. 8, our performance decreases
as the level of reverberation increases, where audio becomes
more challenging during both training and testing. Please
see Appendix A.3 for the study on representations.

Losses for SLfM. We study the necessity of our proposed
loss functions in Tab. 6. Our models fail to learn accurate
pose estimation without binaural loss or symmetric loss. It
highlights the crucial role of these losses.

5. Conclusion

In this paper, we proposed the sound localization from
motion (SLfM) problem, and provided a self-supervised



method for solving it. We also presented a method for learn-
ing audio-visual features that convey sound directions and
camera rotation, which we show are well-suited to solving
the SLfM task. Despite learning our models solely from un-
labeled audio-visual data, we obtain strong performance on
a variety of benchmarks, including rotation estimation on the
Stanford2D3D [6] dataset and “in the wild” sound direction
estimation [17]. Our results suggest that the subtle correla-
tions between sights and binaural sounds that result from
rotational motion provide a useful (and previously unused)
learning signal. We see our work as opening new directions
in self-supervised geometry estimation and feature learning
that use sound as a complementary source of supervision.
We will release code, data, and models upon acceptance.

Limitations and Broader Impacts. Our work has several
limitations. First, while we evaluate our models on real
images and sounds, we train on data from simulators, due to
a lack of available relevant data. We note that this is common
practice in visual 3D reconstruction [43, 91, 52]. Second, we
assume that the 3D scene and sound sources are stationary.
Third, we do not evaluate our model on extreme viewpoint
changes [55], which requires reasoning about images that
have little or no overlap.
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A.1. Camera pose from audio prompting

We illustrate our prompting idea in Fig. 9. To create
our audio prompts, we simulate 181 binaural RIRs at dif-
ferent angles from [—90°, 90°] without reverberation using
SoundSpaces [15] and render with audio signals from Lib-
riSpeech [69]. We use the sound with an angle of 0° as
the input prompt a, (the source view audio) and mix it into
mono audio as the input at the target viewpoint. We calculate
the interaural intensity difference (IID) cues for the audio
prompts a; and generated audio a;. We use L1 distance
between IID cues to find the nearest neighbors:

tL AL
arg min (log;, —= — log;, —% |, (11)
fii £10 Af g10 !

where A; = STFT(a;). We use ground truth annotations
of sound directions from the nearest prompts to predict the
camera rotation angles. We first obtain rotation prediction
votes from 1024 audio prompts and use a RANSAC-like
mode estimation [26, 17] to get the final prediction.

lsour,c_e V,ie_w . Target l/iew Labeled audio classes
Ll E —
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Figure 9: Estimating camera pose from audio prompting. We es-
timate camera rotation by providing our cross-view binauralization
model with synthetically generated audio prompts. Given the sound
that it predicts, we infer the camera angle. We do this by finding
the nearest neighbor (using IID cues) to a database of synthetic
sounds, each paired with their corresponding angle.

A.2. Additional experimental results

Evaluating pretext task. We also evaluate the perfor-
mance of our model on the pretext task, which involves
binauralizing sound at a novel microphone pose using sound
from a different viewpoint and visual cues from both views as
references. We use the STFT distance between the predicted
and ground-truth spectrogram to measure the audio recon-
struction performance. As the results are shown in Tab. 7,
our model that incorporates both visual and audio features
as input performs the best and is comparable to the model
that receives ground truth rotation angles as inputs. This
suggests that our model effectively uses the spatial informa-
tion in both visual and audio signals to solve binauralization
tasks, and encourages the network to learn useful represen-
tations. Moreover, the results show that training with more
viewpoints improves the performance of the pretext task.

Input features

Model STFT distance |
1% A
_ Random v v 0.368
= 0.206
.5 . 0.207
% Ours (2 views) v 0.161
g v v 0.130
= Ours-GTRot v 0.131
Ours (3 views) v v 0.125

Table 7: Reconstruct performance of cross-view binauralization
pretext task. We report the STFT distance performance of variants
of our models with different input features on HM3D-SS dataset
with LibriSpeech samples [69]. V and A mean visual and audio
features, respectively.

Experiment on FreeMusic. We report the performance
of downstream tasks with learned representations on the
HM3D-SS dataset with FreeMusic [20] samples in Tab. 8.
We outperform baselines and learn a useful representation.

Model Audio Loc. Camera Rot.
ode Acc (%) 1 Acc (%) 1

Random feature 6.0 4.7
ImageNet [38]+Random - 56.3

2 RotNCE [27] 46.3 _

§ AVSA [63] 66.5 6.7

£ Ours-L2R (3 views) 72.0 76.5

M Ours (2 views) 67.5 76.2
Ours (3 views) 67.5 81.1
Supervised 77.1 95.8

Table 8: Downstream task performance on HM3D-SS dataset
with FreeMusic [20] samples. We report linear probe performance
on the audio localization and camera rotation downstream tasks.

SLfM without pretraining. We further demonstrate the
important role of the features learned from our cross-view
binaural pretext task by training our SLfM model with ran-
dom features. We show results in Tab. 9. We can see that
the models perform better using our feature representations,
which emphasizes the significance of our pretext task. Our
SLfM model finetuned from random features achieves ac-
curate predictions, highlighting that our proposed method
successfully leverages the geometrically consistent changes
between visual and audio signals.

A.3. Ablation study

Audio prediction network. We study how audio predic-
tion architectures will influence representation learning from
our proposed pretext task. We adapt the U-Net architec-
ture with cross-attention modules for conditional feature



Audio angle Camera angle

Model Init. feature MAE (°) | MAE (°) |
Ours Random (freeze) 36.51 29.26
Ours Random (finetune) 3.92 1.32
Ours M2B (freeze) 3.17 0.77
Ours M2B (finetune) 2.77 0.76

Table 9: SLfM results with different features. We evaluate our
SLfM models trained with different feature initialization on HM3D-
SS.

inputs [79, 88] and compare the pretext and downstream per-
formance with U-Net [30] we used for our main experiments.
We train our models on the HM3D-SS dataset with a single
sound source presented in the scenes and use LibriSpeech
signals [69]. We report results in Tab. 10. Interestingly, we
found that ATTN U-Net can reconstruct better sounds for
the pretext task while it does not learn the features as well as
the 2.5D U-Net [30]. We hypothesize that a more complex
network may transfer the representation learning inside of
the prediction networks rather than the feature extractors.

Model Pretext |  Downstream Acc (%) 1
STFT Dist.  AudLoc. CamRot.

ATTN U-Net [79, 88] 0.128 68.0 75.3

2.5D U-Net [30] 0.130 74.5 80.0

Table 10: Audio prediction model ablation study. We evaluate
both pretext and downstream performance on the HM3D-SS with
LibriSpeech samples [69].

Robustness to reverberation. 100
We also evaluate our representa- . \
tion under the influence of rever- 0
beration. We report linear probe
perform.ance on downstregm T YR
tasks with average reverberation RT60 (s)

RT¢o € {0.1,0.2,0.3,0.4,0.5}. Figure 10: Robustness
As shown in Fig. 10, the results to reverberation. We
indicate a decrease in down- study the effect of rever-
stream performances as the level beration on our pretext
of reverberation increases, where model.  Chance perfor-
audio becomes more challenging Mance is 1.5%.

during both training and testing.

Acc (%)

—— CamRot
40 AudLoc

Weights of geometric loss. We assign appropriate weights
for the geometric loss (Eq. (6)) to avoid it from dominating
the optimization. In our approach, we search A from 1 to 10
during training, and we select models weights using a metric
by calculating 1/(100 : ‘cgeo + Ebinaural + ['sym) during
validation. We show the search experiment in Fig. 11. The
performance is relatively stable when \ € [3, 8]. We select
A = 5 or 3 in the main paper, please see Appendix A.4 for
details.
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Figure 11: Hyparameter search. We experiment with A from 1 to
10 and monitor the scores of models.

A.4. Implementation details

SLfM model. We use separate multi-layer perceptrons g,
and g, (i.e., FC (512 — 256)-ReLU-FC (256 — 1) layers)
to predict scalar rotation and sound angles.

Hyperparameters. For all experiments, we re-sample the
audio to 16kHz and use 2.55s audio for the binauralization
task. For pretext training, we use the AdamW optimizer [46,
53] with a learning rate of 10~%, a cosine decay learning rate
scheduler, a batch size of 96, and early stopping. During
downstream tasks, we change the learning rate to 1023 for
linear probing experiments. To train our self-supervised pose
estimation model, we set the weights A of geometric loss to
be 5 and weights of binaural and symmetric losses to be 1.
For more complex scenarios (Sec. 4.5), we set the weights A
as 3 to avoid the geometric loss from dominating.

IID cues. We describe our implementation of predicting
sound on the left or right using IID cues in detail here: we
first compute the magnitude spectrogram |A | from the bin-
aural waveform a and sum the magnitude over the frequency
axis. Next, we calculate the log ratio between the left and
right channels for each time frame. After this, we take the
sign of log ratios and convert them into either +1 or -1. We
sum over the votes and take the sign of it for final outputs.

Dataset. Due to the fact that SoundSpaces 2.0 [15] does
not support material configuration for HM3D [76] at the
current time, we obtain binaural RIRs with different rever-
beration levels by scaling the indirect RIRs and add them up
with direct RIRs. We render binaural sounds with random
audio samples as augmentation during training.



